2016 Science Chemistry

1	Anglo-Chinese School (Barker Road)
2	Maris Stella High School
3	Chung Cheng High School
4	CHIJ Katong Convent
5	St. Gabriel's Secondary School
6	Hua Yi Secondary School p1 and p2
7	Queenstown Secondary School p1 and p2
8	Saint Patrick's School

m	Exam Index					
Z	Number		L		Se	Sectio
					Answer all the questions in The total mark for th	ons ir for th
S				The table shi F. These par elements.	The table shows the atomic structure of size. F. These particles are either atoms or ions elements.	of si
THE BEST IS YET TO BE				particle	number of electrons	n
Anglo-Chinese School	lool			A	σ	
(Barker Road)				8	2	
PREI IMINARY EXAMINATION 2016	2016			c	12	
				D	10	
SECONDARY FIVE (NORMAL ACADEMIC)	CADEMIC)			m	6	
SCIENCE (CHEMISTRY) 5076/3	2			۳	10	
1 HOUR 15 MINUTES				(a) Which	Which two partides are an atom an	m an
INSTRUCTIONS TO CANDIDATES						
Do not open this booklet until you are told to do so.						-
Write your index number in the spaces provided at the top right hand corner of this page and on any separate answer paper used. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, or rough working.	ght hand corner ck pen in the spa graphs, or rough	of this page and aces provided on working.		(b) Which	Which partide(s) is/are chemically	
Do not use staples, paper clips, highlighters, glue or correction fluid.	Tota	Total Marks				
Answer all questions in Section A and any two questions in Section B in calculations, you should show all the stens in you	Section A	/ 45		(c) Which formu	Which two particles combine togetr formula which is in the form of X ₂ Y:	Sgett X₂Y₃
working, giving your answer at each stage.	Section B					-
Enter the numbers of the Section B questions you have answered on the dotted grids.	0					2
A copy of the periodic table is printed on the last page of this booklet.	<i>o</i>			(a) vvnici	vvnich particles are elements in on	

•

This paper consists of 18 printed pages inclusive of this page.

Total

/ 65

[1]

N

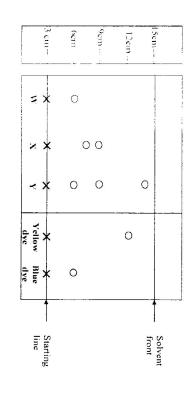
on A

.

1.

-

in the spaces provided. his section is 45.


ix particles, represented by the letters A to s, and the letters are **not** the symbols of the

g	particle	number of electrons	number of protons	number of neutrons
	A	6	თ	6
1	œ	2	2	2
1	C	12	12	12
1	D	10	12	12
	т	6	6	œ
	п	10	7	14
-	Which	Which two partides are an atom and an ion of the same element?	n and an ion of the sam	e element?
-	Which	Which partide(s) is/are chemically unreactive?	ally unreactive?	[1]
<u> </u>	Which formu	Which two particles combine together to form a compound with a chemical formula which is in the form of X_2Y_3 ?	gether to form a compo X₂Y₃?	und with a chemical
Ţ	Which	Which partides are elements in Group IV of the Periodic Table?	n Group IV of the Period	

Anglo-Chinese School (Barker Road)

The chromatogram shows the dyes contained in three different sweets labelled W, X and Y. Yellow and blue dyes are harmful.

N

- (a) Which sweet(s) is/are harmful?
- (b) Explain why the starting line must not be submerged in the solvent during chromatography.
- (c) Explain why the result will be inaccurate if the solvent front stops at the 9 cm mark

[4]

The table below shows some information about the properties of three solids.

(d)

solid C sublimes	solid B no effect	solid A no effect	aniatina alianto india
insoluble	t insoluble	t very soluble	eat nut water

Solid C sublimes when heated strongly. Explain the meaning of this statement.

				Using this information, explain how you would obtain a pure, dry sample of solid B given a mixture of all three substances.	[1]	
				a pure, dry si		
				ample of solid B g		
1	÷	÷	:	ven	[1]	

(e)

ω

4

Anglo-Chinese School (Barker Road)

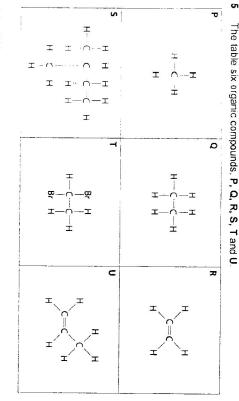
bestfreepapers.com
- The BEST website to download FREE exam papers, notes and other materials from Singapore!

:::

......[2]

nese Scho	Analo-Chine	
100	sea School	
(Barker Road)	(Barker Road)	

3 (a) vs the names of some oxides. .


.

					<u> </u>									
				Identify the two oxides fr the atmosphere.	Two of the oxides are responsible for acid rain.		(iii) Which oxide(s) will not react with hydrochloric add or with aqueous sodium hydroxide?	and the second second	(ii) Which oxide(s) will reahydroxide?		(i) Which oxide(s) will react with hydrochloric acid but not with aqueous sodium hydroxide?	sodium oxide	aluminium oxide	The box shows the names of some oxides.
				rom the table above and st	sponsible for acid rain.		react with hydrochloric ac		$Which\ oxide(s)$ will react with both hydrochloric acid and aqueous sodium $hydroxide?$		ct with hydrochloric acid bu	sulfur dioxide	carbon monoxide	of some oxides.
				Identify the two oxides from the table above and state the cause of their presence in the atmosphere.			d or with aqueous sodium		acid and aqueous sodium		ut not with aqueous sodium	zinc oxide	nitrogen dioxide	
				nce in		[1]		[1]		[1]				
			(b) Describe the method t	(a) Construct a chemical e	A student mixed sodium ca	4 Insoluble salts can be made								(c) Draw a 'dot and cross' di to show the outer shell el
			Describe the method to separate the two products in (a)(i) completely.	struct a chemical equation for the reaction.	mixed sodium carbonate solution with copper(II) sulfate solution.	salts can be made by mixing solutions of two soluble salts.								Draw a 'dot and cross' diagram to show the bonding in sodium oxide. You only need to show the outer shell electrons.
- The BEST web	to do	wnlo	ad FRE	bestfre E exar	eepa n pa	apers. ipers,	com notes a	and c	other m	ateri	als from	Singa		

S

ന Anglo-Chinese School (Barker Road)

۹
<
≤.
Ξ.
¥.
0
2
⊒
8
Ē.
2
ŝ
5
ompounds will
a
ē
8
decolourise
5
İSe
CD .
aqueou
Ē
õ
Ē
9
omine?
⊇.
B
5

Which compound, P or S, has a higher boiling point? Explain your answer.

(c)

....[2]

 (Ξ)

making bridges.

*** *** *** *** *** *** *** *** *** *** *** ***

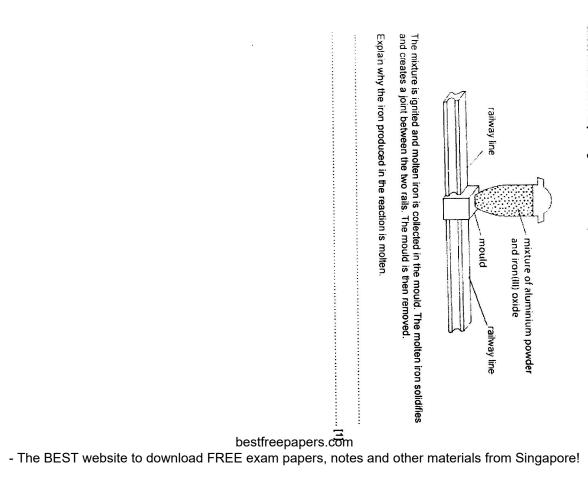
[1]

Use the information from the list to suggest why steel is the better material for

(d) Compound U can polymerise to form a large organic compound. (a) Steel is an alloy containing iron. Ξ The following are three differences between steel and aluminium. (ii) Name the compound you have drawn in (d)(i). (i) Draw the structure of the product of polymerisation. Use the information from the list to suggest why aluminum is the better material for making ladders. Steel can rust but aluminium resist corrosion. Steel has a higher density than aluminium. Steel is much stronger than aluminium.[1] [1] Ξ bestfreepapers.com

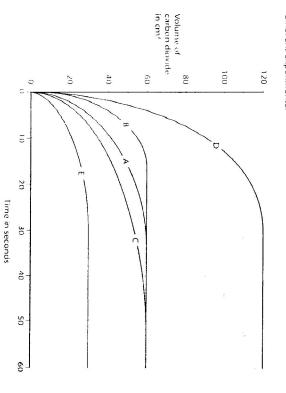
თ

1


Anglo-Chinese School (Barker Road)

Ang
10-C
hine
ese S
School
(Barker
Road)

•


Anglo-Chinese School (Barker Roz)

(c) The following diagram shows a chemical reaction between aluminium powder and iron (III) oxide, which is used to join together two railway lines.

The graph shows the volumes of carbon dioxide given off when calcium carbonate lumps are reacted with hydrochloric acid, at room temperature and pressure, in five different experiments.

7

(a) Curve A shows the volume of carbon dioxide given off when some calcium carbonate lumps are reacted with an excess of 1.0 mol/dm³ hydrochloric acid. The experiment that gave the results of Curve A was repeated a few times, each time with a different condition modified.

Complete the table below to identify the curve that corresponds each changed condition and explain your answer.

powdered calcium carbonate	lower temperature	half the mass of calcium carbonate lumps	modification
			CUIVE
	7		reason

(b) The equation for the reaction is

6

- $CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 + H_2O$
- Calculate the number of moles of carbon dioxide produced in the experiment represented by Curve A.
- [The volume of any gas is 24 dm³ at room temperature and pressure.]

Ξ

•

(II)

Calculate the mass of calcium chloride produced in the experiment represented by Curve ${\bf A}$

[Relative atomic masses of Ca= 40, Cl= 35.5, C= 12, O= 16]

8

2	
2	
3	
D	

The alcohols form a homologous series. The first member of this homologous series is methanol. Answer any two questions. Write your answers on the lined pages provided. The acoholis form a homologous series. The first member of this homologous series is inchanced. (b) Propane and propene are both hydrocarbons. Using equations to support your describe the similarities and differences in their reactions. Bestfreepapers.com Destfreepapers.com The BEST website to download FREE exam paper6, notes and other materials from Singapore! (a) 9 Answer any **two** questions. Write your answers on the lined pages provided. The total marks for this section is 20. Section B

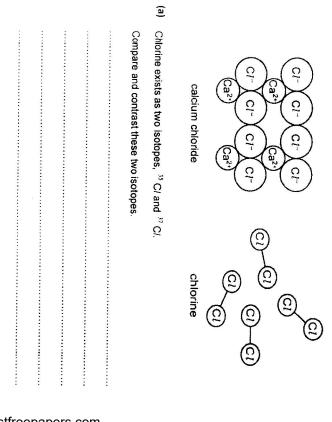
[2]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ಾ
Q
8
~ <del>`</del>
ċ
1.1
- 5
- 5
പ്
~~~~
ö
w
10
~~~
- 52
~
Q
0
-
-
w
ື
ъ.
- 27
9
2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~
8
3

(a) Magnesium sulfate can be made by reacting dilute sulfuric acid with either magnesium oxide or solid magnesium carbonate.

9

Describe the difference in observations between the two reactions, using equations to explain your answer.


		(d)	
	 (i) Describe what the student would see if the salt contained lead(II) ions. (ii) Explain why the result you have described in (b)(i) does not confirm that the salt contains lead(II) ions. Describe an additional test the student could do that would prove the salt contains lead(II) ions. 	A student dissolved some salt crystals in water. He added sodium hydroxide to the solution until it was in excess.	

The figure shows the structures of calcium chloride and chlorine.

Anglo-Chinese School (Barker Road)

8

10

5

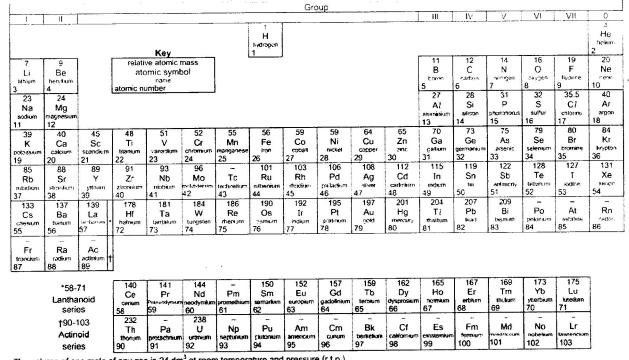
5

•

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

[3]

Calcium reacts with chlorine atoms to form calcium chloride. The following table shows the physical properties of calcium chloride and chlorine.


(d)

calcium chloride	а 2 - 2
conducts in molten state but not in solid state	conductivity
1935	boiling point/ ^o C
	conducts in molten state but not in solid state

- Ξ Explain how a calcium atom combines with chlorine atoms
- Ξ $\mathsf{Explain}$ the difference in properties of calcium chloride and chlorine shown in the table.

	1	ł	2	1		1	8			1	1
				4	1		Б.				
					1	1	1		2		1
6		1	0	1	1	1					
5							1.1		2		
	- 8	1		1	1		1				
		6							1		:
	10			3	1.1				1	:	1
								10	1		6
				÷							
				4	0	0	0	10			
	1		:	1	1	1		1			1
1. I.	10	1.1	0	1.1		÷ .		1		1	1
	:	1	1	÷		1	1	2	:		1
:	1	:	1	1	:		1				
			1	:		1	1	1	1	:	1
-		1		- C	0	:			:		
		:	1	:			:	1	:	1	:
-		1	÷		1		:	1	:	10	:
10				÷.					:	:	:
1		:	-					1	- 1	1	:
:		;									101
1		;	;		:	÷.	0		1		
	2	:	:	:		:					1
1	1	19	1								1
1	1	:	1		:	1					-
1		1	÷ .		:	-		- 8	1		
		:		:	0		1	-			
1	1	1	:	:	;	1	1	-			
2	:	:	:		:	:	:	:			1
		1		:	1	1	1		- 1	1	:
		1	1	1	:	- C	:		1	1	
1			:	:	:		:		:	:	:
			•	-	:		÷ 1	0	:	:	:
:			10	÷	:	:				:	1
				- 1	•	:					0
-	1							0	2	1	:
0					-	:	2	:	:	2	:
			÷	1			12			;	:
		- i	1			:				:	:
	:		5			2			:		
		1		:				1			:
2	:		:	:				- E	÷ .		:
:	:	1	1	-	1		-	1			÷
1	:			-		-		÷	;	1	
2	÷ .	÷ .	:		1			-	:	-	1
	1	:						- E.	:	÷	1
÷ .					-	:	:	:	:	:	:
		- ÷		:	:	:	:	:	:	:	:
			1	1	:	:	:	:	:	:	:
		- 8			1	:	:	:		- 2	
	- E -	÷ .				:	:	:	÷	1	:
:		-	1		:	:	1	:	2	1	C
-		÷ .		÷					:	:	:
		·		:	•	:	-	-			

The Periodic Table of the Elements

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).

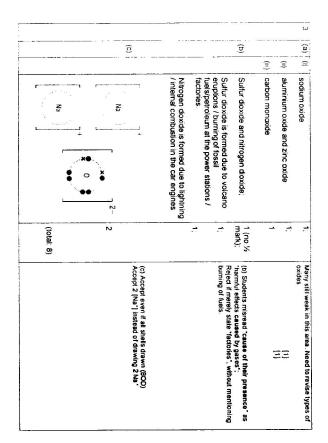
17

End of Paper

[7]

18

On Anglo-Chinese School (Barker Roæl)


bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

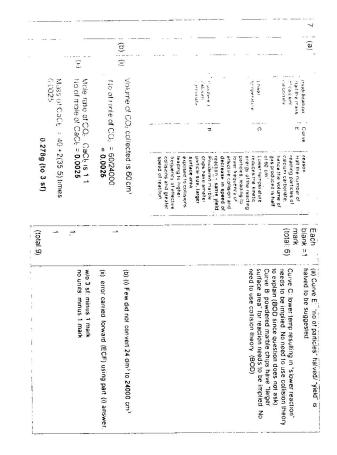
٠

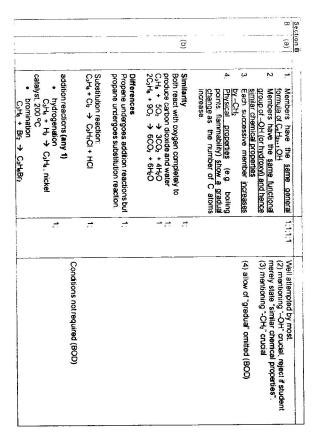
. V

	(total 6)	Heat the residue until all the solid C tras sublimed / there is no further change in mass [1]		
(e) no mark for first part if "hot" water not mentioned	1.1	Dissolve the mixture in hot water and filter [1]	(e)	
(d) "without going through liquid state" left out BOD		his state changes from solid to gas cirectly without going through the Liquid state	â	
(c) most state "yellow dye will not be travel beyond the 9 cm mark" Answers need to imply "there will be no full separation of colours"	-	Spots will not be distinct as dyes are not completely separated	<u>(</u>	
(b) accept answers that state/mean "dyes dissolve into solvert". "preventing a proper separation up the chromalogram" left out by most students		This is to ensure that the dyes do not get washed off by the solvent, preventing a proper separation up the chromatogram.	(P	
	يەر. 1	W and Y	(a)	
	(total 4)	ा सन्द्र ह	(a)	-
			: - (0)	
	يى. مەر	3	<u>(</u>	88.
	د ا	C and D	(a) .	
Remarks				-
	Chemistry P3 Marking Scheme	Science Chemistry P3 Marking Scheme		· · · · · ·

.

•


			U		4		
(d)	(c)	(b)	(a)		(a)		
(d) (i)				Ξ	Ξ		
1-0-2 7-0-1	S is a bigge molecule than P, therefore has stronger intermolecular forces of attackin and require more energy to overcome the forces;	۵	RandU	Filer the mxture Rinse residue with distilled water, dry by pressing residue between 2 pieces of filer papers	$\begin{array}{c} Ma_{*}CO_{*} \ \ [aq] \cdot Cu(SO_{*} \ (aq) \ \rightarrow \ Cu(CO_{*} \ (s) + Ma_{*}SO_{*} \ (aq) \end{array}$	correct charges & balancing [1]; no of electrons in ions [1]	un on coposite and numeral crange one on to prose to toxice
.+	بر د	<u>بر</u>	1	1; 1; (total: 4)	1; 1 (state symbols)		
(d) tew draw polyethene instead of polypropene. 'n' has to be al right position.				(i)" distilled/deionised water" needs to be mentioned	(a) (I)Accept if no state symbols (since question did not ask for it) (BOD)		


•

.

•

(c) "ange amount of heat". "higher than mp" required. Reject if merely suggest "heat meits iron"	1; (total:8)	Heal is produced during the reaction. Resulting temperature is higher than the meting point of iron.	· ···· · · · · · · · · · · · · · · · ·	
(b) (iii) As long as student mentions oxidation increases from 0 to +3	đ	 Aluminium; The <u>oxidation state of aluminium</u> increases from 0 in Al to +3 in Al₂O₃; 		
	Ë	(ii) aluminium is more reactive than iron; it displaces iron from its oxide;	~	
"nearneat energy" accepted, reject "energy"	<u></u>) heat (energy) is given out to the surroundings	э Э	(b)
(ii) as long as "stronger" is mentioned/equivalent in meaning	د	(ii) A sleet bridge is stronger than auminium, better able to withstand the weight of heavy objects	~	
(a) (i) "lighter" and "resist corrosion" both need to be mentioned/equivalent in meaning. "rusting" is	<u>.</u>	 Ladders made of aluminium are lighter and can resist corrosion/does not rust 	5 9	(a)
	1; (total:6)	polypropene		

accept '2 more neutrons'
(a) Well answered by most
 (ii) Lew get This correct. Some mentioned using articitonal Less using an animovia because alumnum fores have same result as fead(b) ions, when it should be firm ions. No penalty if lead ions instead of lead(b) ions used
(b) (r) needs to mention "soluble in excess"
(a)Stale symbols not required (BOD)

-	· · ···		3		(i) (a)	
Chlorine exists as small covalent molecules. It has weak intermolecular forces of attraction;	CaCk has strong electrostatic forces of attraction between its positive and negative ions which requires alarge amount of energy to overcome.	In solid form, the lons are fixed in position so they are unable to carry the electrical charges around.	When molten, calcium ions are free to move so they are able to carry electrical charges around;	Each calcium atom transfers two Valence electrons to 2 chlorine atoms; Ca* and CI ions are formed which are attracted by electrostatic forces of attraction;		"CI. Has 20 neutrons/mass number of 37
1		2		a a	1;	values
	both points have to mentioned, "strong electrostatic force" and "large amount of energy"	most fail to mention "ions fixed in position" (BOD) as long "no mobile ions" implied	(ii) accept as long as "mobile ions" implied in liquid state		(b) (i) "allure to give complete answer, Most stopped after describing how ions are formed (fit out attraction between +we and -we ions) However, accept if "tonic bonding" mentioned	

ł.

HAI SING CATHOLIC SCHOOL	This question paper consists of $\underline{15}$ printed pages, including the cover page	The number of marks is given in brackets [] at the end of each question or part question	At the end of the examination, fasten all your work securely together	A copy of the Data Sheet is printed on page 14. A copy of the Periodic Table is printed on page 15.	Answer any two questions. Write your answers in the spaces provided on the question paper.	Section B	Section A Answer all questions	The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your workings or if you do not use appropriate units	You may use an HB pencil for any diagrams, tables or rough working Write in a dark blue or black pen. Do not use staples, paper clips, highlighters, glue or correction fluid.	Write your name, class and index number on all the work you hand in	DEAD THESE INSTRUCTIONS FIRST	Students answer on the Question Paper. No Additional Materials are required.	Haper 3	SCIENCE CHEMISTRY	Secondary Four Express/Five Normal Academic	PRELIMINARY EXAMINATION TWO 2016			美 美 圣	47 CLAY9		Class. Index No. Name:	
Хл	ing the cover page	Parent's Signature			Total	Section R	FOR EXAMINER'S USE	ropriate not use appropriate units	Ę.	E		1100 – 1215h	1 hour 15 minutes	5076/03 and 5078/03 13 September 2016	Academic	10 2016			李			Date	
	(iii)	(ii)		(a) (i)	2 The haloger halide ions.		(d) Ex	(c) Wh		(b) Wh		(a) vyn	-							H'dd	1 The table		
) Explain why an aqueous solution of iodine does not react with potassium chloride	Describe what you would see when aqueous chlorine is bubbled into potassium bromide.	C/2 + KBr –	C omplete and balance the chemical equation for the reaction of chlorine with aqueous potassium bromide.	The halogens are a group of elements showing trends in colour, state and reaction with other halide ions.		Explain why particle A and particle D are isotopes	Which particles are positive ions?		which particle is a negative ion and why has this particle got a negative charge?		Which particles are atoms? Explain your choice		F 24	m 13	33	C 34	B 19	A 33	particle number of protons	The table below gives the composition of six particles which are either atoms or ions	Answer all the qu	
	ion of iodine does not rea	when aqueous chlorine is	↓	equation for the re	nowing trends in colour, s		D are isotopes.			why has this particle got				28	14	42	45	20	40	number of neutrons	six particles which are eit	Answer all the questions in the spaces provided	Section A
	act with pota	s bubbled into		action of chlo	tate and reac					a negative cha				21	13	33	36	18	33	number of electrons	her atoms or in	vided	

15

.

The table shows the properties of some halogens

ω

<u>e</u>

- Complete the missing spaces in the table.
- Suggest a value for the boiling point of bromine.

gas	yellow
solid	green

When a match is struck on the side of the box, the friction produces enough heat to light the match. The head of a safety match contains potassium chlorate and antimony sulfide. The side of the matchbox contains red phosphorus.

ω

(a) The equation for this reaction is shown

(a)

σ

R Ø

S

Which substance is oxidised and which is reduced? Explain your answer in terms of oxygen gain or loss	5KC/O, + 6P potassium chlorate
ch is redur	¥
ced? Expla	5KCI
зіп уоці	+ 0
rr answer in terms of oxygen gain	3P₂O₁ phosphorus(V) oxide

explanation	substance reduced	explanation	substance oxidised
	a.		
	2 1 2 2		

(b) White a balanced equation for any one of the reactions in Fig. 4.1

Ξ

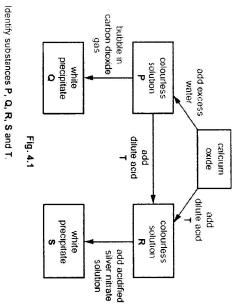
<u></u>ე

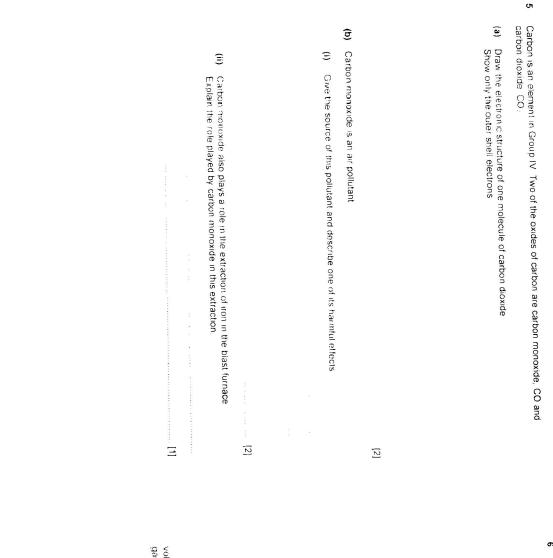
- (d Phosphorus(V) oxide, P. O., absorbs water from the air to form meta-phosphoric acid, HPO3.
- Ξ Write an equation for this reaction
- Ξ On addition of more water, phosphoric acid is formed. Phosphoric acid has typical acidic

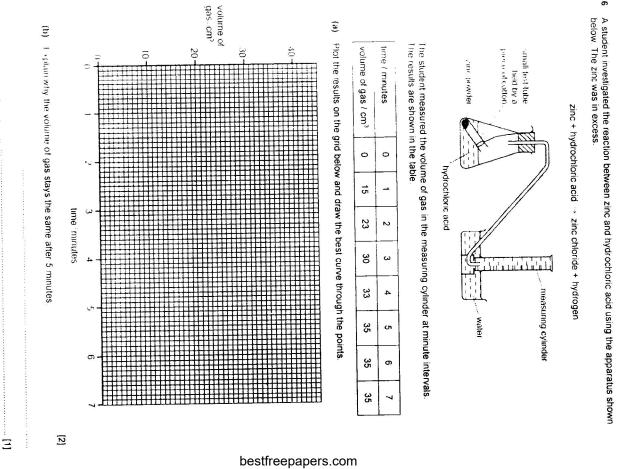
aqueous sodium carbonate,

blue litmus paper?

What would you observe when aqueous phosphoric acid is added to


properties


Ξ


[Turn over [2]

•

[Turn over

17

0

S

-	-
-	
Ξ	
=	ŝ
-	
z	2
ā	5

- is we also be

	the second second second second second		
1		1	
1	÷ .		
	1		
		1 C	1
1	1		
1	2		
1	÷.		
	1.1		
		2	
	12		
		-	
1	8		
	2		
	;		
8	1	1	
÷	:		
1.1	1	1	
1			1
1	1		1
:	1		
	÷	1	1
- E		1	
1	5	1	1
3	1		1.1
1		÷ .	4
		1	
	1.1		1
	:		1
1	1	1	1.1
1			4
-	1		1
1		1	1
	1		1
1	1	1	-
		1	
:	-		
8	1		-
:	1	2	1
1	1	3	
	1		1
		1	
8	-		1
1	1	÷	1
1	1	:	
- 8			- E
1	:		1
1	3	2	3
÷			1
1	1	÷ 1	1
1	1		1
1		÷	1
1	1	:	1
1	1		5
1		1	÷
[2]	:	÷	÷
	1	1	1
[2]	1		

Use your knowledge of particles of gases to explain why an increase in temperature will increase the rate at which these two gases, ammonia and carbon dioxide, will react

(d)

Mass of urea = [3]

Indicate on your graph how to estimate the volume of gas evolved after 2.5 minutes. Record your result below

<u>c</u>

7

Urea, (NH $_2)_{\rm c}$ CO, is formed by reacting together ammonia NH $_3$ and carbon dioxide CO $_2$

(a) What mass of urea can be formed from 68g of ammonia?

 $2NH_{2}(g) + CO_{2}(g) \rightarrow (NH_{2})_{2}CO(s) + H_{2}O(l)$

(d) Calculate the average speed of reaction over the first 4 minutes in cm⁺ per minute.

volume of gas evolved =

. cm³ [1]

8

Ξ

18

anticarithtic in a state

[6]	[Turn over
escribe one chemical test to distinguish between ammo	
[4]	
	[1]
(b) (i) Describe an experiment to prepare crystals of MC/, starting with the carbonate, M_2CO_3	
	Draw the structure of the monomer used to make poly(propene).
3	
Suggest how metal M can be extracted from its compounds. Explain your reasoning.	(b) The diagram shows the repeat unit of poly(propene).
(a) Surgrest to which Group of the Periodic Table metal M belongs	
 occurs naturally as its chloride, formula Micr 	What do you understand by the term unsaturated?
 soft melts below 100°C 	Isoprene is an unsaturated compound
 It is the table of the table of the table of the table of tabl	Isoprene
	CH ₂ CH CH ₂
Write your answers in the spaces provided	CH3
Answer any two questions in this section	
Section B	(a) A plant contains the coloured compounds chlorophyll and carotene.
10	9

19

10

.

9

.

		÷
Explain, with the help of an equation, why this reaction is a <i>substitution</i> reaction and suggest why it is described as <i>photochemical</i>	Explain, with the help of an equation, why it is described as photochemical	wh Nh
Propane undergoes a photochemical substitution reaction with chlorine gas	pane undergoes a photocher	(c) Pro
	×	
•		
		ŀ
		¢
		-
	4 	:
actions you discuss.	Give an equation for any of the reactions you discuss	Giv
 Your answer should include the similarities and differences in their combustion reactions, reaction with aqueous bromine. 	 r answer should include the similarities ar combustion reactions, reaction with aqueous bromine 	Yot
of propane and propene.	Compare the chemical properties of propane and propene	(b) Cor
[2]		
Draw the structural formulae of propane and propene. Label your diagrams.	w the structural formulae of p	(a) Dra
n aikerte	Propane is an alkane and propene is an alkene	opane

. •

(a) Describe how the reactions of the three elements with water could be used to find this order.

Write the chemical equation for any one of these reactions you describe. State symbols are not required

							-		~
							2	State symbols are not required.	
					8		1	: 6	5
						÷	2	. 2	4
			2		:	1	1	: α)
					÷ .	2	2		
			: · · · ·			5	20 million - 1		
							÷.	· · · ·	-
			÷			:	1	: =	₹.
			1	1			2	: 2	÷
			:		÷	5	5	: 9	<u>.</u>
						-		. C	,
			÷		:	÷	3		5
			:			:			
	2			2		ç		÷ 8	2
	:		:			2	:	: .	ι.
		-			÷	5	5		·
			÷ .		2	s	a	· •	5
	:		:	:	:	¢		: 7	ί.
	:		:	:	:	:	1	: 2	4 -
				•				· ·	
						2	-		
	:		:)		:	:	2	ુ હુ	2
		1	:	:	:	:	:	:	2
			: ·	:	:	:	:	; 0	
		1	÷ .			÷	4	. =	ς.
	:	:	÷	1	:	:	-	: a	٠
	:		:		:	:	-	: C	÷.
			1		:	:	÷ .	: 7	•
				÷	:	-	÷	8	
			:		:	:	1	2	
	:		:		:	:		0	
			e ::	÷	:	2	÷	1	
			÷ 1	-		÷	•	÷	
	:	:	2 I	:	0	C	1	2	
		•	:	:	:		1	1	
			÷	8	8	÷	1	÷	
		:	e (:	:	;	3	÷	
	:	:	:	:	:	÷	:	1	
	: :	:	:	:	c	÷ .	1	3	
		:	:	:	:	:	1	5	
			÷ .	1				÷	
	2 K		÷ 1	-	:	;	1	:	
	2		5 ×	1	:	:	÷	2	
•			:		2	2	÷	1	
	P		1	÷			-	÷	
:	1	:	1	1	1			1	
		:	:	1	2	÷	2	2	
	-		:	÷			÷	2 C	
			:			÷	2	÷	
: 1	:	1	:	1	:	:	÷	÷	
	:	÷	1	1	:	÷	2	÷	
			:		8	t	2	÷	
				÷	2		-		
	:		:		÷ .	2	1	-	12
	1	:	:	÷	÷	:	1	1	
								1	
					-	-	÷		
:	:	1	÷ .	÷	÷ .	-	÷.	4	
:	:		1	2	:	÷ .	1	÷	
:	:	:		1	:	:	:	3	
			:	1	1	:	:	1	
					2		-	8	
1	:	:	:	-	:	1	1	÷	
:	:	:	¢	1	0	2	2	÷	
:	:		:	2	:	:	2	£	
	:		:	5	5	÷	:	1	
		2	:	÷	÷	2	+		
;	÷	;	;	;		÷	2		
: 1	:			:	:	:	:	÷	
:	1	:	1	1	:	:	:	:	
3	1	:	:	5	:		:	5	
	1	-	-	-	8	8	:	8	
:		:	1	2	1	1	2	:	
:			:	:	:	:	:	1	
	5	:	:	:	:	:	1	1	
	2	i		-	8	1		2	
	:	:	:	:	;	:	1	1	
: 1	1	;	:	:	:	:	:	1	
	÷	1	:	1	:	:	2	1	
				: :	6	÷.	1	2	
:	:		:	:	÷	÷	:	1	
: `	:		:					otate sympols are not required.	
		:		1		÷	2		
	500				15				

bestfreepapers.com
- The BEST website to download FREE exam papers, notes and other materials from Singapore!

[Turn over

END OF PAPER

	*
	-
The calcium used is in excess. Calculate the volume of hydrogen formed in this reaction measured at room temperature and pressure.	(iii)
Calculate the number of moles of hydrochloric acid present	(ii)
Calculate the number of moles of calcium present	Ξ

Colour of Some Common	
Common Metal Hydroxides	Data Sheet

14

zinc hydroxide	lead(II) hydroxide	iron(III) hydroxide	iron(II) hydroxide	copper(II) hydroxide	calcium hydroxide	
white	white	red-brown	green	light blue	white	

(b) Calcium reacts with drivite hydrochloric acid to form calcium chloride A student added 1.5g of calcium to 50 cm 3 of 0.10 mol / dm 3 hydrochloric add

13

 $Ca(s) + 2HC/(aq) \longrightarrow CaC/_2(aq) + H_2(g)$

12

•

The Periodic Table of the Elements

								Gr	oup		August 444-11.094 - 1.11-1.11-1.11						
1		1										111	IV	V	VI	VII	0
	A	Ja —					1 H							÷		•••••	4 He
							nydrogen i 1										nwium 2
7	9	1					·	1				1 :1	12	14	16	19	20
Li	Be											3	С	. N	0	F	Ne
Lthium 3	berylium 4											SCION 5	carton 6	nitrogen 7	S Strigen	Guur Le G	neo" : 10
23	24											27	28	31	32	35.5	40
Na	Mq											A!	Si	P	S	C:	Ar
sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chicnne	argon
11	12												14	15	16	17	18
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobait 27	nickel 28	29	30 zinc	gallium 31	germarium 32	arsenic 33	34	35	Se 36
85	88	89	91	93	96		101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	pailadium 46	silver 47	cadmaum 48	indium 49	t.n 50	ant mony 51	tellunuπ 52	-∞⊲∽e 53	xerici 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	-	1 - 40	5
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
caesium	banum	fanthanum	hafnium	tantalum	lungsten	rhenium	osmium	indium	platinum	gold	mercury	thallium	'eac	bismuth	00-00 UU	estai ne	racor
55	56	57 *	72	73	74	75	76	77	78	79	80	81	82	83	84	85	8 0
-	-	-															
Fr	Ra	Ac															
francium 87	radium 88	actinium 89 t															
	00	02 1															

*58-71 Lanthanoid series †90-103 Actinoid series

		140	141	144		150	152	157	159	162	165	167	169	:73	175
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	- Lu
		cerium	praseodymium	neodymium	promethium	samanum	europium	gadolinium	terbium	dysprosium	holmium	muidra	thulium	vtterbium	utet um
		58	59	60	61	62	63	64	65	66	67	68	69	70	171
Key a	a = relative atomic mass	232	-	238	~	-	-	_	-	-	-	~	-	-	
X	X = atomic symbol	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	b = proton (atomic) number		protactinium		neptunium			curium			einsteinium		mendelevium		awrenc.um
b	- p (,	90	91	92	93	94	95	96	97	98	99	100	101	102	103
		· · · · · -	· · · ·				1								· · · · · ·

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

-

.

•

c			c		0	-		σ	ii oxii for	= A	2ai C/2 +	1d The net	1c Ba	10 Ith	1a A I The	Qn Ans	
	-	lodine		bromine	chlorine	fluorine	halogen		oxidising agent ALLOW bond be for iodine to react	rown/ or	+ 2KBr	They have neutrons	B and F	[1] las more	Answers A, D, E [1] They have the same number of protons and electrons. [1]	Answers	
5 correct - 3m		Solid		liquid	gas	ĝas	slate at room temperalure		gent ond between preact	range/ red-br	r→ 2KC/	the same nu		C [1] It has more electrons than protons.			
	NOT – brown/ brown-black/ purple	black		yellow green red/ brown	colour		lodine is less reactive than chlorine / lodine is a less good oxidising agent ALLOW bond between potassium and chlorine is too strong for lodine to react	A brown/ orange/ red-brown solution is formed	/ + Br ₂	mber of protons bu		an protons. [1]	mber of protons an		2016 4E5N Pre Marl		
		184	ALLOW: range of 26 - 183	59	-35	-188	boiling point/ °C		e is a less good orine is too strong	ned.		They have the same number of protons but different number of neutrons			d electrons. [1]		2016 4E5N Prelim 2 Sc Chem Paper 3 Marking Scheme
					-		ງ	ω				[6] 1		2	2	ĸMa	ω

[Turn over

34 4:1 Qn Answers 3br P.O. + H.O. - + 2HPO1 52 40 31 11 561 5bil Carbon monoxide reduces iron(III) oxide to iron P calcium hydroxide / Ca(OH);
 Q calcium carbonate / CaCO3
 R calcium chloride CaC/;
 S silver chloride / AgC/ substance oxidised phosphorus 1 P explanation Phosphorus gains oxygen any one equation below [1m] $CaO + 2HCI \longrightarrow CaC/_2 + H_2O$ 1 hydrochlonc acid / HC/ blue litmus paper turns red [1] aqueous sodium carbonate effervescence / bubbling [1] NOT carbon dioxide given off substance reduced polassium chlorate / KC/O3 explanation Polassium chlorate loses oxygen $Ca(OH)_2 + 2HCI \longrightarrow CaCI_2 + 2H_2O$ IGNORF state symbols ALLOW multiples source is incomplete combustion of carbon-containing substances [1] $CaCI_2 + 2AgNO_3 \longrightarrow Ca(NO_3)_2 + 2AgCI_2$ Harmful effect is carbon monoxide is toxic and causes death/ it is poisonous and causes death/ prevents blood from absorbing oxygen and causes death. [1] - 8 shared electrons [1]
 - 2 lone pairs per oxygen atom [1]
 - 2 due to the pairs per oxygen atom [1]
 - 2 lone pairs per oxygen atom [1] $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$ CaO + H₂O --0 xo \rightarrow Ca(OH)₂ C 80 0 N Ξ Ξ ≥ r Ma G -N 5 2 [6] 5 Examiners Report

[Turn over

•

-

	70		<u> </u>	+	a	ai	6 <u>a</u>	Q N
higher speed/ more particles having the activation energy [1] - resulting in increase in frequency of effective collisions [1]	ALLOW ecf	• mor or urea = <u>2 mor</u> [1] mass of urea = mol x Mr = <u>2 x 60</u> = <u>120g</u> [1]	MH (NH)CO mol 2 mol	4 mm = 825 c	volume of gas evolved = <u>26.5 cm</u> ³ AND <u>indicate on graph</u> ALLOW range of 26 – 27 cm ³	All the hydrochloric acid is used up	correct plotted points – Tm smooth curve – Tm	Answers
5	2		ω	[5] ⁻	-	-	N	r⊀ Ma
								Examiners Report

[Turn over

Ξ 113 1 0 9a ₫: 10 80 8a Qn Answers • The resulting solution is MCI. Evaporate the solution to the Pipette 25.0 cm³ of M₂CO₃ into a conical flask. Metal M can be extracted by <u>electrolysis</u> [1] This is because in the compound of M, <u>the bonds are very</u> Juong and a lot of energy is needed to break the bonds. [1] contains carbon carbon double bond / C = C bond C14Ha0 ----- C8H16 + C6H14 acid used is hydrochloric acid Group [1] ALLOW alkenes can be used to make polymers/ plastics ALLOW short chained alkanes are in higher demand as fuels greater than the supply to produce more petrol/ because the demand for petrol is Add hydrochloric acid from a burette into the conical flask Add 3-5 drops of screened methyl orange. The screened any three from Record the volume of M₂CO₃ used. Repeat the experiment until the <u>screened methyl orange turns red</u>. (methyl orange turns red, phenolphthalein turns colourless) ALLOW methyl orange / phenolphthalein methyl orange turns green. count of saturation. <u>Wash the crystals</u> with distilled water / <u>Dry the crystals</u> with methyl orange turns yellow, phenolphthalein turns pink NOT Universal Indicator filter paper but without the indicator molecules have lower boiling points [1] molecules condense when temperature in column falls below temperature higher at bottom of column than at top [1] molecules move up column so heavier ones at the bottom/ lighter ones at top (larger ones at bottom/ smaller ones at boiling points [1] boiling point [1] larger molecules have higher boiling points / smaller idea that fractions separate because they have different top) [1] Ξ - 0 - CH3 ţ, - 0 - I Ξ Ξ 4 ω ω [2] _ Ma Examiners Report 5

[Turn over

4

ω

ъ.<u>-</u> 12 a 0 1 £ ∽ 10 Qn $C_1H_6 + CL$ - , $C_1H_2CI + HCI$ [1] An atom of hydrogen has been substituted with an atom of Ammonium chloride will <u>produce ammonia gas on heating</u> [1] calcium chloride will not produce any gas on heating [1] • ٠ . ٠ ammonium chloride will not form any ppt. [1] Answers any one of the following propene [1] OR Add aqueous sodium hydroxide to both solutions The hydrogen may catch fire producing a yellow flame Photochemical means light is needed for the reaction to occur/ to catalyse the reaction [1] chlorine Calcium chloride will form white ppt [1] Either Calcium reacts readity/ fast with cold water/ producing a lot of effervescence cold water than calcium/ producing a lot of effervescence. Order of reactivity : Sodium is the most reactive followed by [description must be more reactive than calcium] more than calcium Sodium reacts violently with cold water/ reacts faster with Copper does not react with water or steam $Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2$ 2Na + 2H20 ----+ C₄H₆ + 50; 2C.H. + 90. Both propane and propene undergo combustion to produce carbon dioxide and water Propane does not react with bromine H = C = C = C = HPropene decolourises aqueous bromine (to form 1, 2 -But propene produces more soot than propane dibromopropane) Ι Ξ 1 Ξ _ - 6CO, + 6H,0 OR 2NaOH + H2 2 Ξ $\cdot C = C = C = H$ - I - I - I propane Ξ -I OR Ξ Ξ Ξ Ξ ΞΞ Ξ ΞΞ [1] Ξ Ξ 5 ω⊀Ma თ ω N Examiners Report

Answer

σ

Þ

0

σ

σ

σ

⋗

Þ

o

Question

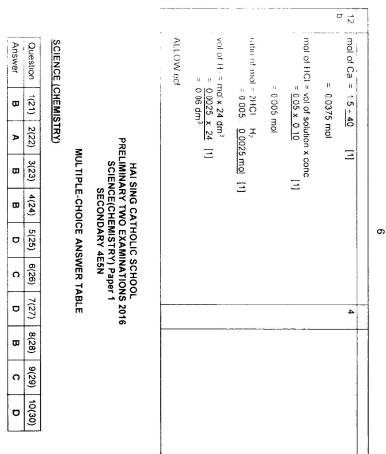
11(31)

12(32) D

13(33)

14(34)

15(35)


16(36)

17(37)

18(38) 19(39)

20(40)

[Turn over

[Turn over

a . •

G

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

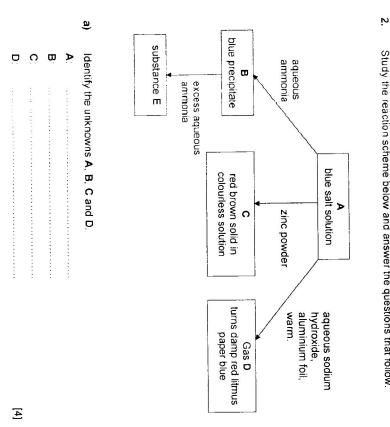
٩,

•

.

The Periodic Table of the Elements

,								Gro	up						а а 			-	
1 ;	11			2010 - 2 - 2								111	IV	V	VI	VII	0		
							1 H Namue 1										i fie i c,		
7 Ei 1994 23	9 Be servicor 4 Z4											6 6 21	е 28 28	na Na La Tari	19 19 19 19 19	ی بر در میں	Ng	10	
Na odum 1 39	Mg magnesium 12 40	45	48	51	52	55	56	59	59	<u>ĵ4</u>	35	Ai 13 70	5: 14 73	н Че Лу	5 	5 	A, 131 - 1 82		
K ntasisium 9	Ca calcium 20	Sc scandium 21	Ti taso.cm 22	V vanadium 23	Cr chromum 24	Mn menganese 25	Fe ran 26	Co sobalt 27	Ni Pickel 28	Cu criuser 29	Zn Jos 30	Ga _{gati} m 31	Ge yennariwn 32	As and 33	Se Teertor 34	. Br 115	- Kr 195		
85 Rb abelium 7	88 Sr strontum 38	89 Y	91 Zr zirconium 40	93 Nb nicibium 41	96 Mo	TC technetum 43	101 Ru	103 Rh rhodium 45	106 Pd pattadium 46	108 Ag	112 Cd cadmum 48	115 In 105-0 49	119 Sn 50	122 Sb	128 Te 1986-00m 162	- 1 	Xe	. 1-	Chu
133 Cs aet.um	137 Ba sanum 56	139 La Iantranum 57	178 Hf rafnum 72	181 Ta tantaise 73	184 W tungsten 74	186 Re menium 75	190 Os csmum 76	192 Ir andum 77	195 Pt platnam 78	197 Au ^{gold} 79	201 Hg nieroury 80	204 T X traiburt 81	207 Pb lead 82	209 Bi tshitt 83	Po	A1	Ro Ro		é (i
Fr Inclum	Ra ration 88 anthanoi	Ac action 39 †	-																Livery they high
	Actinoid				1			150	152		450	460	105	7			×		1
				140 Ce serium 58	141 Pr Maserdyn J 7 59	144 Nd necitymium 60	Pm promethum 61	Sm	Eu Eu euceion 63	157 Gd gaddinium 64	159 Tb remium 65	162 Dy dyspicsium 66	165 Ho tomum 67	167 Er eror 68	Trn Frn 65	YD church church			~
y a	/ X = a	elative atom tomic symb roton (atom	ol	232 Th the um 90	Pa Pa protactinium 91	238 U 57anium 92	- Np neptunium 93	– Pu pisterium 94	Am americium 95	Cm curcum 96	– Bk berkelium 97	– Cf catifornium 98	– Es ensteine.** 99	Fm Fm termun 100	Ma Imenifelos	No schet 102		276.7	

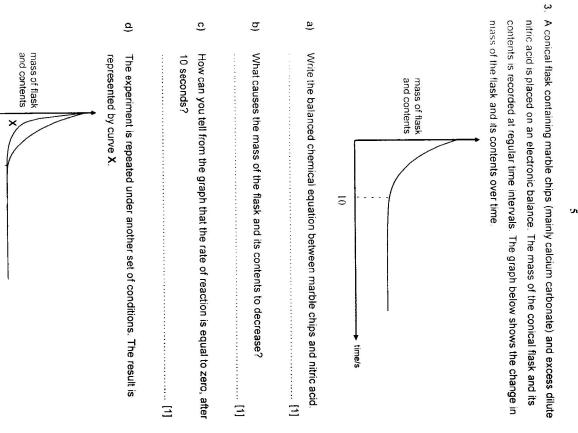

The volume of one mole of any gas is 24 dm³ at room temperature and

1. Select from the following list and write the method used for separating the following Section A: 45 m 3 c Ģ a) mixtures. The list can be used once, more than once or not at all. To separate: water from a mixture of green and blue dyes in solution. petrol from crude oil zinc nitrate from a mixture of zinc nitrate and water iodine from a mixture of potassium chloride and iodine chromatography, crystallization, electrolysis, filtration, distillation, fractional distillation, precipitation, sublimation Ξ Ξ Ξ Ξ

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore! ŝ

27

•


g

Describe the appearance of substance E.

Ξ

10

time/s

Study the reaction scheme below and answer the questions that follow.

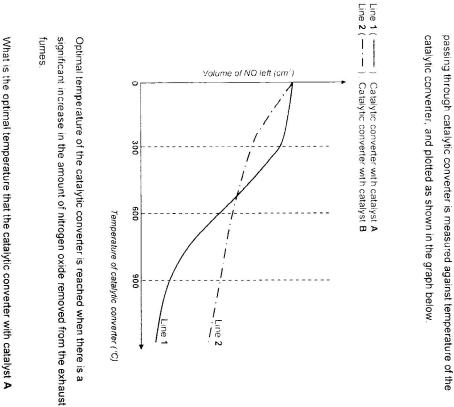
bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

28 in the strategicture

	[1]	concentration =
Oxidation of pollutant has taken place	Reduction of pollutant	
	below	
equations 1 to 3 in the table below as shown in the headings	a) Classify equations 1 to 3 in the table	magnesium chloride solution in mol/dm³.
yen → carbon dioxide + water	Equation 3: unburned hydrocarbons + oxygen \rightarrow carbon dioxide + water	(iii) Use your answer in (a)(ii) to calculate the concentration of the
	[1] Equation 2:	number of moles of magnesium chloride =
	Equation 1: $2NO(g) \rightarrow N_2(g) + O_2(g)$	
as shown in equations 1 to 3.	through the process of reduction and oxidation as shown in equations 1 to 3	
harmful gases into harmless gases	A three-way catalytic converter converts these harmful gases into harmless gases	
	fumes through a catalytic converter.	
hese pollutants is to pass the exhaust	A common way of cutting down the release of these pollutants is to pass the exhaust	(II) Collocate the number of interest of magnetization choice with our set z_{0}
st fumes.	common pollutants that can be found in exhaust fumes	
ourned hydrocarbons are some	[1] 5. Nitrogen oxide (NO), carbon monoxide and unburned hydrocarbons are some	relative formula mass=
mass of magnesium carbonate = [2]	mass of magnes	
		(i) Calculate the relative formula mass of magnesium chloride.
	0 °C.	Magnesium chloride has a solubility of 55.8 g per 100 cm 3 of water at 30 $^{\circ}\mathrm{C}$
	magnesium chloride.	
the mass of magnesium carbonate needed to produce 0.500 mol of	Calculate	[2]
(aq) + CO ₂ (g) + H ₂ O (/)	e results MgCO ₃ (s) + 2HC/ (aq) \rightarrow MgC/ ₂ (aq) + CO ₂ (g) + H ₂ O (/)	Suggest two changes that are made to the reaction mixture to obtain the results shown by curve \mathbf{X} .
the reaction below.	b) Magnesium chloride can be prepared by the reaction below.	

1.


[<u></u>3]

7

6

4.a)

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

Έ

agram sium is gaseou gaseou Whati Predic insteau Write a Write a	
The diagram below illustrates the reaction that takes place when a small piece of potassium is dropped onto cold water mixed with a little Universal Indicator. Image: potassium potassium potassium metal dissolves rapidly in the water, producing a large amount of heat and a gaseous product. a) What is the name given to a reaction which produces heat energy? b) Name the products formed when potassium reacts with cold water. c) Predict how the observation would differ when a piece of caesium is used instead of potassium metal. d) Write a balanced chemical equation for the reaction between caesium and water.	

in a state of the state of the state

x

The volume of a trogen oxide (NO) remaining in the exhaust fumes after

9

9

In your opinion, which is the better catalyst for use in a catalytic converter,

Briefly explain your choice, using information from the graph above.

 catalyst A or B, for long journeys?

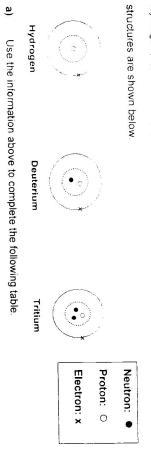
c

bestfreepapers.com

- The BEST website to download FREE exam papers notes and other materials from Singapore!

30 Martin St. S.

they addition



•

•

0

Name	Nucleon Number Number o	Nucleon Number Number of Protons Number of Neutrons
Hydrogen		
Deuterium		
		a state of the sta
Tritium		

[2]

- b) Explain why the three atoms are described as isotopes.
- [1]
 8. a) The table below shows information about solutions of an acid and an alkali.

Complete the table by filling in the empty boxes.

<u>a</u> .	 đ	
dilute sodium hydroxide	dilute sulfuric acid	Solution
	 from green to red	colour change when mixed with Universal Indicator solution
		formula of ion that causes this colour change

[2]	
c) Explain, with reason, the colour change if aqueous iodine is passed through a solution of aqueous iron(II) bromide.	C
b) Write the ionic equation, with state symbols, of the reaction above. [2]	5
a) State the colour change in the reaction above. [1]	01
 Chlorine, bromine and iodine are elements from Group VII of the Periodic Table. When chlorine gas is passed through a colourless solution of aqueous iron(II) bromude, the colour of the solution changes. 	9
potassium nitrate. [1]	
(ii) Explain why the titration method is suitable for the preparation of	
nitrate Acid:	
 Name an acid and an alkali which react together to make potassium 	
b) Potassium nitrate is a salt which can be prepared by reacting an acid with an alkali, using the titration method.	

Ξ

12

Section B: 20 m

Answer any TWO questions in this section in the spaces provided.

- 1. a) Oxygen can form ionic and covalent bonds with other elements.
- (i) Give an example of an ionic compound formed by oxygen.
 [1]
- (iii) Give an example of a covalent compound formed by oxygen.
 [1]
- (iii) Draw a 'dot-and-cross' diagram to show the bonds between atoms in the compound you have named in (a)(i). Show only the valence electrons.

13

- b) Tin cans' are often used as containers for food. In fact 'tin can' is made from a steel alloy with a thin coating of tin on it. To recover the tin from used cans, they are crushed and then warmed with chlorine. The tin forms tin(IV) chloride, boiling point 114°C, which distils from the mixture. On stronger heating, the tin(IV) chloride decomposes into molten tin and chlorine, which is reused.
- Suggest why the steel alloy is coated with tin for use in food containers.
 [1]
- Based on the information provided, what type of bonding is found in tin(IV) chloride? Explain your answer.
 [1]
- (iii) Construct a balanced equation for the decomposition of tin(IV) chloride into molten tin and chlorine, with state symbol.
 Explain why this decomposition is an example of a redox reaction in terms of oxidation state.

[4]

[2]

2. a)	Briefly describe three chemical properties of ethanoic acid (CH ₃ COOH).
	[3]
b)	Salts obtained from ethanoic acid are called ethanoates.
	All ethanoates are soluble in water, except for silver ethanoate.
	(i) Suggest a suitable reactant that can be used with ethanoic acid to
	produce the insoluble sait, silver emailoare. [1]
	(ii) Using the reactant named in (b)(i) and ethanoic acid, briefly describe how you can obtain a dry sample of silver ethanoate
c)	Write the balanced chemical equation, with state symbols, for the reaction
	between zinc and sulfuric acid
	Describe the chemical test for the gas produced

•

(iv)	(iii)	(ii)	(i)		0)		3a)
Using ethene as a monomer, draw part of the structure of the polymer showing 6 carbon atoms.	Describe a test, including the observations, you will use to differentiate between ethene and ethane.	Both ethene and ethane are hydrocarbons. Define hydrocarbons. [1]	Name the type of reaction and state the conditions for the reaction. [2]	C_2H_4 (g) + H_2 (g) $\rightarrow C_2H_6$ (g)	Ethene is an alkene. It reacts with hydrogen to form ethane.	[3]	Organic compounds form homologous series. Give three general characteristics of members of homologous series.

5

4

•

16

DATA SHEET

Colours of some common metal hydroxides

zinc hydroxide	lead(II) hydroxide	iron(III) hydroxide	iron(II) hydroxide	copper(II) hydroxide	calcium hydroxide	aluminium hydroxide	
white	white	red-brown	green	light blue	white	white	

-

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore! 34

-

٠

-

0Prelim Examination 2016 Secondary 4Exp/ 5NA Science Chemistry

•

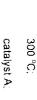
Marking Scheme

Paper 1 [20m]:

the second	11 B	6. D	1. B	
17. A	12. D	7 D	2.8	
18. D	13. C	8. B	3. C	
19. B	14.B	9. A	4. A	
20. C	15. C	10. B	5 D	

Paper 3: Section A [45m]:

- 1a) distillation;
- <u>o</u> sublimation;
- <u>0</u> ٩ crystallisation; fractional distillation;
- 2a) A: copper(II) nitrate, CU(NO₃)₂;
- B: copper(II) hydroxide, Cu(OH)₂;
- C: copper, Cu
- D: ammonia, NH3;
- Ģ dark blue solution;
- 3a) $CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O$
- [correct formula and balancing;]
- <u>a</u> o g CO₂ gas escapes from the flask;
 - the gradient of the graph is horizontal
- increase concentration of nitric acid
- crush up the marble chips;


- increase temperature of aid;

- 4a)(i) Mr of MgCl₂ = 24 + 2(35.5) = 95;
- (Ξ) no of moles = 55.8/ 95 = 0.587 mol
- (iii) concentration = 0.587/ (100/1000) = 5.87 mol/dm³;
- no of moles of MgCO₃ = 0.500 mol;

<u>b</u>

- $mass = 0.5 \times [24 + 12 + 3(16)] = 42g$
- 5a)

0 ŝ

900 °C, Line 1 is lower than Line 2]; at higher temperature, less nitrogen oxide is detected in the fumes [at

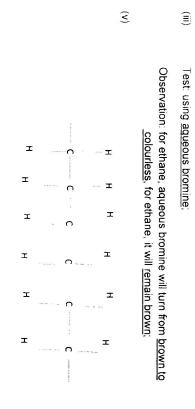
- exothermic;
- potassium hydroxide; and hydrogen gas
- flame will be bigger, caesium metal dissolves/ disappears faster :
- $2C_{s} + 2H_{2}O \rightarrow 2C_{s}OH + H_{2}$

g <u>c</u> <u>b</u> 6a)

[correct formula and balancing- 1m]

b)	9a)		(ii)		b)(i)							u.	8a)		b)								7a)
Cl ₂ (g)	colouri		both th	Alkali	Acid: n	Each – 1m	1		dilute		dilute a	Sol		differer	they ar	Correc			Tritium	Deuterium	Hydrogen	Name	
+ 2Br (aq) → E	colourless to brown:		e reagents are	Alkali: potassium hydroxide;	Acid: nitric acid:	Ĩm			dilute sodium	ł	dilute sulfuric acid	Solution		different number of neutrons	e atoms of the	Correct column- 1m			ω	2	-	Nucleon Number	
$CI_{\mathbb{P}}(g) + 2Br'(aq) \rightarrow Br_2(l) + 2Cl(aq)$			both the reagents are <u>soluble in water</u> .	roxide						From green to purple	from green to red	colour change when mixed with Universal Indicator solution		<u>utrons</u>	they are atoms of the same element / same number of protons but							nber Number of Protons	
										Dr-					ame number o			-	2		0		
												formula of ion that causes this colour change			of protons but							Number of Neutrons	
Correct formula and balancing – 1m	(iv) $SnCl_4 \rightarrow Sn + 2Cl_2$	(iii) covalent bonding as its boiling point is low;	(ii) SnCl ₄ ;	b)(i) to prevent rusting of iron;		No key: minus 1m	Correct sharing of electrons: 1m	Correct drawing of electrons: 1m	electrons of O	Key: 🗱 electrons of Mg			Ma		(ii)	 (ii) carbon dioxide, CO₂ [or any ot rejected]; 	1a)(i) magnesium oxide. MgO [or any other relevant answers];	Paper 3:Section B [20m]:		displacement reaction will take place;	c) colour will remain colourless;	correct state symbols- 1m	correct formula and balancing ~ 1m
- 1m		point is low;					Ш	1m	0	0 ¹			•	-2		carbon dioxide, CO ₂ [or any other relevant answers, oxygen, O ₂ is rejected];	iy other relevant answers];			there will be no reaction as lodine is less reactive than bromine thus no displacement reaction will take place;	-		- 1m

-


.

.

Sec.

36

(ii)	b)(i)	3a)	<u>c</u>	(ii)	b)(i)	2a)	
compo	additio	 They hav They hav They sho They sho Each mer Each mer 	Zn(s) + H ₂ S correct form correct state	 Measure 1 small beaker Filter throw Filter throw Wash the between filter Mach 	3. Silver r	N	Chlorin
compounds that contains only hydrogen and carbon;	addition of hydrogen/ hydrogenation; nickel catalyst, 200°C;	 They have same functional group. They have similar chemical properties. They show a gradual change in their physical properties. Each member differs by a -CH₂- group. [any 3 points- 1m each] 	Zn(s) + H₂SO₄ (aq) → ZnSO₄ (aq) + H₂ (g) correct formula and balancing – 1m correct state symbol- 1m using a lighted wooden splint, it will extinguish with a 'pop' sound,	 Measure 10cm³ of silver nitrate solution and ethanoic acid and pour into a small beaker. Filter through a filter funnel. Wash the precipitate obtained [residue] with distilled water and dry it between filter paper. Collect the salt. I'm each 	 ethanoic acid reacts with a <u>metal carbonate</u> to give <u>salt, water</u> and carbon dioxide gas; silver nitrate {or other soluble silver salts]; 	Ethanoic acid reacts with <u>reactive metals</u> to give <u>salt and</u> <u>hydrogen gas;</u> ethanoic acid reacts with a <u>base/ alkali</u> to give <u>salt and water</u> ;	Chlorine is oxidised as its oxidation state increases from -1 to 0 ;

<u>`</u>`

Tin is reduced as its oxidation state decreases from +4 to 0;

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

•

-

•

[Turn over	2			This question paper consists of 15 printed pages	
		(b) Define the term isotopes	FOR EXAMINER'S USE Paper 1 / 20 Paper 3 / 20 Section A / 45 Section B / 20 TOTAL / 85		
	number of neutrons		part question.	At the end of the examination rester an your work occurs, correction or part question. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Data Sheet is printed on page 14. A copy of the Periodic Table is printed on page 15.	At the end of the examination raster an your wo The number of marks is given in brackets [] at A copy of the Data Sheet is printed on page 14 A copy of the Periodic Table is printed on page
	number of electrons			Write your answers in the spaces provided on the chestron's aport	Write your answers in th
	number of protons			ns	Section B Answer any two questions
Complete the table to show the number of sub-atomic particles in one atom of this isotope.	ow the number of sub-atomic p	(a) Complete the table to sho		Miswer all questions which spaces provided on the Question Paper.	Write your answers in th
bes	the symbol $^{98}_{43}$ Ta	One isotope of talendium has			Section A
[Total:20] early version of the Periodic Table has several missing elements which had not yet been a covered. One of the elements is the transition element, talendium, Ta.	An early version of the Periodic Table has several missing elements discovered. One of the elements is the transition element, talendium, Ta	2 An early version of the Perio discovered. One of the elemen		Write your name, class and registration number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid/ tape.	Write your name, class a Write in dark blue or blad You may use a soft pend Do not use staples, pape
ersac				TIONS FIRST	READ THESE INSTRUCTIONS FIRST
com ·	nixture of dyes G and I.	(b) State the dye which is a m		e Question Paper.	Candidates answer on the Question Paper.
[1]	of the dye(s) is/are pure	(a) State and explain which of the dye(s) is/are pure		05 and 500	Classes: 403, 404, 405, 406 and 500
	Fig. 1.1		Duration: 1 hour 15 minutes	٥	
x start line	с о т о		5076/03 5078/03	IISTRY)	SCIENCE (CHEMISTRY)
°	0		•mic)	Secondary Five Normal (Academic)	
	0	front		Secondary Four Express and	
a mare a mare a	8		3 2016	PRELIMINARY EXAMINATIONS 2016	×
	am of dyes F_G, H_T J and K	1. For the two weaters and dyes f		CHIJ KATONG CONVENT	المراجعة وترهون
provided	Section A [45 marks]				
5 40 78-03 Sec (E/SN(A) 39	tic lence if thematry). In this is 50.78-03	CHU Kalang Convertibulian Examy 2016	C lass:		Name

11

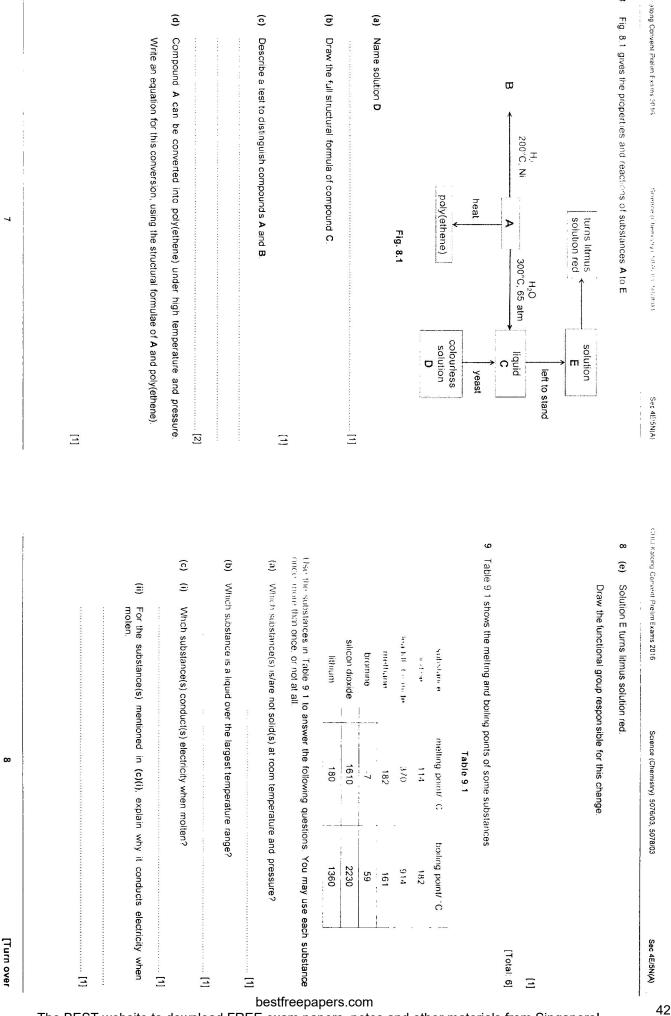
[Turn over

notes and other materials from download F ebsite to exam

4 [Turn over	3
1	
mass of unreacted water a [2]	Total: 3
mass of sodium hydroxide formed	
	calcium chloride
	outcome with
	outcome with sodium chloride
	test
hydroxide formed and the mass of water which remain's unreacted.	Describe one test the student can perform to differentiate the two solutions and state the outcome of the test for each solution
(b) It 1.24 g of sodium oxide is reacted with 1.80 g of water, calculate the mass of sodium	A student has mixed up two beakers of colourliess aqueous solutions, one containing sodium chloride and the other containing calcium chloride.
concentration =	l iofai 4j
	(b) $2Fe^{3t} + Sn^{2t} \rightarrow 2Fe^{3t} + Sn^{4t}$
ion of sodium hydroxide	
concentration = mol/dm³ [2]	
	reason
	(a) CO ₂ + H ₂ → H ₂ O + CO
	Give a reason in each case
	In each of the following, underline the formula of substance that is being reduced.
(i) Calculate the concentration of the sodium hydroxide solution in mol/dm ³ .	[Total: 3]
(a) The sodium hydroxide solution is made by dissolving 1.24 g of sodium oxide in water and making the volume up to 500 cm ³ .	[1]
$Na_2O + H_2O \rightarrow 2NaOH$	neurai
5 The equation for the reaction of sodium oxide with water is shown.	2 (c) Explain, in terms of sub-atomic particles and their charge, why an atom of $^{99}_{43}$ Ta is electrically
CHU Kalong Convent Prelim Fxams 2016 Science (Chemistry) 5076/03. 5078/03 Sec 4E/SN(A)	CHIJ Katong Convent Prelim Exams 2016 Science (Chemistry) 5076/03, 5078/03 Sec 4E/5N(A)

,

~


.

[Turn over

ss of solution in vater and [Total: 7] (Total: 7] (

e (Cremistry) 5076/03 Sec 4E/SN(A) composition of air in Singapore in January 2015 Table 6.1 3 pm 03 03 03 04 05 06 078 79 70 20 20 20 20 20 20 20 20 20 21 22 23 24 25 26 27 28 29 20 20 20 21 22	CHU Kanong Convent Preim Exams 2016 Science (Chemishy 5076/03, 5078/03) Sec 425/40/4 7 Three solid samples are placed in beakers L, M and N for investigation. 7 The contents of the beakers are as follows: Beaker L 1 g of copper(II) carbonate powder Beaker N 1 g of copper powder 1 The treakers L, M and N containing the solid samples are placed on three electronic balances and subtrivic acid is added to each beaker. A data logger is used to plot the mass of the mass of the beaker against time. The results for beakers M and N are shown in Fig. 7.1. mass of contents/ g 12 12 12 14 12 15 12 16 12 17 12 18 19 19 10 10 12 10 12 11 12 12 12 13 12 14 13 15 15 16 12 17 12 18 19 19 10 10 12 12 12 13 14 14 15
be a test to confirm the identity of the gas	
why the percentage composition of air is different	Fig. 7.1 (a) Explain the loss in mass for beaker M.
e and state their harmful effects.	(b) State and explain the shape of the graph for beaker N
n in the table and state the source of this pollulant	[2 (c) (i) On Fig. / 1 shritch and label the graph for beaker t
.[2] [Total: 8]	
σ	۳.
ann	ce (Cremistry) \$07603 Sec 425 ce composition of air in Singapore in January 20 Table 6.1 Table 6.1 1.3 jum Spm \$100 of air 0.3 0 0.3 0 0.4 0 2.0 2.0 <tr< td=""></tr<>

Sec 4E/5N(A) 4

•

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

. His Shirtman kan **Mana**ta ya

8

1 9	Joint		9 (d) Methane and lead (II) bromide have very different melting points.	CHU Katong Convent Prelm Exams 2016 Science (Chemistry) 5076/03, 5078/03 Sec 4E/SN(A)
	 10 A student wanted to prepare procedure in her journal 11 ardited granules of iron(li) temperature. Bubbles were obstropped There were some iron in heated it unitil all the solvent will carbonate and sulf. (b) Draw a labelled diagram lieft behind. (c) State one error that he main solution is a solution. 	Mute Varve	Rame	CHU Palong Conservation Learns 2019
10	 10 A student wanted to propare a sample of hydrated iron(11) sulfate crystals and recorded her provention in the publics. 11 studed granules of reci(11) carbonate to 100 cm² of 1.0 molidim² of sulfure, acid at room stipped fuel were provided and a keet or adding iron(11) carbonate that were left behind. (a) Write a balanced chemical equation, with state symbols, for the reaction between functionate and sulfure acid. (b) Uraw a labeled diagram to show how she could have removed the iron(11) carbonate that was been beind. (c) State one error that he made in her preparation and describe what should have done instead stiffreepapers, notes and other matteriates for BEEST website to download FREE exam papers, notes and other matteriates. 	Section B [20 marks] wer any two questions in this section your answers in the spaces provided		5710000 (Otemptry) 5075-01-5078-03
[Turn over	It is and recorded her suffuric acid at room with the bubbling (II) carbonate that was long with the filtrate, [2] [3] [3] [3] [4] [3] [4] [5] [5] [5] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6	oore!	Class	Sec 4E/SN(A) 43

.

.

11	 [2] (iii) Nitrogen gas does not take part in any reaction in the blast furnace as it is an inert gas. With reference to the diagram in (a)(ii), give a reason for its inertness. 	volume of gas = [Total: 10] 11 Iron is extracted by reducing iron ore in a blast furnice. Blasts of hot air are tilower into the furnace from the bottom and waste gases which consist of carbon monoxide. carbon dioxide and nitrogen are released from the top. (a) (i) Explain how carbon dioxide is produced in the blast furnace. (ii) Draw a 'dot and cross' diagram showing the electronic structure of entrogen gas. Show only the valence electrons	(d) Calculate the volume of gas collect of our r.t.p. from this reaction.
		<u>(</u>	11 (b) 1
	,	The iron obtained from the bla: i) Draw a labelled diagram t ii) With reference to the arra than pure iron	 (b) In the centre of the blast furnace, iron(III) carbon dioxide. Near the bottom of the blast carbon to from iron and carbon monoxide Write balanced chemical equations for bc
12		 [2] The iron obtained from the blast furnace has high carbon content. (i) Draw a labelled diagram to show the arrangement of the atoms in this alloy. [2] (ii) With reference to the arrangement of the atoms in (c)(i), explain why the alloy is stronger than pure iron [2] [3] [4] [4] [6] [6] [7] [6] [7] [8] [9] [9] [1] [1] [1] [1] [2] [2] [3] [4] [4] [6] [6] [6] [7] [8] [9] [9] [1] [1] [1] [1] [1] [2] [3] [4] [5] [6] [6] [7] [8] [9] [9] [9] [9] [1] [1] [1] [2] [3] [4] [4] [5] [6] [6] [6] [7] [8] [9] [9] [9] [9] [1] [1] [1] [2] [2] [3] [4] [4] [4	In the centre of the blast furnace, iron(I II) oxide is reduced by carbon monoxide to form iron and carbon dioxide. Near the bottom of the blast furnace, the remaining iron(III) oxide is reduced by carbon to from iron and carbon monoxide. Write balanced chemical equations for both of these reactions.
[Turn over		Total: 10 bestfreepapers.com REE exam papers, notes and other materials from S	oxide is reduced by

44

--+

	[Total: 10]	[4]						Write a balanced chemical equation and one observation for the chemical property that you have described.	By considering the properties of other elements in the same group as Francium, predict one physical property and one chemical property of this element.	(b) Francium is the heaviest of the known alkali metals and one of the most unstable elements in the Periodic Table	[3]			Describe and explain the change	(ii) On moving across Period 3 from Group I to Group VII the character of the elements changes	[c]			Explain how the electronic structure of this element can be used to di-termine which group the element is in	(a) (i) Magnesium is an element in Period 3	12 The Periodic Table lists the elements in order of atomic number. With reference to the Periodic Table, answer the following questions.	
												zinc hydroxide	lead(II) hydroxide	iron(III) hydroxide	iron(II) hydroxide	copper(11) hydroxide	calcium hydroxide		Colours (
14												white	de white	de red-brown		ide light blue	de white		Colours of Some Common Metal Hydroxides	Data Sheet		
[Turn over	- The Bl	EST	we	bsit	e to	dov	wnlo	ad FF	bes REE e	stfreep	pape	ers.co	om otes a	and c	other m	ateria	ls fro	mS	Singa	pore		

sec 4E/5N(A) 45

•

•

								Gr	oup								
1												111	IV	_ V	VI	VII	0
							1 H Hydrogen										4 He Helon
		1				1	1				1	11	12	14		19	20
7	9											в	Č	N	ŏ	F	Ne
Li	Be											Beron	Carbon	IN Nerogen	Ox,gen	L Filesone	Ner
ւ եր հեր	Berylium 4											5	6		8	G	110
3 23	24											27	28	31	3.2	35.5	40
Na	Ma											Al ·	Si	P	S	Cl	Ar
	1 5											Aluminium	Silicon	Phosphorus	Sulphur	Chiorine	Argo
Sodium 11	Magnesium 12											13	14	15	16	17	18
39	40	. 45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Polassium	Calcium	Scandium	Tdanium	Vanadium	Chromium	Manganese	iron	Cobalt	Nickel	Copper	Zinc	Gailium	Germanium	Arsenic	Selenum	Bromera	1
19	20	21	22	23	24		26	27	28	29	30	31	32	33	34	35	
85	88	89	91	93	96		101	103	106	108	112	115	119	122	128	127	1 -
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	j Xe
Rubdium	Strantium	Vitrium	Zirconium	Niobium	Molybdenum	Technelum	Ruthenium	Rhodium	Palladium	Stver	Cadmium	Indium	Tin	Antimony	Tellunum	kodine	Xeno
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209		1	1
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Caesium	Barium	Lanthanum	Hatnum	Tantalum	Tungston	Rhanium	Osmium	Indium	Platinum	Gold	Mercury	Thalium	Lead	Bismuth	Polonium	Astatime	Pago
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	226	227															
Fr	Ra	Ac															
Francium	Radium	actinium															
87	88	89 t)														
58-71 La	anthanoid	series															
90-103	Actinoid se	eries															
				140	141	144		150	152	157	159	162	165	167	169	173	175
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Cenum	Разкосуткит	Neodymium	Promethium	Samarium	Europium	Gadoinkim	Terbum	Dysprosium	Ноітил	Erbium	Thulium	Ytterbium	Lutob
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
		relative aton		232		238			1					1			

Î

[Turn over

Key

		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Ĺ
		Cenium	Разоступнит	Neodymium	Promethium	Samarium	Europium	Gadoinkim	Terbam	Dysprosium	Hoimium	Erbium	Thulium	Ytterbium	Lutotium	Ĺ
		58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	a = relative atomic mass	232		238												Ĺ
2	X = atomic symbol	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Łr	Ĺ
`		Thorium	Protectinium	Uranium	Neptunium	Plutonium	Amencium	Curium	Barkelium	Californium	Einsteinium	Femium	Mendelevium	Nobelium	1.9xtencium	į.
	b = proton (atomic) number	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
000000		The	volume o	f one mole	e of any ga	is is 24 dr	n ³ at room	temperat	ure and pr	essure (r.	t.p.).					

-----Sec 4E/5N(A)

Science (Chemistry): 5076-03, 5078-03

CHU Kalong Convent Prelim Exams 2016

CHI I Katong Convent Secondary

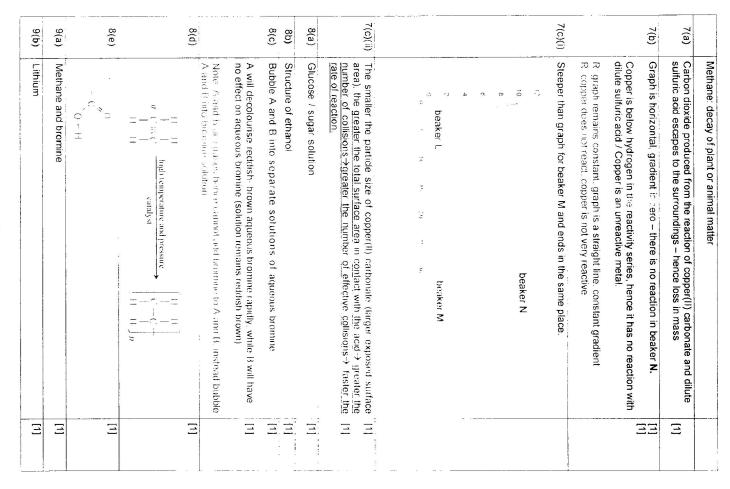
•

•

Answer scheme

Paper 1

				_	
c	3		C	-	
c	12		B	2	
D	13		A	ω	
U	14		⊳	4	
œ	15		c	Ċħ	
₽	16		B	6	
σ	17		ω	7	
ი	18		۵	œ	
œ	19		٥	9	
8	20		۵	10	
		ı			


Section A

V LIDITAC	A	
Q. No.	Answers	Marks/ Remarks
1(a)	Dye K shown in the chromatogram is pure as it has only one component/spot. [1]	Ξ
	R: one chromalogram/ one dye/ one susbtance	
1(b)	Dye г	Ξ
2(a)	number of protons 43 number of electrons 43	E
2(b)	the same	[1]
2(c)	The atom is electrically neutral as it has 43 positively charged protons and 43 negatively charged electrons	Ξ
3(a)	\underline{CO}_2 + H ₂ · H ₂ O + CO	Ξ
_,	Carbon dioxide lose an oxygen atom to form carbon monoxide /	[1]
	Oxidation number of carbon decreased from +4 in carbon dioxide to +2 in carbon monoxide.	
3 (b)	$2\overline{Fe^{1}} + Sn^{2} + Sn^{4}$	Ξ
	fron(III) ion gain an electron to form iron(ii) iron /	[1]
	Oxidation number of iron decreased from +3 in iron(III) ion to +2 in iron(II) ion	
4	test Add aqueous sodium hydroxide/ sultuito add separatalaivy to seach	E
	outcome with sodium chloride: No visible change/reaction when sodium hydroxide (1) No visible change/reaction when sulfunct add ts added solution remains to outrest	[1]
	outcome with calcium chloride:	Ξ

			_			- 1					_	1		 హ	-	с ^р	
6 (d)		6 (c)		6 (b)		6 (a)						5(b)		5(a)(u)		96400	
Oxides of nitrogen: Lightning activity / internat compussion engines at myntemperature	Carbon monoxide: headaches / breathing difficulties / loss of consciousness which lead to eventual death as the gas prevents the blood from carrying oxygen to the parts of the body.	Sulfur dioxide: respiratory problems / eyes irritation / acid rain which destroys building	This is due to factories burning fossil fuel which give out SO_2 and more vehicles on the road which give out CO from incomplete combustion of fuel.	The percentage of CO and SO ₂ are higher between 9 am – 3 pm ;	Use a glowing splint. If it rekindles, the gas is oxygen.	Oxygen	Allow ECF for mass obtained if number of moles is calculated correctly.	Mass of NaOH formed = 0.04 x (23 + 16 + 1) = 1.60 g	Mass of water remained = 1.8 – 0.36 = 1.44 g	Mass of water reacted = 0.02 x 18 = 0.36 g	Sodium oxide is limiting reactant. (clue given in question)	No. of moles of water = 1.8 + 18 = 0.1 mol No. of moles of sodium oxide = 0.02 mol	(); Mass of NaOt1 = 0.04 x (23 + 16 + 1) = 1.6 g Concentration of NaOH = 1.6 / (500 + 1000) = 3.2 g/dm ³		Concentration of NaOH = 0.04 / (500+1000) = 0.0800 mol/dm ³	We have a finite of $M_{a,C} = 1.24 + 62 = 0.02 \text{ mol}$ Number of mole $M_{a,C} = 1.24 + 62 = 0.02 \text{ mol}$ Number of mole $M_{a,C} = 0.02 \times 2 = 0.04 \text{ mol}$	ecipitate (cakJum e/
ΞΞ	3 3	Ξ	E	Ξ	Ξ	Ξ		ΞΞ	Ξ	Ξ				[1]	[1]	[1]	
								bes	tfreepa	pers.con	n			0			47
	I- The E	E21	vepsite		dow	<u>/nio</u>	aa F	KEE 6	kam pap	pers, no	les a	ina ot	her materials fr	orn sing	apore!	•	

Ν

-

Lithium it has mobile electrons which can conduct electric current Methane exists as molecules, thus requires with require a large energy to overow weak intermolecular forces of attraction during metting. Lead bromide exists as an ionic compound with strong electrostatic to attraction bet ween the ions that require a large amount of heat en- overcome during melting. Hence, methane and lead bromide have very different melting points. Hence, methane and lead bromide have very different melting points. FeCO ₃ (s) + H ₂ SO ₄ (aq) \rightarrow FeSO ₄ (aq) + H ₂ O (l) + CO ₂ (g) [Im - formula and state symbols, 1m - balanced equalion] [Im - label filter furnel, filter paper and iron(ll) carbonate] She should not evaporate the filtrate to dryness Heal up the filtrate until saturated and allow it to cool and crystallise. Filter, wash crystats with distilied water and press dry with filter paper Number of moles of Sulfuric acid = 0.1 mol Moleratio H ₂ SO ₄ . CO ₂ = 1.1 Number of moles of CO ₂ = 0.1 mol Mass of iron = 2.4 ± 0.1 = 0.1 mol			10(d)	10(c)			10(b)		Q. NO.	Section B	1		9(d)		9(c)(ii)	9(c)(i)
ergy to	. Mass of iron = 24 × 0.1 ÷ 2.4 dm ³ Atlast ref hour (a)	tole ratio H_2SO_4 : $CO_7 = 1 \cdot 1$ tumber of moles of $CO_7 = 0.1$	Number of moles of sulfuric acid = 1 x0.1 = 0.1 mol	She should not evaporate the filtrate to dryness Heal up the filtrate until saturated and allow it to cool and crystallise. Filter wash crystals with distilled water and press dry with filter paper	[1m - correct diagram, collection vessel can be test tube, beaker] [1m -label filter funnel, filter paper and iron(II) carbonate]			The formula and state symbols, 1m – balanced equation]			Hence, methane and lead bromide have very different melting points.	an ionic compound with strong electrostatic forces ons that require a large amount of heat energy	Methane exists as molecules, thus requires antle neat energy to overcome its weak intermolecular forces of attraction during melting.	Lithium: it has mobile electrons which can conduct electric current	fead bromide: it has mobile lons which can conduct electric current. /	Lead(II) bromide and lithium
1 E E E E E E E E E E E E E E E E E E E	Ξ	Ξ 3	3	333					Marks/ Remark			[1]			Ξ	Ξ

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

2

12(a)(ii)	12(a)(i)	11(c)(ii)		11(c)(i)	11(b)	11(a)(iii)		11(a)(i) 11(a)(ii)
Across the period, the characters of the elements change from metallic to non-metallic. As the number of valence electrons increases, the elements have a <u>lower</u> tendency to lose their electrons and a <u>higher tendency to gain or share electrons</u> in order to achieve the noble gas configuration.	electronic structure or 2,8,2. is in the outermost shell. as 2 valence electrons, it belongs to Group II.	it <u>disrupts the regular arrangement</u> [1] ms cannot slide over easily [1] when	Note: carbon aloms should not exceed iron atoms	$Fe_{1}U_{3} + 3U \rightarrow 2Fe + 3UU$	$0 \rightarrow 2Fe + 3CO_{2}$	A large amount of energy is needed to break the triple covalent bonds before it can react	electrons of electrons shared	Coke/ carbon reacts with oxygen to form carbon dioxide
33 3		2		[2]	Ξ	Ξ	22	

- powerful reducing agent - $2Fr + Cl_2 \rightarrow 2FrCl$ - A white residue is formed after the reaction.	OR	(Thermical property - reacts with water to form alkali and hydrogen - $2Fr + 2H_2O \rightarrow 2FrOH + H_2$ - Francium reacts explosively.	12(b)(i) ¹¹ hysical property (unique to Group I) soft metal that can be cut with a knife / low melting and boiling point / low density	
	·····	333	E	

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

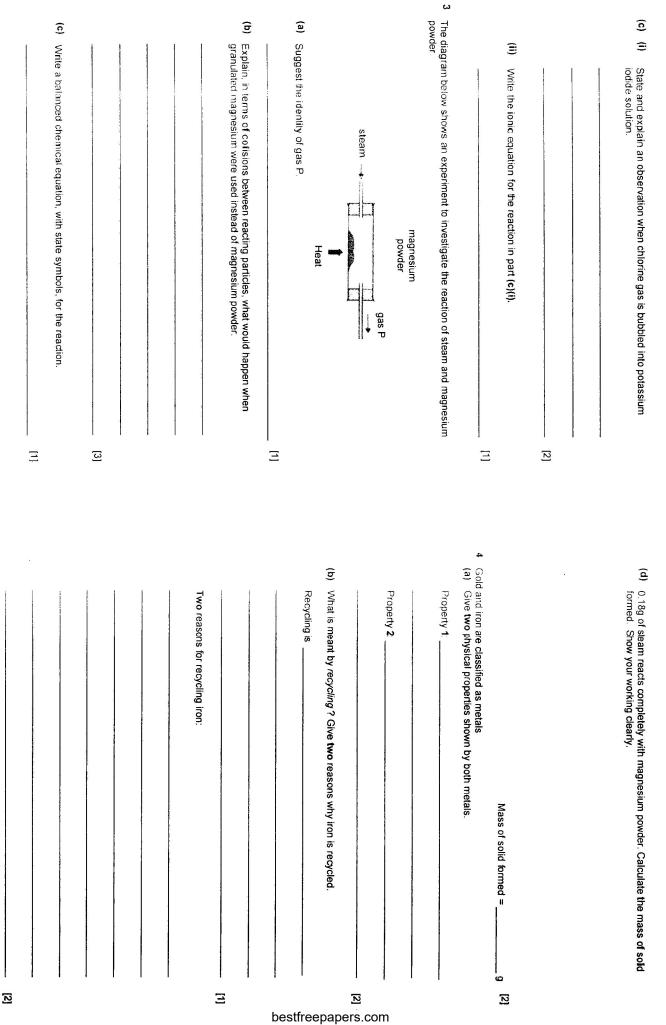
-

~

•

TOTAL [65m]	Section B [20m]	Section A [45m]		A copy of the Periodic Table is printed on page 13	Write your answers on the spaces provided. The number of marks is given in brackets [] at the end of each question or part question.	Sections B Answer any two questions	Section A Answer all questions Write your answers on the spaces provided on the question paper.	Do not use staples, paper clips, nighlighters, give or correction livin.	Write your name, register number and class clearly in the spaces provided above and on all the work you hand in work you hand in Write in dark blue or black pen. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working.	READ THESE INSTRUCTIONS FIRST	Additional materials – Weiting paper Newg		Subject : Science (Physics, Chemistry) / Science (Chemistry, Biology) Paper : 5076/03 or 5078/03 Level/Stream : 4 Express / 5 Normal Duration : 1 h 15 minutes	2016 'O' Preliminary Examination	St. Gabriel's Secondary School	St Columbus Constant Cohool	Name: () Class Sec
(b) Draw only	(a) Which	lodine	Bromine	Chlorine	Element	2 The table		(e) a co	(d) a sa	(c) an		(d)	Fron (a)	Ye		1	
a 'do	ha		ł			. g		3	T.			en D	om Table 1 a base	ou may use			
ot and cross' diag	logen exists as a li	114	-7	-102	-220	below shows the prope		mpound that produces a	It which can be preparec	insolu ble salt ,			From Table 1.1, identify (a) a base.	ou may use the compound once, m	Sulfur dioxide Calcium hydroxide		
Draw a 'dot and cross' diagram of one molecule of lodine. Show the valence electrons	Which halogen exists as a liquid at 55°C?	114 184	-7 59		Melting point [®] C Boiling point [®] C -188	The table below shows the properties of some elements in Group VII of the Periodic Table		compound that produces a gas when warmed with sodium hydroxide	salt which can be prepared by adding an acid to an insoluble carbonate.			en D	nm Table 1.1. identify a base.	You may use the compound once, more than once or not at all.	Sulfur dioxide Ammonium chloride Calcium hydroxide Carbon monoxide	Table 1.1	Section A [45m] Answer all questions.

[Turn Over


Ξ

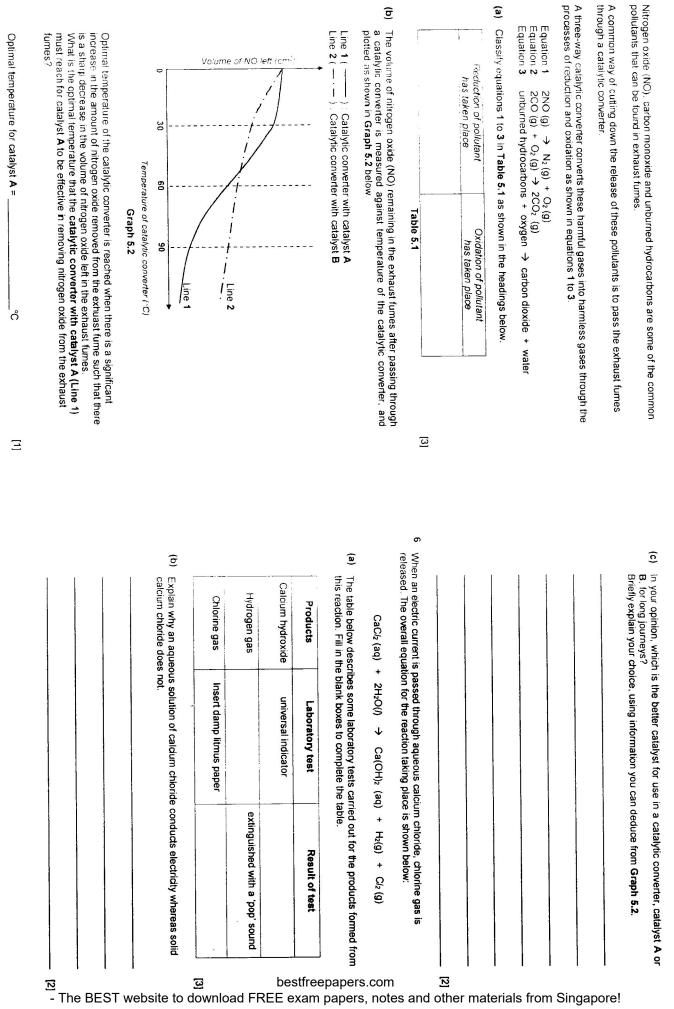
51

N

•

-

(Turn Over

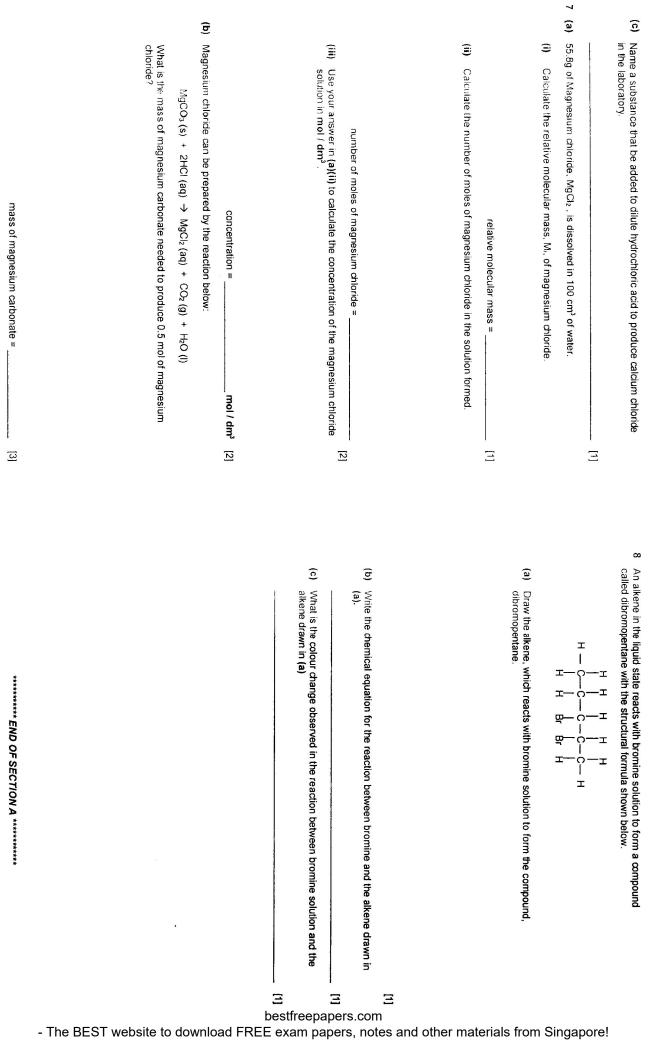

•

*

52

ω

- The BEST website to download FREE exam papers, notes and other materials from Singapore!


[Turn Over

G

σ

(a)

₫

[Turn Over

54

Name	Formula	Melting point/°C	Boiling point/°C	Behaviour with water
Sodium chloride	NaCI	801	1465	Dissolves in water
Magnesium chloride	MgCl ₂	714	1418	Dissolves in water
Silicon tetrachloride	SiCI	-70	58	Reacts with water to produce an acidic solution
Phosphorus trichloride	PCI3	-92	76	Reacts with water to produce an acidic solution
Disulfur dichlorlde	S ₂ Cl ₂	-80	138	Reacts with water to produce an acidic solution and a yellow precipitate

10 The following table gives some information about the chloride of elements in Period 3.

						(d)
bestfreepapers	(ii) Use the equations to explain why hexadecane burns with a smokier flame than octane.	$2C_{6}H_{16}(l) + 25 O_{2}(g) \longrightarrow 16 CO_{2}(g) + 18 H_{2}O(g)$ $2C_{16}H_{34}(l) + 49 O_{2}(g) \longrightarrow 32 CO_{2}(g) + 34 H_{2}O(g)$	[2] The following equations show the complete combustion of octane and hexadecane.		hydrocarbons in ship fuel. Show by calculation that hexadecane contains a higher percentage of carbon by mass than octane. 	Octane, C ₈ H ₁₈ , is a hydrocarbon in petrol. Hexadecane, C ₁₆ H ₃₄ , is one of the

In combustion, the fuel vapourises before it catches fire. Hence in burning a solid or liquid alkane, the outer layer of the alkane changes into a vapour before it burns. Using the data given in the table above, state the fraction that will burn most easily. Give a reason for your answer. (ii) Describe the separation process (fractional distillation) of petroleum into its fractions
[4]

FractionNumber of carbon atoms per moleculePetrol5 to 10Diesel oil15 to 25Lubricating oil19 to 35

ø

(a)

Petrol, diesel oil and lubricating oil are fractions obtained from the fractional distillation of petroleum. Each fraction is a mixture of alkanes. The table below shows the number of carbon atoms present in a molecule of each fraction.

Answer any **two** questions Write your answers on the spaces provided.

Section B [20m]

•

			(c)		(a)		(a)
			Brie a reg			3	Ξ
			Briefly describe how a dry sample of magnesium chloride crystals can be prepared from a reaction between magnesium and dilute hydrochloric acid.		When disulfur dichloride dissolves in water, a yellow precipitate (sulfur) and an acidic solution are formed. The acidic solution contains sulfurous acid and hydrochloric acid. Describe a simple test to confirm the presence of chloride ions in the solution.	Explain, in terms of bonding, for your answer in (a)(i)	Deduce one physical difference between the metallic chlorides and non-metallic chlorides.
	[5]			[2]	[2]	[1]	
········· END OF PAPER ······		3		(b) Write a balanced chemical equation for this process. Include state symbols.			 Sugar can be converted to ethanol. (a) Give the name of the conversion process and describe how this process is completed in the laboratory to obtain pure ethanol.

•

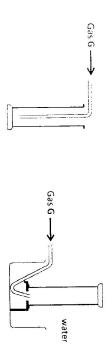
56

12

1

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

21 Substance E has a melting point of -7.2 °C and a boiling point of 58.8 °C


substance E, at 0 °C? What can you conclude about the arrangement and distance between the particles of

Arrangement of particles	Distance between particles
A Orderly	Close
B Orderly	Far apart
C Disorderly	Close
Disorderly	Far apart

22 Which of the following substances would not melt at a fixed temperature?

- Þ Copper metal
- ω Copper(II) sulfate crystals
- 0 Steel
- σ Sugar

23 Two methods of collecting a gas G are shown.

Which properties of gas G are shown by these collection methods?

	ი	ω	Þ	
denser than air	denser than air	less dense than air	less dense than air	Density of gas G
not soluble	soluble	not soluble	soluble	Solubility of gas G in water

24 The table below shows the information of three different substances.

57

No	Yes	No	Z
Yes	S	Yes	¥
No	No	Yes	×
Heat-stable Solubility in water Solubility in alcohol	Solubility in water	Heat-stable	Substance

The following operations could be carried out to separate substance Z from a mixture of these three substances.

- Filtration
- Dissolving in water
- Dissolving in alcohol

ω N

Crystallisation Evaporation to dryness

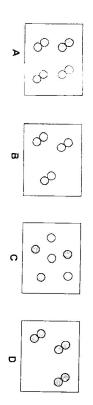
Ģ

What would be the correct order to obtain substance Z from the mixture

- A 2, 1, 5
 B 3, 1, 2, 4
 C 3, 1, 4
 D 2, 3, 1, 5
 The symbol of element L is given as "L. Which of the following statements is correct about element L?

25

- Þ An atom of L has m neutrons and n electrons
- An atom of L has n protons and n electrons.
- The charge of the ion formed by element L is $\frac{1}{4}$ (m n).
- The nucleus of an atom of L is made up of n protons and (n m) neutrons.


σ C ω

26 The table below shows the melting and boiling points of four pure substances

to the air? Which substance is a liquid at room temperature and would rapidly evaporate if left exposed

D	C	Β	Þ	Substance
8	-143	6-	-26	Melting Point (^o C)
97	-10	52	220	Boiling Point (^o C)

27 Which diagram represents a mixture of diatomic elements?

28 Two elements. P and Q, with proton number 11 and 16 respectively, combine to form a compound. Which one shows the correct chemical formula and bonding in the compound?

٥	ი		⋗	t
PQ	P ₂ Q	PQ	PQ	Chemical formula
Ionic	Ionic	lonic	Covalent	Type of bonding

29 Hydrogen peroxide decomposes according to the equation

 $2H_2O_7 \rightarrow 2H_2O + O_2$

decomposition of 17g of hydrogen peroxide is The volume of oxygen, measured at room temperature and pressure, produced from the

3.0 dm

3

- 8 6.0 dm
- 8.5 dm³
- 12.0 dm³

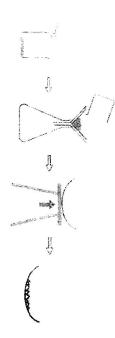
σ C

30 Magnesium reacts with hydrochloric acid

Which solution of hydrochloric acid would give the fastest initial rate of reaction?

- Þ 40 g of HC/ in 1000 cm³ of water
- ω 20 g of HC/ in 1000 cm³ of water
- 10 g of HC/ in 100 cm³ of water

o

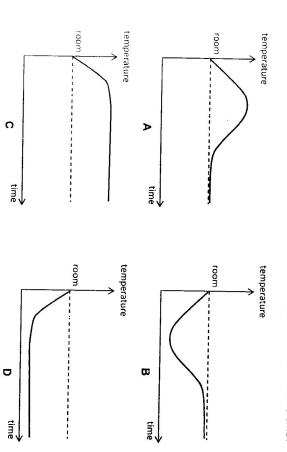

σ

- 4 g of HC/ in 50 cm³ of water
- 4 Solution P is 0.100 mol/dm³ sulfuric acid. Solution Q is 0.200 mol/dm³ potassium hydroxide. What is the volume of solution P required to completely neutralise 20.0 cm³ of Q?
- 3 20.0 cm
- 30.0 cm³
- 40.0 cm³
- 50.0 cm²

σ C œ

The diagram shows the steps of preparing a salt.

32

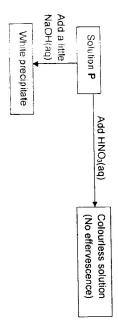


Which of the following salts is most suitable to be prepared by this technique shown above?

- Þ Ammonium sulfate
- ω Calcium chloride
- σ o Sodium nitrate
- Silver chloride

3

as the reaction progresses and the remaining mixture is left to stand for some time? When a piece of magnesium reacts with dilute hydrochloric acid, heat is given out Which of the following graphs shows how the temperature of the mixture changes


34 Consider the following reaction: .

(aq) + 2Fe³ (aq) -→ 2Fe²⁺ (aq) + l₂ (aq)

2

Which of the following is true of the ionic equation?

- Fe^{3*} is a reducing agent.
- Fe³⁺ is oxidized.
- ∩ œ > donates electrons to Fe³⁺
- σ I is an oxidizing agent.
- 35 The diagram below shows a reaction scheme involving solution P.

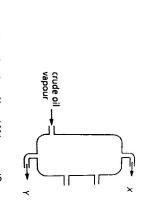
What is the identity of solution P?

- Þ Copper(II) nitrate
- σ Sodium sulfate
- o Zinc carbonate
- Φ Zinc sulfate
- 36 Rubidium, Rb, is an element in the same group of the Periodic Table as lithium, sodium and potassium.

Which statement/s about rubidium is/are likely to be wrong?

- It reacts explosively with cold water
- = It forms a soluble carbonate salt
- It forms a carbonate with a formula of RbCO₃
- \leq Ξ It can be extracted via electrolysis of concentrated aqueous RbCl

start

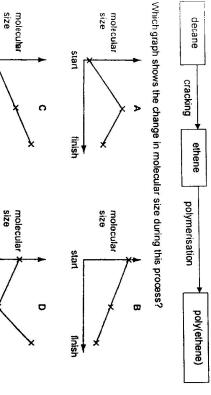

finish

start

finish

- ο œ >
 - I and II
 - t and III
- σ II and III
- III and IV

37 The diagram below represents the process of fractional distillation of crude oil.



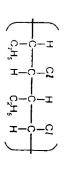
Which statement about fractions X and Y is corred?

- ⋗ X burns less easily than Y.
- ω X has a lower boiling point than Y.
- Y is used as fuel for airplane

σ 0

- Y is the lighter fraction compared to X.
- 38 Poly(elhene) can be manufactured by the process below

13


39 Which of the following pollutants from a car engine undergo(es) reactions in the catalytic converter to produce less harmful products?

(i) Carbon monoxide

(ii) Hydrocarbons

(iii) Nitrogen dioxide

- (i) only
- ωÞ (i), (ii) only
- 0 (ii), (iii) only
- σ (i). (ii) and (iii)
- 40 The structural formula of a polymer is shown below.

Which substance will form this polymer?

0 ----2 ्र स~ ---·()-- 34 0

σ

..... END OF PAPER

•

.

DATA SHEET

60

Colours of some Common Metal Hydroxides

Zinc hydroxide	Lead (II) hydroxide	Iron (III) hydroxide	Iron(II) hydroxide	Copper(II)hydroxide	Calcium hydroxide	
white	White	Red-brown	Green	Light blue	White	

7						6			CT.				4
(a) (i) M _r = 24 + 2(35.5) = <u>95</u>	(c) Calcium metal /C	(b) Aqueous calcium charge and hen in solid calcium c thus cannot carry	Chlorine gas	Hydrogen gas	Calcium hydroxide	(a) Products	(c) Catalyst A Car engine (and c: <u>more effective in</u> <u>temperatures, as</u> fumes as tempera	(b) 30 °C	(a) Reduction – Equation 1 Oxidation – Equation 2 Equation 3	Reason for recyclin To conserve limit extract the metal Recycling does n health, hence rec metal ores To save money s for metal ores an	(b) Recycling is the p collected back an	 High density Malleable / Ductile Shiny / Sonorous Good electrical an 	 (a) Any two of the folic High metting p
5.5) = <u>95</u>	(c) Calcium metal /Calcium oxide / Calcium hydroxide / Calcium cartoonate	Aqueous calcium chloride contains mobile ions which can carry electric charge and hence conducts electricity. In solid calcium chloride, the lons are held in fixed position (not mobile) thus cannot carry electric charge to conduct electricity.	Insert damp litmus paper	Insert a lighted splint into the gas [1]	universal indicator	Laboratory test	Catalyst A Car engine (and catalytic converter) heats up in long journeys, and catalyst. Car engine (and catalytic converter) heats up in long journeys, and catalyst. more <u>effective in removing nitrogen oxide from the exhaust fumes at h</u> temperatures, as <u>shown in graph</u> , with less nitrogen oxide detected in the temperatures, as the catalytic converter increases.		- Equation 1 Equation 2 and Equation 3	 Reason for recycling: (Choose any 2) To conserve limited natural resources like fossil fuel which was used to extract the metal Recycling does not produce as much waste as that may endanger hur health, hence reduce environmental problem related to extracting meta metal ores. To save money spent on creating landfill sites. There will be less need for metal ores and the land will be free for other uses such as agricult 	Recycling is the process in which old, waste materials (scrap metals) are collected back and (melted) made into new materials (metals).	High density Malleable / Ductile Shiny / Sonorous Good electrical and heat conductor	 (a) Any two of the following physical properties: High metting point and boiling point
	xide / Calcium carbonate	Aqueous calcium chloride contains mobile ions which can carry electric charge and hence conducts electricity. In solid calcium chloride, the lons are held in fixed position (not mobile) and thus cannot carry electric charge to conduct electricity.	litmus paper bleaches [1]	extinguished with a 'pop' sound	colour changes to purple /Blue [1]	Result of test	Catalyst A Car engine (and catalytic converter) heats up in long journeys, and catalyst A is - more <u>effective in removing nitrogen oxide from the exhaust fumes at high</u> temperatures, as shown in graph, with less nitrogen oxide detected in the fumes as temperature of the catalytic converter increases.			ason for recycling: (Choose any 2) To conserve limited natural resources like fossil fuel which was used to extract the metal Recycling does not produce as much waste as that may endanger human health, hence reduce environmental problem related to extracting metal from metal ores. To save money spent on creating landfill sites. There will be less need to dig for metal ores and the land will be free for other uses such as agriculture	aterials (scrap metals) are aterials (metals).	[Reject "hard"]	
-							v- j- bestfreepap	ر ers.		nd other materials	-		

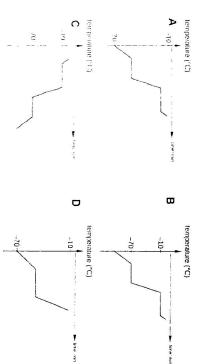
Ν

temperature of the plates in the column. Lighter fractions have lower boiling points will be condensed and collected at the top of the fractionating column as gases. Heavier fractions have higher boiling point will be condensed and collected at the lower sections of the column. (b) (i) % of carbon in octane = $\frac{8(12)}{8(12) + 18(1)} \times 100$ = $\frac{84.2\%}{16(12) + 34(1)} \times 100$ 1	It has the <u>lowest relative molecular mass / fewest number of carbon atoms</u> / <u>smallest molecules / short-chain molecules</u> . hence <u>less / weaker intermolecular forces of attraction</u> , result in <u>lower</u> <u>boiling point</u> and so easier to vapourise (burn easily) (ii) In the furnace, petroleum is <u>heated and turned into vapour</u> (vapourised) The <u>hot vapour rises up</u> the column, it begins to <u>cool</u> . The <u>fraction</u> will condense when its boiling point is equal to the	Section B (20m) Question Answer Ma 9 (a)(I) Petrol	(c) <u>Reddish brown</u> bromine <u>turns colourless</u>		8 (a)	(b) Mole ratio of MgCb: MgCO ₃ = 1:1 Moles of MgCO ₃ = 0.5 Mass of MgCO ₃ = (0.5)(84) = 42 g	(iii) Concentration = $\frac{0.587}{0.1}$ = $\frac{5.87 \text{ mol/dm}^3}{1}$	= <u>0.587</u> (to 3 s.f.)	(II) Mannuel of moles - 95
Y	· · · · · · · ·	Mark		<u> </u>		<u>د دد</u>		-	-

1 10 (c) Relative molecular mass of ethanol = 2(12) + 5(1) + 16 +1 (a) Fermentation (b) C₆H₁₂O₆ (aq) (c) An excess of magnesium is added to a sample of dilute hydrochloric acid, stir (b) To a portion of the solution, add dilute nitric acid followed by aqueous silver Q (a) (i) Metallic chlorides have high melting points while non- metallic chlorides have (ii) Large amount of energy is required to overcome strong electrostatic forces of attractions between the positive metallic ions and the negative % by mass of carbon in ethanol = $\frac{2(12)}{46} \times 100$ Keep the air out and leave for a few days. Add water to dissolve the cane sugar then add yeast papers Filter mixture to collect crystals as residue and press dry between pieces of filter to dissolve magnesium. (ii) 2 moles of hexadecane require more moles of oxygen for complete [correct balance eqn --- 1m, correct state symbol ---1m] Keep the sugar solution at 37°C. The product must be fractionally distilled to get almost pure ethanol Heat the filtrate to evaporate some water / till saturated Let the saturation solution cools for crystallisation to occur A white precipitate formed indicates the presence of chloride ions ilter mixture to remove unreacted magnesium, collect filtrate nitrate OR add acidified silver nitrate solution chlorides are liquids at room temperature. chloride ions, hence high melting point. [must show between the 2 chlorides, use info from table] low melting points. Metallic chlorides are solids at room temperature while non-metallic Very little energy is required to overcome weak intermolecular forces between the molecules of non-metallic chlorides, hence low melting point tendency of undergoing incomplete combustion, so it tends to produce combustion as compared to octane, hence hexadecane has a higher more smoky flame. ¥ 2C2H5OH(aq) + 2CO2(g) = 52.2% = 85.0% R 16 ----_**`** _ - -- bestfreepapers.com

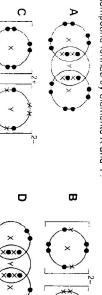
- The BEST website to download FREE exam papers, notes and other materials from Singapore!

		Setter: Mrs Celine Wong/ Ms Chiang WK
		This document consists of 22 printed pages including the cover page. © HYSS 2016 No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School. [Turn Over]
	4	
		Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
D	n	Source for the Answer Sheet your carefully
water		There are forty questions on this paper. Answer all questions. For each question there are four possible answers A . B , C and D . Choose the one you consider correct and record your choice in soft pencil on the separate Optical Answer Sheet
	Y +	Write in soft pencil. Do not use staples, paper clips, highlighters, glue or correction fluid.
33	~	Write your Name Class and Index Number on all the work you have done.
A gas, γ_i is less dense than air and is very soluble in water. Which is the most suitable method to collect a sample of this gas?	2 A gas, Y, is less dense suitable method to colle	READ THESE INSTRUCTIONS FIRST
	D tomatoes	Additional Materials: OTAS
	C corns	Candidates answer on the Optical Answer Sheet (OTAS)
		1 hour
Which tinned food does not contain any artificial additives? A apricots	Which tinned food does A apricots	Paper 1 15 September 2016
artificial additives		
corn tomatoes P ₁ P ₂ P ₃	apricots beans	
0	0	4E/5N Preliminary Examination 2016 4E/5N
0	0	
0 0 0	0	HUA Y
2 and P ₃ .	artificial additives, P_1 , P_2 and P_3 .	
Samples of tinned apricors, beans, corn and tomatoes were tested for additive using chromatography. The chromatograms were compared with those of three	1 Samples of tinned apric using chromatography.	Name: Index Number: Class:


N

ŕ

ω


ω

respectively. Which of the following shows the electron arrangement of the compound formed by elements X and Y? Elements X and Y are found in Group VI and Group IV of the Periodic Table

12+

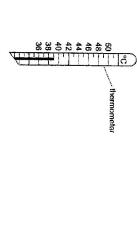
4

64

The following describes the properties of substance X. st

сh

state at room temperature	solid
malleability	malleable
conduction of electricity	good


Which substance can X be?

- Þ
- ω chlorine, Cl2 zinc chloride, ZnCl₂
- 0 carbon tetrachloride, CCI4
- zinc, Zn

C

A thermometer is placed in water and the temperature is measured as shown

6

bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

An exothermic change takes place as a solid is dissolved in the water. The temperature changes by 3.5°C. What is the initial temperature?

35.0°C

≥

- 35.5°C
- ω
- 42.5°C

7

Þ

4.5 g 9.0 g

A mixture of 4.0 g hydrogen with 4.0 g of oxygen is ignited. What is the mass of water formed?

.

4E Science (Chemistry/ Biology) P1 Prelim 2016

Hua Yi Secondary School

4E Science (Chemistry/ Biology) P1 Prelim 2016

Hua Yi Secondary School

σ C ω

36.0 g 18.0 g

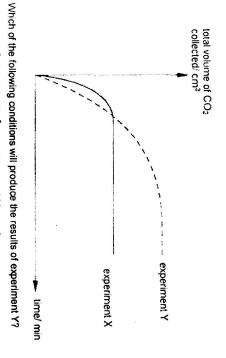
- σ

- 0 42.0°C

- ⊳ $C_{uO} + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O$
- ω 2FeCl₂ + Cl₂ → 2FeCl₃
- C $CuO + H_2 \rightarrow Cu + H_2O$
- σ $Mg + 2HCI \rightarrow MgCl_2 + H_2$
- 9 Which of the following methods would not produce ammonia?
- ⋗ heating ammonium sulfate with sodium hydroxide
- ω heating ammonium chloride with calcium oxide
- 0 Ο heating ammonium chloride with copper(II) oxide heating ammonium sulfate with dilute hydrochloric acid
- 5 $\mathbf{P},\,\mathbf{Q}$ and \mathbf{R} are in the same period of the Periodic Table. Oxide of \mathbf{P} is acidic, oxide

of Q is basic and oxide of R is amphoteric

What is the order of P, Q and R across the Periodic Table from left to right?

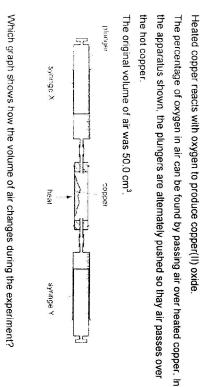

- Þ P.R.Q
- ω Q.P.R
- 0 Q, R, P
- σ R. P. Q
- 2 What does not increase across a period of the Periodic Table?
- Þ the number of electron shells
- ω the number of outer shell electrons
- the number of protons

C

σ the nucleon number

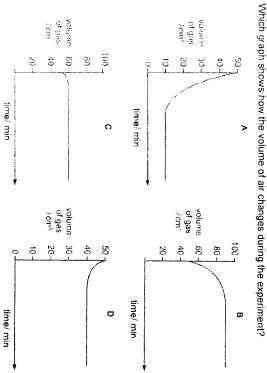
> In experiment X, excess finely divided iron(II) carbonate powder is added to 50 cm³ of 1.0 mol/dm³ hydrochloric acid at room temperature. The total volume of carbon dioxide evolved is determined at intervals and plotted against time as shown in the graph below.

12



- Þ 100 cm³ of 0.5 mol/dm³ hydrochloric acid is used
- ω 50 cm³ of 2.0 mol/dm³ hydrochloric acid is used
- o iron(II) carbonate lumps are used instead
- σ hot acid is used

.


σ

.

25

The table shows the results of halogen displacement experiments.

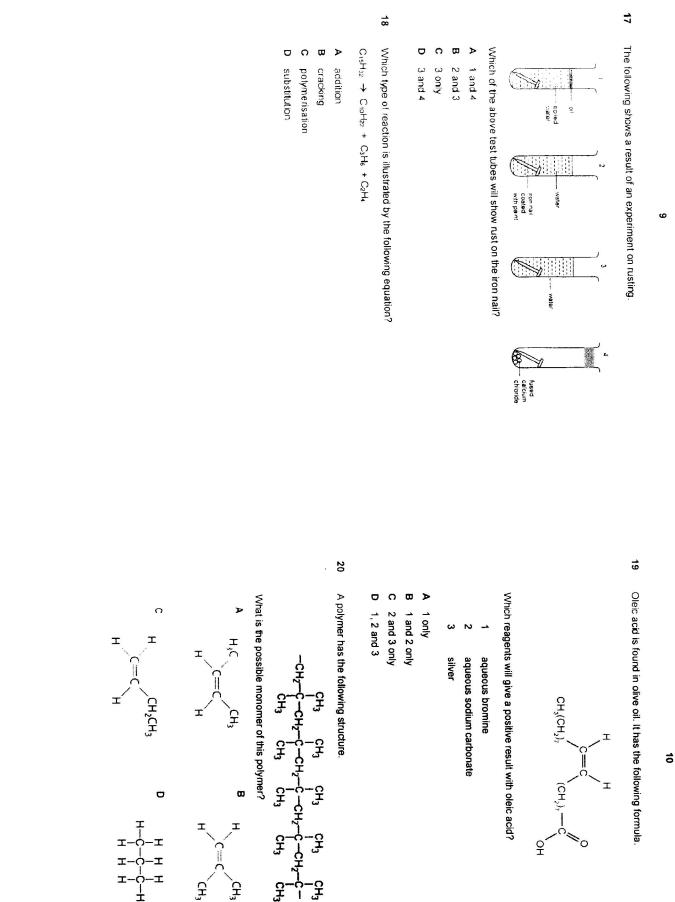
œ

14

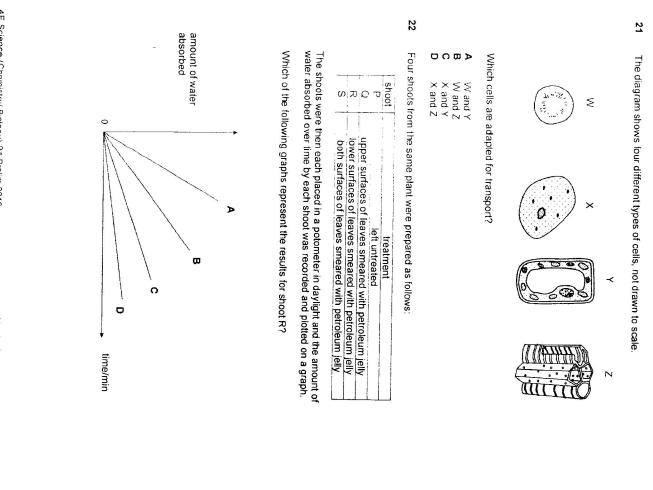
Z2	Y2	X2		halonen added
no reaction	no reaction	1	×	
Y ₂ displaced	•	Y ₂ displaced	¥	halide solution
•	no reaction	Z ₂ displaced	Z	

	X ₂	Y ₂	Z2
Þ	bromine	chlorine	iodine
Β	bromine	iodine	chlorine
C	chlorine	bromine	iodine
O	chlorine	iodine	bromine

σ, Which of the following does not match an atmospheric pollutant to its source?

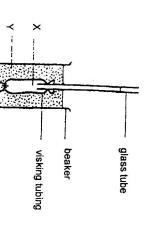

0	ი	ω	Þ		
sulfur dioxide	sulfur dioxide	nitrogen oxides	nitrogen oxides	pollutant	9 0000
combustion of fossil fuels	volcanoes	lightning	incomplete combustion of fuels in car exhaust	source	

16 What is the main constituent of natural gas?


- Þ ethane
- ω hydrogen
- 0 nitrogen
- D methane

1

13



.

23

1

Identify liquid X and Y such that the level in glass tube will rise the highest level after three hours?

		0.4 mol/d	0.2 mol/d	liqui
water	water	0.4 mol/dm ³ sucrose solution	0.2 mol/dm ³ sucrose solution	liquid X inside bag
0.4 mol/dm ³ sucrose solution	0.2 mol/dm ³ sucrose solution	water	water	liquid Y in beaker

- 24 A substance found in bananas causes them to turn brown when exposed to air. How would you determine that the substance is an enzyme?
- Boil the banana and see if it turns brown in the air. Cut the banana to small pieces and see if it turns brown. Test whether the unpeel banana turns brown.

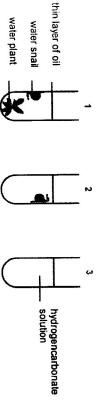
- dioxide fest whether banana turns brown in an atmosphere of pure carbon

.

•

25 A sample of food mixed with water was tested to study its contents. The results are shown in the table.

shaken with ethanol	Biuret's solution added	mixture heated	Benedict's solution added and	iodine solution added	food test
cloudy white emulsion	blue solution		blue solution	blue-black colour	result


Which nutrient(s) were present in the food?

- fats only proteins and fats reducing sugar and fats starch and fats
- 000>

Three test tubes were set up in the same conditions as shown below. Oil and red hydrogencarbonate solution were added to all set ups in equal amounts.

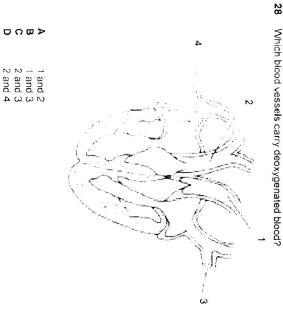
14

26

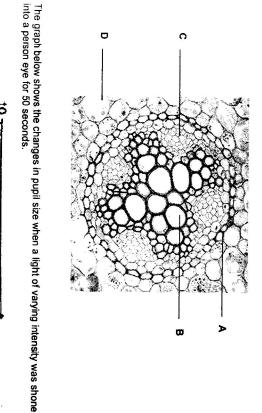
After three hours, the colour of the hydrogencarbonate solution in the three test tubes was recorded below.

7	red	ω
6.5	yellow	2
5.8	yellow	
РЧ	colour of hydrogencarbonate solution	test tube

experiment? What was the likely condition the three set ups were subjected to during the


σ	0	ω	Þ	
40	20	5	0	light intensity/lx
20	20	30	60	temperature/°C

- 27 Only two of the following statements accurately describe what happens in the mouth.
- Amylase breaks down large starch molecules into smaller
- maltose molecules
- WN Chewing increases the surface area of food for digestion
- Saliva emulsifies fats into smaller droplets.
- soluble molecules. Teeth break up large insoluble molecules into smaller


Which statements are correct?

- 1 and 2 1 and 4 2 and 3 3 and 4

16

29

30

Which statement explains the change in pupil size correctly?

0

0

5

20

30

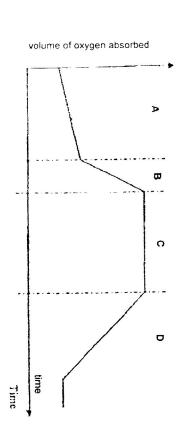
40

50

time/s

N

- o n m > The light slowly became brighter.


- The light slowly became dimmer. The light suddenly became brighter. The light suddenly became dimmer.

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

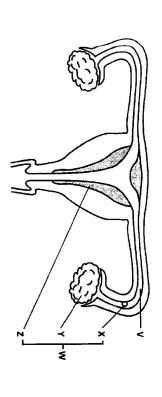
The graph shows the volume of oxygen absorbed by the blood as a student plays a game of tennis

ŝ

At which period of time does the student respire both aerobically and anaerobically?

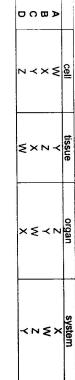
32 In a nerve pathway, the following events take place.

- activation of receptor activation of muscle
- AWN
- passage of impulses along a motor neurone passage of impulses along a sensory neurone


What is the correct order of these events?

first ---> last

- N ŝ WNA
- O O B > N


Questions 33 and 34 refer to the diagram of the human reproductive system below.

18

Which of the following is correct?

33

34 Where do fertilisation, implantation and ovulation occur?

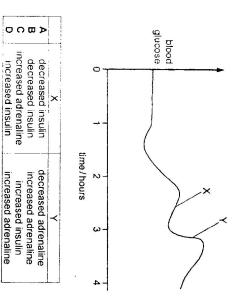
ertilisation

implantation

ovulation

O O O >

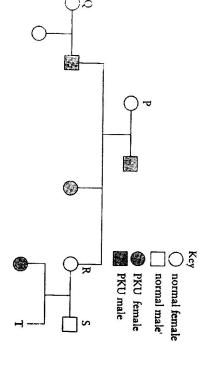
< <


< N N

.

35 The graph shows changes in a person's blood glucose concentration over four hours.

What might cause the changes at X and Y?



36 An experiment was set up using four groups of insect-pollinated flowers in a field. In each group, different parts of the flower were removed, as shown in the table below, and insects were allowed to visit all the flowers freely.

left	removed	left	D
removed	left	left	C
removed	left	removed	.00
left	removed	removed	A
petals	anthers	stigma	group of flowers

Which group of flowers, A, B, C or D, would produce the most seeds?

20

Which of the following correctly describes the genotype of individuals in the family tree?

0 0 0 0 0

- P and Q are heterozygous. P and R are homozygous dominant. R and S are heterozygous. R is homozygous dominant while S is heterozygous.

.

4E Science (Chemistry/ Biology) P1 Prelim 2016

Key	Å	a ≂ relative atomic mass X = atomic symbol b = proton (atomic) number		- Pa protectinium 91	238 U uranium 92	Np neptunium 93	PU plutonium 94	Am americium 95	- Cm curlum 96	Bk berksilum 97	- Cf californium 98	Es einsteinium 99	Fm termium 100
	olume	e of one mole of any gas	is 24 dr	n ³ at room	n tempera	ature and	pressure	e (r.t.p.).					

Pm

Ru

Os

Rh

Ir

Sm

т 45

Pd

P1

Eu

Tc

Re

Nd

Mo

m

W

Pr

Nb

Ta

Ce

Y

La

Ac actinit 89

t

у# 39

Ba

Ra radiur 88

*58-71 Lanthanoid series †90-103 Actinoid series

Cs

Fr franc 87

Zr

Hf

bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

Te telkuriu 52

Po

Tm

Md

the 69

84

Sb

Bi

Er

ы 83

antir 51

Sn 5n

Pb

Ho

In

indiu 49

T/

Dy

Hg

Tb terbium 65

Au gold

Gd

Xe xenor 54

Rn radon 86

Lu Iutetiu 71

L

I

At

Yb

No nobe 102

ytte 70

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

.

.

Hua Yi Secondary School	Sec 4E5N Science (Chemistry) P3 Prelim Exam 2016	Hua Yi Secondary School Sec 4	Hua	Sec 4E5NScience (Chemistry) P3 Prelim Exam 2016	Se
[Total: 4]					
[2]			ed out, which metal will be distill	(b) When fractional distillation is carried out, which metal will be distilled first?	
		[1]			
			nc by fractional distillation.	(a) State why it is possible to purify zinc by fractional distillation	
explain why brass is much harder as	(b) With reference to your answer in (b), explain why brass is much harder as compared to pure zinc metal.		2007 1751 Table. 2.1	iron iead Ta	
[2]			boiling point /°C 765 2582	impurities cadmium copper	
brass	zinc metal		08 °C.	below. Pure zinc has a boiling point of 908 °C.	
nent of atoms in pure zinc and brass	(a) In the space below, draw the arrangement of atoms in pure zinc and brass alloy.	tain zinc) into listillation in a vn in the table	zinc concentrates (ores that con es purifying zinc by fractional d main impurities in zinc are show		N
mall amounts of copper to zinc. The of its constituents, copper and zinc.	Brass is an alloy made by the addition of small amounts of copper to zinc. The resulting alloy is harder compared to either of its constituents, copper and zinc.	[Total: 3]	-		
ss, which is an alloy.	Musical instruments are usually made of brass, which is an alloy.	[] [3] 3		impurities	
[lotat. 4]				vegetat	
			substance needed	catalyst to make margarine from	
	(d) State one other industrial application of		suitable for particular tasks. Co e for each of the tasks shown.	The properties of a substance make it suitable for particular tasks. Complete Table 1.1 by naming a suitable substance for each of the tasks shown.	د.
f footional distillation			provided on the question paper.	Write your answers in the spaces provided on the question paper.	
	from any impurities?		questions.	Answer all questions	
from the fractional distillation is free	(c) How would you test if the zinc purified from the fractional distillation is free		45 marks)	Section A (45 marks)	

ω

.

N

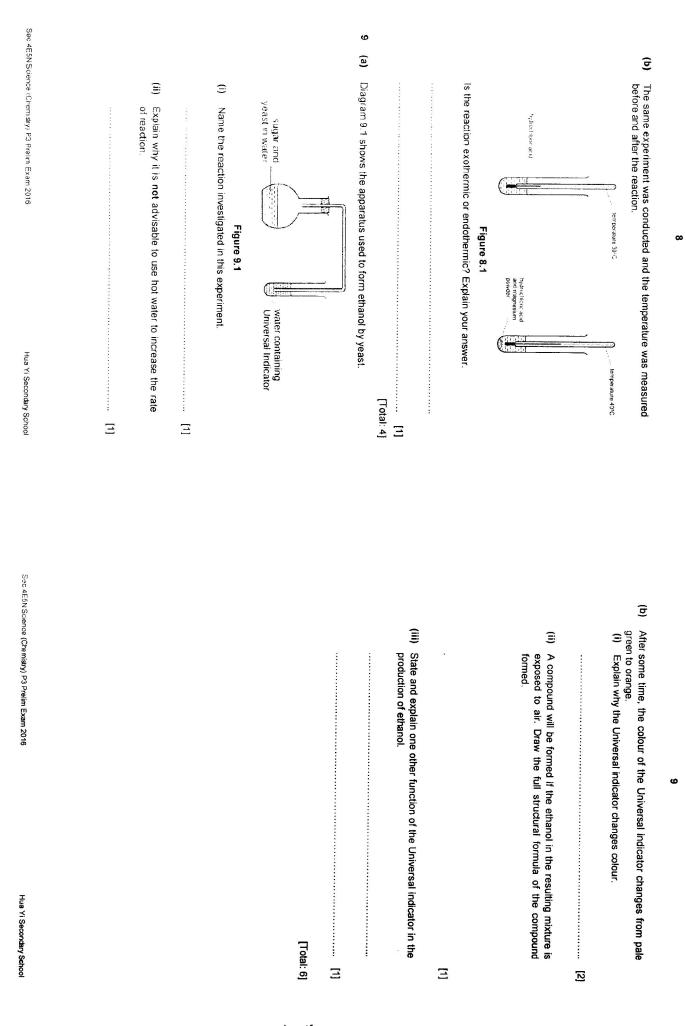
Sec 4E5N Science (Chemistry) P3 Prelim Exam 2016 Hua Yi Secondary School	Hua Yi Secondary School	Sec 4E5N Science (Chemistry) P3 Pretim Exam 2016	Sec 4E5N Science
[Tota			
	[1]		
(b) Write a balanced chemical equation for any one of the reactions that are described within Figure 5.1.	have different masses.) Explain why potassium atoms can have different masses	(ii)
F:	[1]		
	t atoms of the same element?) What is the name given to different atoms of the same element?	(i)
	identical. They can have different	Not all of the atoms of potassium are identical. They can have different masses.	(c) The second
0	[3]	i) number of electrons:	
D ,		number of neutrons.	
A.			
(a) Identify substances A to F.	number of protons:		(i)
	ns and electrons are present in a	Determine how many protons, neutrons and electrons are present in a single ion of potassium, $K^\star_{\rm c}$	ĩ. D
limewater	.*	⁴⁰ K ⁺	
gas solution NaOH(aq) green precipitate		A potassium ion can be represented as	(b) A
	[1]		
solid solid acid AgNO ₃ (aq) white precipitate	based on?	 What is this system code number based on? 	(1)
5 Study the reaction as shown in figure 5.1 below.	[1]	Complete the table above.	(i)
	Table 4.1		
(10) [Total: 8]	30, 35(2)	zinc bromide	N. 0
[1]	19, 17	de	
	code		
atom.	using a certain number of an element rather than names or formulae of substances. Table 4.1 illustrates this code system.	using a certain number of an element rather than r substances. Table 4.1 illustrates this code system.	
(iii) Draw a diagram to show the electronic structure of a potentium	nient, a code system is developed by	order to make data entry more convi	4 (a) In

•

.

4

76


(J)

lim Exam 2016 Hua Yi Secondary School	Sec 4E5N Science (Chemistry) P3 Prelim Exam 2016	Hua Yi Secondery School	Sec 4E5N Science (Chemistry) P3 Prelim Exam 2016
[2]		[1]	
Calculate the mass of magnesium chloride formed.	(ii) Calculate th	[Total: 6] some metals can occur in the ground as uncombined metal.	7 Explain why (a) some metals can occur in the
		chemical equation, including state symbols, to represent the of metal C with cold water. [2]	(c) Write a chemical equation, inclu reaction of metal C with cold water.
50cm ³ of 0.15 mol/dm ³ of hydrochloric acid is used to react with excess magnesium. (i) Calculate the number of moles of hydrochloric acid used.	(a) 50cm ³ of 0.15 m magnesium. (i) Calculate th	[2]	Metal B:
Magnesium metal reacts with hydrochloric acid as follows. Mg + 2HCi → MgCl₂ + H₂	8 Magnesium metal react	metals B and C.	(b) Suggest a possible name for metals B and C.
[1] [1] [1]		[2]	least reactive
carelessly disposing plastics can result in long-term environmental problems.	(c) carelessly dispos	Metal D has to be very hot before it will react with steam. It reacts slowly with dilute hydrochloric acid. (a) Place the metals A, B, C and D in order of reactivity.	Metal D has to be very hot before dilute hydrochloric acid. (a) Place the metals A, B, C and
recycling is beneficial to the environment. [1]	(b) recycling is benefi	Four unlabelled metals, A , B , C and D are tested in a laboratory. The following shows the results: Metal A has to be hot before it will react with steam. Metal B does not react with dilute hydrochloric acid. Metal C is the only one to react with cold water. The reaction with water is steady but not violent	6 Four unlabelled metals, A, B, C and D are tested i shows the results: Metal A has to be hot before it will react with steam Metal B does not react with dilute hydrochloric acid. Metal C is the only one to react with cold water steady but not violent

6

.

κ.

ry) P3 Prelim Exam 2016	Sec 4E5N Science (Chemistry) P3 Prelim Exam 2016	6 Hua Yi Secondary School	Sec 4E5N Science (Chemisity) P3 Preim Exam 2016
		[8]	
[3]			
			a to a second
With a balanced chemical equation for the reaction in (a)(I), explain in With a balanced chemical equation for the reaction in (a)(I), explain in terms of electron transfer, how chlorine act as an oxidising agent.	(ii) With a b terms of		
ing agent. Describe what can be observed when potassium iodide is added to	oxidising agent. (i) Describe		
ants such as chlorine have the ability to behave as an	11 (a) Group VII el		
[Total:10]		${\sf D}{\sf escribe}$ the steps that are needed to prepare the above salt.	(iii) Describe the steps that
[2]		laboratory. Write a chemical equation to represent the reaction in (a)(i).	laboratory. (ii) Write a chemical equa
		State the acid and metal carbonate used to prepare zinc sulfate in a	(a) (i) State the acid and met
		Zinc sulfate can be formed when acids reacts with insoluble metal carbonates.	10 Zinc sulfate can be formed when a
		Section B (20 marks) Answer any two questions only.	Sect Answe
State two other characteristic properties of acids.	(b) State t		
:		10	

ŝ

•

Sec 4E5N Science (Chemistry) P3 Prelim Exam 2016 Hua Yi Secondary School		m 2016 Hua Yi Secondary School	Sec 4E5N Science (Chemistry) P3 Prelim Exam 2016
	. [7]		
	:		
	:		
	:		
[5]	:		
	:		
		State another way to increase the rate of reaction.	(iv) State another w
		State and explain, using your knowledge on reacting particles, why using powder calcium carbonate increases the speed of reaction in this reaction.	(iii) State and expla using powder c this reaction.
(ii) State the change in viscosity of the fractions changes going down the fractionating tower.		Explain why hydrogen chloride has a low melting point but calcium chloride has a high melting point.	
 Petroleum is separated into several useful substances in a fractionating tower. (i) Describe the separation process. 	12	 A student reacted hydrochloric acid with calcium carbonate lumps to form calcium chloride. (i) Draw a 'dot and cross' diagram to show the arrangement of electrons in the calcium chloride formed. 	 (b) A student reacted hydrochloric acid calcium chloride. (i) Draw a 'dot and cross' diagran in the calcium chloride formed

•

. .

80

Sec 4E5N												1	(d)
Science										(ii)	(i)	oxyg	Octa
Sec 4E5NScience (Chemistry) P3 Preim Exam 2016		End of Paper								From the above information, explain why car-sharing is encouraged.	What volume of carbon dioxide, measured at room temperature and pressure, would be produced when 1.0 kg of octane is combusted in a car engine? Leave your answer in 3 significant figures.	oxygen in a car engine to form carbon dioxide and water. $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$	ane. C _R H ₁₈ , a major component in petrol, burns in a
Hua Yi Secondary School			[10 marks]	5						is encouraged.	temperature and s combusted in a s.		good supply of
Sec 4E5N Science (Chemistry) P3 Prelim Exe		The	Perio	dic Table c	f the	Flemen	te						
5N Sai				Group									
ence (1				. 111	IV	V	VI	<u>VII</u>	0 4	
Chem			1 H hydrog 1	en								He helum	
istry) P3	7 9 Li Be Kithium bery#kum		ι <u>.</u>	i			11 B boron	12 C carbon	14 N	16 0	19 F	20 Ne	
3 Prelii	3 4 23 24						5 27	16	rxtrogen 7 31	axygen 8 32	fuorine 9 35.5	neon 10 40	ĺ
m Exa	Na Mg sodium magnesium						A1 aluminiur	28 Si stacon	31 P phosphorus	32 S suttur	CI	Ar argon	

K

85 Rb

Cs

Fr

francsu 87

rubi 37

Ca

Ba

Ra

stre 38

Sc

Y

yttrium 39

La

Ac actinium 89 †

Ti

91 Zr

Hf hafniu 72

zirc 40

V

Nb

Ta tantalum 73

ліс 1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Cr

Mo

W

tung: 74

Mn

Tc

Re rhenium 75

Fe iron

Ru

Os asmium 76

uth 14

Co

Rh modiu 45

Ir Indium 77

Ni nicke

106 Pd palledius 46

Pt platinum 78

Cu 29 108 Ag silver 47

Au gold

Zn zinc 30 112 Cd cadmius 48

Hg mercury 80

I ne volume or one mole or any gas is 24 dm⁻ at room temperature and pressure (r.t.p.).

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

35.5 CI chlonne 7

Br

At

Yb ytterblue 70

No

Kr

Xe xenon 54

Rn

Lu Idelum 71

Ēr

Se

128 Te

:elli 52

Po pcloniur 84

Tm thatium 69

Md

As

122 Sb

Bi bismuth 83

ant 51

aluminiu 13 70 Ga gallium 31 115 In indium 49

T*l* thalium 81

Ge

119 Sn tin

Pb

•

*

-

PRELIMINARY EXAMINATION 2016 HUA YI SECONDARY SCHOOL

SECONDARY 4E5N Marking Scheme

SCIENCE (CHEMISTRY/Biology)

Paper 1 [20 marks]

┣	Β	B	0	D	Þ	0	0	A
+	19	18	17	16	15	14	13	12
0	0	Þ	в	B	0	σ	B	<u>с</u>
-	9	8		6	5	4	ω	2

Paper 3

Section A [45 marks]

	3(a)	(d) 2(a) 1
brass alloy	zinc metal	nickel, calcium oxide/ calcium carbonate limestone / calcium carbonate all the components have different boiling points cadmium test the boiling point. Pure zinc will boil constantly at 908 °C. Refining crude oil to different fractions Obtaining ethanol from fermented sugars Fractional distillation of liquidfied air Obtaining nitrogen from Haber process [any 2]
	2	

			c	63				d			5a		 	(iii)	(ii)	(c)(i)	-+		-+-	-+-	-+-	_			(c)	
C • lithium, calcium	B • copperigoiorsiver/piaumum		Metal Name of metal	С, А, U, В			HCI + AgNO ₃ → AgCl (s) + HNO ₃ (aq) CO ₂ + Ca(OH) ₂ → CaCO ₃ + H ₂ O	$\frac{2HCI + FeCO_3 \rightarrow FeCl_2 + CO_2 + H_2O}{FeCl_2 + 2NaOH \rightarrow Fe(OH)_2 + 2NaOH}$	E iron (II) chloride (oxidation must be stated)	silver chloride	A hydrochloric acid B Iron (II) carbonate (oxidation must be stated)				They have different number of neutrons.	isotpoes	18	21		proton number/ atomic number	7nRrs [1]		Brass is harder as the atoms added have a different size. This disrupts the orderly arrangement of atoms.	an orderly and regular arrangement. The layers of atoms slide easily over one another when a force is applied.	Pure zinc is soft because the atoms of the same size are arranged in	
		•		21	3	17		<u>د</u>	თ			[8]		-	-			1	-	-	-	4			2	

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

Some metals are unreactive To conserve resource as metal ore is a finite resource / To reduce air , water and land pollution as waste material is generated from extraction process. Waste material can leach into the soil and cause land and water pollution. Plastics are non-biodegradable and will lead to increase amount of build up waste. No of moles of HCI = 50/1000 x 0.15 = 0.0075 mol [1] According to the equation, 2 moles of HCI form 1 mole of MgCl ₂ No of moles of MgCl ₂ produced = 0.0075/2= 0.00375 mol [1] Mass of MgCl ₂ produced = 0.00375 x 95 = 0.356g exothermic, heat is lost to the surroundings as heat energy (no marks given without explaination) Fermentation The yeast will denature. Carbon dioxide is bubbled into the universal indicator and [1] it is acidic. [1] H = C = C H = C H = C = C H			8(a)(i) No (ii) No (b) ex	c b c fro	c 2L Sy 7a So
	H – C – C H – C – C H – O – H H – O – H ranoic acid [1]	en without explaination) mentation e yeast will denature. rbon dioxide is bubbled into the universal indicator and [1] is acidic. [1]) of moles of HCl = 50/1000 x 0.15 = 0.0075 mol [1] coording to the equation, 2 moles of HCl form 1 mole of MgCl ₂ of moles of MgCl ₂ produced = 0.0075/2= 0.00375 mol [1] <u>iss of MgCl₂ produced = 0.00375 x 95 = 0.356g</u> othermic, heat is lost to the surroundings as heat energy (no marks	conserve resource as metal ore is a finite resource / reduce air , water and land pollution as waste material is generated im extraction process. Waste material can leach into the soil and use tand and water pollution. astics are non-biodegradable and will lead to increase amount of ild up waste.	$ZL_1(s) + 2H_2O(t) \rightarrow 2L_1OH(aq) + H_2(g)$ (balanced equation 1m; state symbols 1m) Some metals are unreactive

Section B [20 marks]

11(a)(i)	(b)			Ē	١	10(a)(i)
11(a)(i) Colour of KI changes from colourless to brown.	Acids react with metals to form salt, hydrogen gas Acids react with base to form salt, water.	Rinse crystals with distilled water and tap dry with filter papers (ECf for wrong reactant used)	Heat titirate to saturation Cool to obtain crystals	Excess sodium carbonate is added to a volume of sulfuric acid ; Filter the excess sodium carbonate	$ZnCO_3 + H_2SO_4 \rightarrow ZnSO_4 + CO_2 + H_2O$	10(a)(i) Reactant: zinc carbonate and sulfuric acid (Any appropriate salt and reactant
-	N			G	-	N

.

 (ii) lov	+	+	to fra Th					 (b)(i)	
lower emission of carbon dioxide, which causes global warming	100/ 114 = 8.722 mol 5 =69.776 mol 76 x 24 = 1674 dm ³		The fraction with the lowest boiling range will come out at the top while the fraction with the highest boiling range will come out at the bottom of the tower.	retroieum is <u>neated</u> . The fractions have <u>different boiling range</u> due the different molecular size/ mass	Heat the acid / increase concentration of acid	use powder instead of lumps- increase <u>surface of contact</u> between reacting particles, increasing number of effective collisions. [2]	HCI. [1] HCI. [1] High amount of energy is required to overcome the strong electronstatic forces between Mg2+ and CI- ions. [1]		It causes iodide ion to be oxidised to from iodine by losing electrons.
N	ω			4	<u>د</u>	N	N	N	r

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

- ----

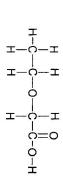
				hailing naint/ °C	solubility in water
	in Convergence Control		menning pointe o		
Queension	Queensiown Secondary School	G	150	370	Insoluble
		I	10	190	soluble
	2 Q (1990) 4 (1990) 4	A mixture of t	ixture of both substances at room temperature needs to be separated to obtain	emperature need s to be	e separated to obtain
		pure samples	samples of G and H. Which of the following procedures is the most	following procedures is	s the most
		appropriate?			
		A filtration only	VINC		
		B distillation only	n only		
0		C filtration	filtration followed by crystallisation		
Prelir	Preliminary Examination 2015	D add wate	add water to mixture followed by filtration	Itration	
Scier	Science (Chemistry / Biology) 5078/01	2 An unknown	An unknown solution J forms a white precipitate with aqueous sodium hydroxide. The	ecipitate with aqueous	sodium hydroxide. The
		precipitate dis	precipitate dissolves upon adding excess aqueous sodium hydroxide to form a	ss aqueous sodium hyc	froxide to form a
18 September 2015	Time: 0800 – 0900 hrs Duration : 1 hr	colourless so	colourless solution. Solution ${\bf J}$ is also known to contain chloride ions	nown to contain chlorid	e ions.
, me		Which could I	Which could be a possible cation present in J?	nt in J?	
Class: Sec 4A Setter: Mrs Chen Jingyi & Mr Kennard Seah	ennard Seah	A ammonium ion	im ion B calcium ion	C lead(II) ion	D zinc ion
READ THESE INSTRUCTIONS FIRST	FIRST				
Write in soft pencil. Write your name, class and index number on the Answ Do not use staples, paper clips, glue or correction fluid	Write in soft pencil. Write your name, class and index number on the Answer Sheet in the spaces provided. Do not use staples, paper clips, glue or correction fluid.	3 Which of the	Which of the following diagrams shows H ₂ O being cooled from 80°C to -1°C? A C	H ₂ O being cooled from	∩ 80°C to -1°C? C
There are forty questions on this pap four possible answers A, B, C and D	There are forty questions on this paper. Answer all questions. For each question there are four possible answers A , B , C and D .				,
Choose the one you consider con Answer Sheet.	Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.			8009 60 8009 60	
Read the instructions on the Answer Sheet very carefully	nswer Sheet very carefully.		IJ		5
Each correct answer will score one mark. A mark Any rough working should be done in this booklet.	Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.		•	0	
A copy of the Data Sheet is printed on page 17. A copy of the Periodic Table is printed on page 18	ed on page 17. rinted on page 18.				
The use of an approved scientific	The use of an approved scientific calculator is expected, where appropriate.				
This pa	This paper consists of <u>17</u> printed pages.	Queenstown Secondary School		2	[Turn over

Ē.

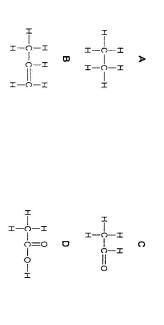
.

Queenstown Secondary School 3	8 70 cm ³ of ammonia gas is reacted with 20 cm ³ of hydrogen chloride gas as shown in the equation below. $NH_3(g) + HC/(g) \rightarrow NH_4C/(s)$ What is the total volume of unreacted gas at the end of the reaction? A 0 cm ³ B 50 cm ³ C 70 cm ³ D 120 cm ³	 7 What is the percentage composition of carbon in C₂H₅(NH)COOH? A 15.7% B 27.0% C 35.9% D 	6 What is the total number of electrons used in bonding in the molecule below? O = C = O A 4 B 8 C 12 D 16	5 Which of the following substance has a low boiling point? A Fe B HCN C KF	 4 Two atoms, ⁵⁵₂₅^{ch} n and ⁵⁵₂₆^{ch} have the same I number of protons. II. number of neutrons. IV. relative atomic mass. A II only B Land III only C II and III only
[Turn over	n chloride gas as shown in e reaction? D 120 cm ³	COOH? D 40.4%	9 molecule below? D 16	О РЬО	y D II and IV only
Queenstown Secondary School 4	experiment 1experiment 2Acurve Wcurve XBcurve Xcurve WCcurve Ycurve ZDcurve Zcurve Y	Z V X	In the graph below, which of the curves correctly represent Experiments 1 and 2? Mass of copper(II) oxide / g	10 In Experiment 1, 3.00 g of copper(II) oxide is reacted with 0.800 mol/dm ³ of excess nitric acid. The change in mass of copper(II) oxide was plotted against time.	 9 When solid ammonium nitrate is dissolved in water to form a solution, the temperature of the solution decreased. Which of the following statements correctly explains this? Reactants gained heat energy from surroundings. The surroundings gained heat from the reactants. More energy is absorbed to break bonds than released to form bonds. A forly B 11 only C Land III only D II and III on
[Turn over		♦ Time / min	ments 1 and 2?	ol/dm ³ of excess nst time.	n, the form bonds. Il and III only

-


x

[Turn ov	σ	Queenstown Secondary School	ueenstown Sec	[Turn over Q	ۍ ا	Queenstown Secondary School	Quee
	n mangana te(VII). ₀ of 200 °C. 'ns at 37°C.	Aluminium oxide, high temperature and high pressure Heating with acidified potassium mangana te(VII). Nickel catalyst and temperature of 200 °C. Yeast under anaerobic conditions at 37 °C.			It reacts with oxygen in the all to joint at active oxide. It reacts with acid to form a solution which turns damp red litmus blue. It reacts with alkali to form a solution which turns damp blue litmus red. It reacts with water to form a solution which turns damp red litmus blue.	 A treacts with acid to form a solution which turns damp B It reacts with acid to form a solution which turns damp C It reacts with alkali to form a solution which turns damp D It reacts with water to form a solution which turns damp 	
D 95 cm ³	C 78 cm ³ n verting $C_{30}H_{e2}$ to ethene	A 0 cm ³ B 24 cm ³ C 78 cm ³ D 95 cm ³	A 0 cm ³		up I of the Periodic table. (ely to be correct?		<mark>-</mark> 4
her change s.	' copper metal until no furtl air left after the reaction?	120 cm ³ of air is passed over heated copper metal until no further change s What is the approximate volume of air left after the reaction?	17 120 cm ³ of What is th		C potassium sulfate D zinc nitrate	A copper(II) chlorideB lead(II) sulfate	
with coke? D zinc	t be extracted by heating v C magnesium	Afriich of the following metals cannot be extracted by heating with coke? A copper B lead C magnesium D zinc	16 Which of th A copper		A student managed to prepare a pure sample of a salt without the need to do any form of heating. Which was the salt he prepared?	A student managed to prepare a pure sample of a form of heating. Which was the salt he prepared?	13
			τ			B magnesium	
	silver zinc	magnesium	00		C sodium carbonate	Which is a possible identity for Q?	
	sodium silver	zinc	∞⊳	np blue	Sulfuric acid reacted with an unknown solid Q to form a gas which turns damp blue litmus red.	Sulfuric acid reacted with an unknown litmus red.	12
t T and U be?	s actually iron. What could	t was later discovered that metal S is actually iron. What could T and U be?	It was late				
reaction occurred	no reaction	reaction occurred	с –		electrons. oxygen.		
chloride of U reaction occurred	chloride of T no reaction	chloride of S	metal S		i electrons. I hydrogen.	 A K was oxidised because it gained electrons. B K was oxidised because it gained hydrogen. 	
tals and their	ctions between some met	The table below records whether reactions between some metals and their compounds took place.	15 The table t compound		Which of the following statements correctly describes the redox reaction below? $2K + 2H_2O \rightarrow 2KOH + H_2$	Which of the following statements cor 2K + 2I	1


:

r N

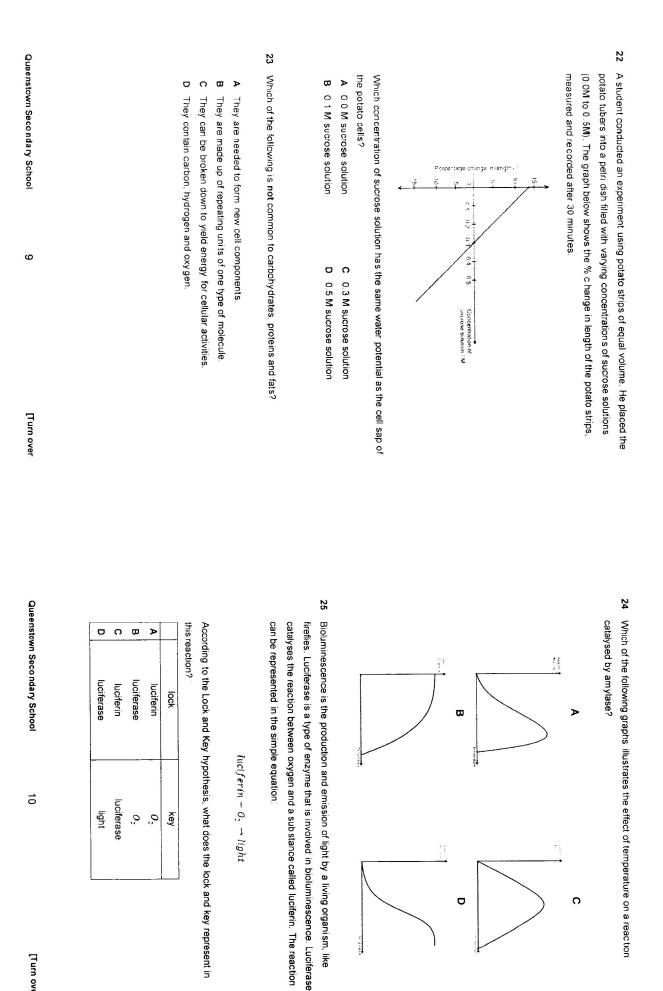
- ⊳ It can undergo oxidat ion with potassium manganate(VII).
- ω It can undergo combustion with oxygen gas.
- C It will decolourise aqueous bromine.
- D It has a pH above 7.
- 20 Which of the following molecule is able to undergo addition polymerisation to form a polymer?

21 The figure below shows a portion of an animal cell. X, Y and Z are structures found in the cell.

What are structures X, Y and Z?

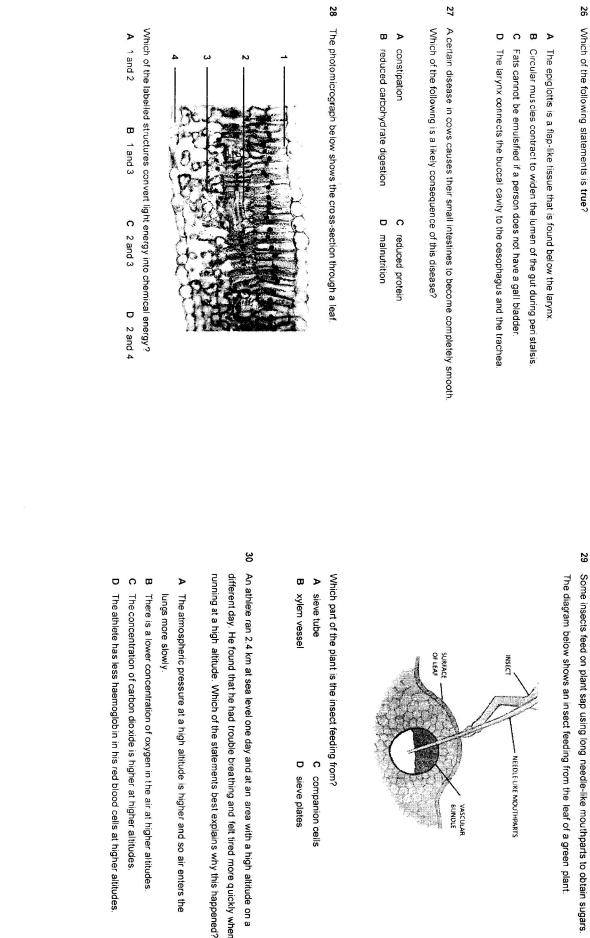
D	1	ი	œ	:	₽		
reticulum	rough endoplasmic	mitochond rion	chloroplast		mitochondrion	×	
reticulum	reticulu m	smooth endoplasmic	golgi apparatus	reticulum	rough endoplasmic	Y	
chloroplast		ninclerie	nucleus	Vacuole	alaray	Z	

8


Queenstown Secondary School

~

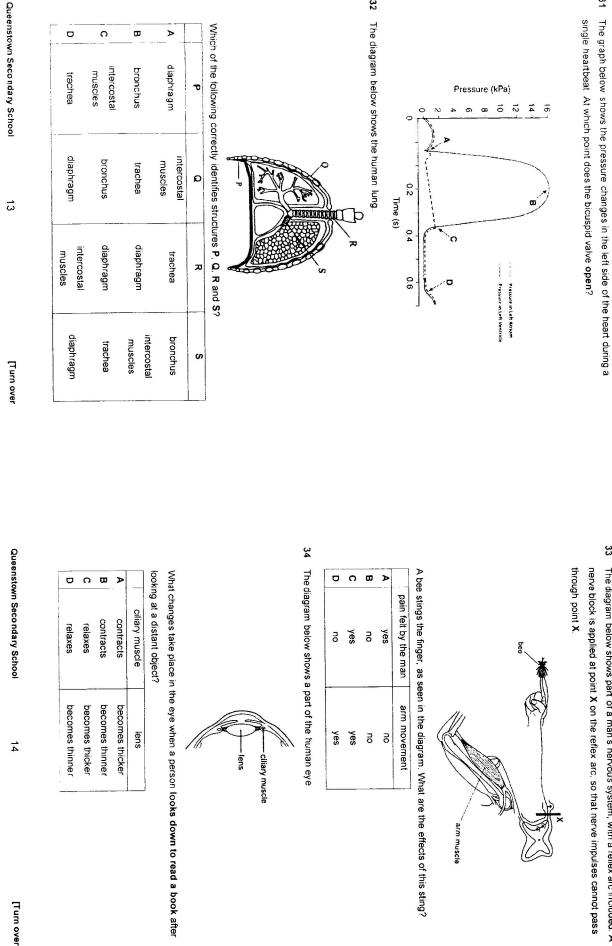
[Turn over


Queenstown Secondary School

[Turn over

[Turn over

:



[Turn over

12

Queenstown Secondary School

(Turn over

32

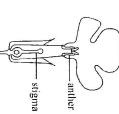
σ

C

ω

⊳

:


<u>ц</u>

မ္မ

The diagram below shows part of a man's nervous system, with a reflex arc included. A

,

35 The diagram below shows the flower of a certain plant species.

What is this flower's most likely form of pollination?

- A insect pollination and self-pollination
- ω insect pollination and cross-pollination
- wind pollination and self-pollination

0

- σ wind pollination and cross-pollination
- 36 A woman's menstrual period started on 23rd March. Assuming the woman has the average menstrual cycle length, in which week was an egg likely to have been

released from the ovary?

March

	D	n	œ	Þ	VVEEK	NI->L
26	19	12	5		Sun	
27	20	13	6		Mon	
28	21	14	7		Tue	
29	22	15	œ	د.	Wed	ividi Ci i
30	23	16	G	2	Thu	
31	24	17	10	з	Fri	
	25	18	11	4	Sat	

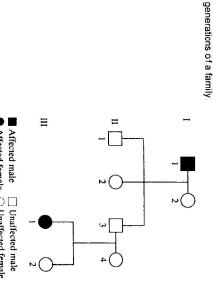
- 37 Disease \boldsymbol{A} in cows is caused by a recessive allele. What is the probability that a
- diseased offspring is produced when a test cross is carried out on a heterozygous
- female cow?
- ω 33% o 50% Ο 75%

⊳

25%

Queenstown Secondary School

5


[Turn over

Queenstown Secondary School

16

The diagram below shows the inheritance pattern of a certain disease X across three

38

What conclusion about the disease can be drawn from the diagram?

- A It is caused by a dominant allele
- B It is caused by a recessive allele.
- C It can only be inherited from an affected grandparent
- σ It can only be inherited from two unaffected parents
- 39 A particular segment of a DNA strand has the sequence AATTCGCAT. What would be the sequence of nucleotides on the product of replication?
- ω A TTAAGCGTA TTCCGAGTC σ C GGCCTAGC UUAAGCGUA
- 40 What causes the decrease in oxygen concentration in a lake polluted by sewage?
- A decrease in dissolved nitrate concentration
- Þ
- ω A decrease in the number of producers.
- o An increase in the number of consumers.
- σ An increase in the number of decomposers

Queenstown Secondary School

18

[Turn over

[Turn over

Queenstown Secondary School

17

\$

e

Que	10.	9	00	7	Ø	ŗ	4	ω	2	<u>.</u>	
enstov	0	c	œ	Ð	B	ω	A	0	D	Þ	
Queenstown Secondary School											
indary	20.	19	18.	17.	16.	15.	14.	13	12	1	
Scho						•		<i>,</i>			
<u>o</u>	в	Β	A	D	0	0	D	Β	С	D	
											MARK SCHEME
19	30.	29.	28	27.	26.	25	24.	23	22	21	SCH
	₿	A	₿	D	σ	₿	Þ	₿	C	0	EM
											Im
		ŵ	r.)	ω	(a)	ω	ω	G	ŵ	ŵ	
	40.	39.	38.	37.	36	35	34.	33.	32.	31.	
	σ	₽	Β	0	Φ	Þ	Þ	ß	Þ	C	
_											

[Turn over

•

	Kead the instructions on the Answer one wery caroury. Section A Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Section B Any rough working should be done in this booklet. Section B A copy of the Data Sheet is printed on page 12. TOTAL	There are two sections in this paper. Section A consists of 45 marks. You need to answer all questions. Section B consists of 20 marks. You are given three questions, and you need to answer any two of them. Examiner's Use	READ THESE INSTRUCTIONS FIRST Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name, class and index number on the Answer Sheet in the spaces provided unless this has been done for you.	Setter: Ms Amanda Liu	01 September 2015 Tuesday Duration : 1 hr 15 min	Preliminary Examination 2015 Science (Chemistry) 5076/03 & 5078/03	Secondary Four Express / Five Normal (Academic)		Č		Queenstown Secondary School	Name: Index No Class:
 (b) Explain why carbon dioxide and water can be removed when air is compressed and cooled to -200 °C in stage 1. [1] 	A /45 B /20 165	to answer any ary (a) Describe the <i>arrangement</i> and <i>movement</i> of the particles in liquid air.	air cooling liquid air at argon - 200 °C air at ar oxygen	stage 1 stage 2 stage 2	Air is first cooled to liquid at -200°C before it is gradually warmed up and separated into or particular of the second s	Separating air into its component gases is an important process in the industries.	vic) other noble gases 0 100 100	carbon dioxide sublimes at - 78 °C nitrogen -210 -196 oxygen -218 -183	melting poin -189	atmosphere. Table 1.1	Answer all the questions. Write your answers in the spaces provided on the question paper. 1 Table 1.1 gives some information on the component gases of clean air in the	

N

[Turn over

.

•

õ									N -					_			~		~	~
leenst	(d)		(c)	(d)	(a)	Each		(Choos	20000			_	(3)		_	(e) /		(d)	(c)
Queenstown Secondary School	Which element(s) forms an o aqueous sodium hydroxide?	temperature?	Which element forms a neutr	Which element exists as an atom with 6 valence electrons?	Which element(s) forms an acidic oxide?	Each element can be used once, more than once or not at all.	nitrogen copper	sodium	se from the following element	source	pollutant	Name one gas that is an air pollutant and state its source	environment.	The presence of air pollutants		present in liquid air.	Arrange the gases collected in		Which component will be cotte	Name the method used to sep
ω	Which element(s) forms an oxide that reacts with both dilute hydrochloric acid and aqueous sodium hydroxide?		Which element forms a neutral oxide that exists in liquid state at room	tom with 6 valence electrons?	cidic oxide?	ore than once or not at all.	hydrogen sulfur	lead	Choose from the following elements to answer the questions below	source		ollutant and state its source.		The presence of air pollutants can cause adverse effects to health and the			Arrange the gases collected in stage 2 in ascending order of volume that they are		Which component will be collected first in stage 2? Explain your answer.	Name the method used to separate the components of liquid air in stage 2
[Turn over	hydrochloric acid and [1]	[1]	e at room	[1]	2		magnesium zinc	carbon						ealth and the	[1]		volume that they are	[1]	our answer.	air in stage 2. [1]
																	٤			
Queen				(d)											(a)	pow	An e		(†)	(e)
itown Sec				A further The resu							atr	(II) Cal	214	(i) Co	In Exper	dered calc	xperiment		Which tw	Which e
Queenstown Secondary School		volume of gas		r experime							room temp	Iculate the	C/().	mplete the	iment 1, :	ium carbo	was carri		vo metals	ement for
hool				eriments							erature ar	total volu	+ CaCO ₃ (equation	25.0 cm ³ o	nate and c	ed out to n		are found i	ms an anic
4				ydrochloric 1 and 2 are							at room temperature and pressure (r.t.p.).	ne of carbo) → Ca	for the read	f 1.5 mol/di	powdered calcium carbonate and dilute acids.	neasure the		Which two metals are found in the alloy brass?	n with an e
				acid, Exp shown o							(r.t.p.).	on dioxide	C/ ₂ ()	ction by fill	n³ hydroc		e rate of re		brass?	electronic
	time			A further experiment using hydrochloric acid, Experiment 2, was carried out. The results of Experiments 1 and 2 are shown on the graph.								Calculate the total volume of carbon dioxide that is made from this reaction	$2HC/() + CaCO_3() \rightarrow CaCl_2() + H_2O() + CO_2()$	Complete the equation for the reaction by filling in the missing state symbols.	In Experiment 1, 25.0 cm ³ of 1.5 mol/dm ³ hydrochloric acid was used		An experiment was carried out to measure the rate of reaction between excess			Which element forms an anion with an electronic configuration of 2.8?
	ł	experiment 2	experiment 1									e from this) + CO ₂ (iissing stat	vas used.		/een exces			n of 2.8?
[Turn over				d out.								reaction	~	e symbol:			ŭ			
ver					[3]								Ξ	÷,				Ξ		Ξ

2

ueen				(d)								(c)			
Queenstown Secondary School		accuracy of the measurement of the volume of acid.	He used an unknown apparatus to measure the volume of gas. Identify what the unknown apparatus was and state how he cou	For all three experiments, Nicho		(iii) Name one suitable reagen	(ii) Explain why the reaction stops suddenly	(i) Name the salt formed in Experiment 3	had been given off.	experiments but the reaction sto	The initial rate of reaction for Ex	Experiment 3 was carried out u	volume	concentration	Suggest the concentration and v
σ		the volume of acid.	He used an unknown apparatus to measure the volume of gas. Identify what the unknown apparatus was and state how he could improve on the	For all three experiments, Nicholas used the measuring cylinder to measure the	\$Q.	Name one suitable reacent that can be reacted with dilute sulfuric acid to	ops suddenly.			experiments but the reaction stopped suddenly after only a small amount of gas	The initial rate of reaction for Experiment 3 was faster than for the other	Experiment 3 was carried out using 25.0 cm ³ of 1.5 mol/dm ³ sulfuric acid	cm ³	mol/dm³	Suggest the concentration and volume of acid used for Experiment 2.
[Turn over	2		prove on the		[1]	ric acid to	Į			ount of gas	her	acid.	[2]		
Queenstowr						(i)	(b) Sea					hal	chk	(a) The	4 This ques
Queenstown Secondary School		result	Describe a simple test, other than dis that sea water contains chloride ions test	name reason	Name an eiement that can displace chionine Give a reason for you choice.	Chlorine can be produ	Sea water contains potassium chloride				name of halogen	halogen.	rine, iodine and bromine	table shows data about	This question is about halogens.
თ			Describe a simple test, other than displacement, that can be used to show that sea water contains chloride ions. test		can displace chiorine. choice.	Chlorine can be produced from sea water by displacement.	m chloride.	-100.9	113.8	-7.2	melting point / "C		chlorine, iodine and bromine. Complete the table by filling the name of each	The table shows data about the melting and boiling points of three halogens	
			that can I			placement.					boiling		ing the nam	ints of three	
[Turn over		[2]	be used to show	[2]				-34.7 [1]	184.5	58.8	boiling point / °C		ne of each	halogens,	

•

[Turn over	Queenstown Secondary School 7	Queen
	molten zinc oxide.	
ctrical conductivity between solid an	electricity. Explain the difference in electrical conductivity between solid and	
be melted before it was able to cor	It was found that solid zinc oxide had to be melted before it was able to conduct	(b)
ur dioxide.	(iii) Suggest a method to remove sulfur dioxide	
	result	
	test	
	(ii) Describe a test for sulfur dioxide.	
reducing agent	oxidising agent	
	Reaction 2	
reducing agent	oxidising agent	
	Reaction 1	
gents in both reactions 1 and 2.	(i) State the oxidising and reducing agents in both reactions 1 and 2	
10 + C → 2Zn + CO ₂	Reaction 2: 2ZnO + C	
Reaction 1 : ZnS + $2O_2 \rightarrow 2ZnO + SO_2$	Reaction 1: ZnS	
nted by the equations below.	form zinc. These reactions are represented by the equations below	
added, the zinc oxide is then reduce	dioxide. When other raw materials are added, the zinc oxide is then reduced to	
ith sphalerite to form zinc oxide and sulfur	The hot air in the blast furnace reacts with sphalerite to form zinc oxide	(a)
extraction of iron.	blast furnace through a method similar to the extraction of iron	blast
a zinc sulfide concentrate, ZnS, in the	Zinc can be extracted from its ore, sphalerite -	Zinc

is a redox reaction. [2]	nis is a redox	element oxidation state in reactants oxidation state in processing zinc	element zinc copper Using the info	(11)
nd copper.	tes of zinc an	Complete the table to show the oxidation states of zinc and copper	Complete the	(II)
		State and explain your observations .	State and exp	Э
Ũ	(aq) + Cu (s)	Zn (s) + CuSO₄ (aq) → ZnSO₄ (aq) + Cu (s)	reaction occurs.	reac
		······································		

[Turn over

Queenstown Secondary School

	By THE ASSOCIATED PRESS SAVANNAH, Ga. (AP) — Dust that collected in a piece of safety equipment caused a small	Read the following article and answer the following questions. February 18, 2008 Sugar Refinery Had Prior Explosion	Section B Answer any two questions. Write your answers on the writing paper provided.
(i) Name a substance that can be used to distinguish between propane and propene. (i) Name a substance that can be used to distinguish between propane and propene. In each case, describe what you would see. (c) Propene can be polymerised. (i) Name the polymer formed. (ii) This polymer is <i>non-biodegradable</i> and needs to be disposed of by other means. Explain why this polymer should not be disposed of by burning. 8 Fig. 8.1 shows the arrangement of electrons in a compound of hydrogen, H, element V and element Z. Only outer shell electrons are shown. This molecule is found in vinegar. 9 Fig. 8.1 the molecule in Fig. 8.1 is a compound function of the disposed of by other in vinegar. (a) (i) The molecule in Fig. 8.1 is a compound is. (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure.	 (b) (i) Construct a table to show the following information about propane and propene. Draw the structural formulae of propane and propene. State one similarity and one difference between the structures of 	Give t Expla memt	 (iv) Sugar is an important condiment used in daily life. In the chemical industry, it can be made into ethanol by process X. State what process X is and describe how this is carried out in the industry. Include a chemical equation for process X.

Queenstown Secondary School

9

[Turn over

Queenstown Secondary School

10

[Turn over

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

•

ი

			ļ	(d)			
Ĵ	Ĵ	Ξ	The	Rust	3	(iv)	(iii)
Steel is often protected from rusting by coating with zinc. It can be done by dipping steel in molten zinc. Explain why steel can be protected by coating with zinc.	Explain, in terms of particles, how warm vinegar can remove rust more readily.	What type of reaction occurs when the molecule in Fig. 8.1 reacts with iron(III) oxide, rust?	The molecule in Fig. 8.1 can help to remove rust.	Rust, iron(III) oxide, is formed when steel is exposed to water and oxygen.	structural formula of the molecule. Hence, calculate the percentage by mass of hydrogen in the molecule	Name elements Y and Z. Using the correct atomic symbols for elements Y and Z, draw the full $\$	Elements Y and Z have atomic numbers between 2 and 11.
Ξ	[2]	[1]		3	ΞΞ	[1]	

Copper(II) hydroxide	Calcium hydroxide	Colours of Some Common Metal Hydroxides
Light blue	White	Metal Hydroxides

100

Calcium hydroxide	White
Copper(II) hydroxide	Light blue
Iron(II) hydroxide	Green
Iron(III) hydroxide	Red-brown
Lead(II) hydroxide	White
Zinc hydroxide	White

•

Queenstown Secondary School

								Gro	oup								
1	11											111	IV	V	VI	VII	0
4							11 1/17/09/#1										4 He 1940
7	9											11	12	14	16	19	20
1.	Be											В	C	N	0	F	Ne
L:	Dest-Sum											1000	sarbor	natropaen.	erege-	*Lon~	
3	4											5	6	7	8	9	10
23	24											27	28	31	32	35.5	40
Na	Mg											A!	S	ρ	S	Ci	Α,
	11391.454.301											15 88 m		show hores		chierne	\$ 20
11	12							-			1	13	14	15	16	17	18
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80 Br	
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	2n	Ga	Ge	As	Se	Bronine	Kr
oras sound	California	scandum	22274.00	: ar adrum		".arxganese	100	COC AF	Cale Hi	29	30	31	bermanium 32	arsen: 33	Selection and Se	35	36
9	20	21	22	23	24		26	27	28	108	112	115	119	122	128	127	131
85	88	89	91	93	96	-	101 Ru	Rh	Pd		Cd	In	Sn	Sb	Te	1	Xe
Rb	Sr	Y	Zr	Nb	Mo	TC	ก ประกษา	moster	catadum.	Ag	CAOTER	111	35	anomony	SHERE'S	NDG#THE	iero
rubidium 37	strontum 38	утлит 39	2000 and 20	niobium 41	42	43	44	45	46	47	48	49	50	51	52	53	54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	- 1	-	-
Cs	Ba	La	Ht	Ta	w	Re	Os	Ir	P1	Au	Hg	TI	Pb	Br	Po	At	Rn
Caleskum	barem:	tanthanum	hatreum	tantakum	tungsten.	monum	Osmun	sitter an	Water 10	3040	mercori	Tuiller	le ad	Lesmeth	Delones	astatese	*****
55	56	57 .	72	73	74	75	76	77	78	79	80	81	82	83	84	85	190
-	-	-															
Fr	Ra	Ac															
tranceum	nacium 88	actinium 89 t															
37		······································	L														
	anthanoi																
90-103	Actinoid	senes		140	141	144	-	T 150	152	157	159	162	165	167	169	173	17

		140	1 141	144	-	100	152	107	:09	:02	103	:0)	105	113	0.2	
		Ce	Pr	Nd	Pm	Sm	Eu	Gđ	Tb	Dy	Ho	Er	Tm	Yb	Lu	l
		cenan	in mouth mart	man mum	bromether	5.3"13" W"	HUTDENUTT	gadolers	s.tar	Sys: YOUNT	hotmaum	ertrut	thuiture .	ytherbeam	Executors	i i
		58	59	60	61	62	63	64	65	66	67	68	69	70	71	i.
Keya	a = relative atomic mass	232	-	238	-	-	-	-	-	-	-	-	-	-	-	i.
	X = atomic symbol	Th	Pa	U	Np	Pu	Am	Cm	Bk	CI	Es	Fm	Md	No	Lr	ļ
	b = proton (atomic) number	Shorium	protactrourn	นเลกเมตะ	nepterum	muenotuki	americium	CURRENT	tern dar		สารรัสถนต	termalar:	mendelevent		Etwrenceum:	l.
İb	o - protori (alarite) narioci	90	91	92	93	94	95	96	97	98	39	100	101	102	103	Ł
÷																

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.)

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore! .

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

.

A copy of the Data Sheet is printed on page 12. IDTAL 100 A copy of the Periodic Table is printed on page 13.	will not be Section B	Read the instructions on the Answer Sheet very carefully. Section A /45	There are two sections in this paper. Section A consists of 45 marks. You need to answer all questions. Section B consists of 20 marks. You are given three questions, and you need to answer any two of them.	Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name, class and index number on the Answer Sheet in the spaces provided unless this has been done for you.	READ THESE INSTRUCTIONS FIRST	Setter: Ms Amanda Liu	01 September 2015 Tuesday Duration : 1 hr 15 min	Science (Chemistry) 5076/03 & 5078/03	Secondary Four Express / Five Normal (Academic)			Queenstown Secondary School	Name: Index No Class:
(b) Explain why carbon dioxide and water can be removed when air is compressed and cooled to -200 °C in stage 1. At .200°C, carbon dioxide and water will be removed as <u>solid</u> .	Particles move freely / slide past each other (throughout the liquid).	(a) Describe the arrangement and movement of the particles in liquid air. Particles are closely packed but not orderly arranged.	carbon dioxide and water removed Fig. 1.2	cooling liquid air at 200 °C heater	ai	stage 1 stage 2	its component gases, as illustrated in Fig. 1.2.	Separating air into its component gases is an important process in the industries. Air is first cooled to liquid at -200°C before it is gradually warmed up and separated into	other noble gases 0 0	gasmelting point / °Cboiling point / °Cargon-189-186carbon dioxidesublimes at -78 °Cnitrogen-210-196oxygen-218-183	atmosphere. Table 1.1	1 Table 1.1 gives some information on the component gases of clean air in the	Section A Answer all the questions.

N

Turn over

•

<u> </u>	Sulfur Which element forms a neutral oxide that exists in liquid state at room temperature?		
	Sulfur Which element forms a neutral oxide that exists in liquid state at room		
	Sulfur	(c)	
	Which element exists as an atom with 6 valence electrons?	(d)	
	Carbon nitrogen, sulfur (any 2 correct answers)		
	Which element(s) forms an acidic oxide?	(a)	
	Each element can be used once, more than once or not at all.	Ead	
	sourum ieau carpon nitrogen magnesium copper sulfur zinc		
	following elements to answer the questions below.	Cho	N
	Nitrogen dioxide <u>Combustion</u> of fuel in cars at high temperature.		
	Suffur dioxide Combustion of tossil fuel in power stations.		
	Carbon monoxide incomplete combustion of fuel in cars.		
	pollutant source		
	Choose any one		
	Name one gas that is an air poilutant and state its source.		
	environment.		
	The presence of air pollutants can cause adverse effects to health and the	Ð	
[1]	Argon, oxygen, nitrogen		
	present in liquid air.		
are	Arrange the gases collected in stage 2 in ascending order of volume that they are	(e)	
[1]	Nitrogen, as it has the lowest boiling point.		
	Which component will be collected first in stage 2? Explain your answer.	(d)	
[1]	Fractional distillation		
	Name the method used to separate the components of liquid air in stage 2.	(c)	

.

Queenstown Secondary School

ω

[Turn over

Queenstown Secondary School

4

(Turn over

The results of Experiments 1 and 2 are shown on the graph.		
A further experiment using hydrochloric acid, Experiment 2, was carried out.	(d)	1
Volume of $CO_2 = 0.01875 \times 244 \text{m}^3 = 0.454 \text{m}^3$		
No. of mol. of $CO_2 = 0.0375/2 = 0.01875$ mol		
No. of mol. of HCl = 1.5 x 25/1000 = 0.0375 mol		
at room temperature and pressure (r.t.p.).		
(ii) Calculate the total volume of carbon dioxide that is made from this reaction		
2HC/(\underline{ag}) + CaCO ₃ (\underline{s}) \rightarrow CaCl ₂ (\underline{ag}) + H ₂ O(\underline{i}) + CO ₂ (\underline{g})		
(I) Complete the equation for the reaction by filling in the missing state symbols.		
In Experiment 1, 25.0 cm ³ of 1.5 mol/dm ³ hydrochloric acid was used.	(a)	
powdered calcium carbonate and dilute acids.	pov	
 An experiment was carried out to measure the rate of reaction between excess	A	ω
Copper and zinc		
 Which two metals are found in the alloy brass?	Э	
Nitrogen / carbon		
Which element forms an anion with an electronic configuration of 2.8?	(e)	
Lead / zinc		
aqueous sodium hydroxide?		
Which element(s) forms an oxide that reacts with both dilute hydrochloric acid and	(d	

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

																		4
								ċ		(d)							(a)	This
)						Ξ	Sea					halogen	chlor	The	quest
result White precipitate is observed	acid, followed by	test To 2cm ² of a sam	Describe a simple test, other than dis that sea water contains chloride ions	sea water.	reason Fluorine, being	name Fluorine	Give a reason for you choice	Name an element that can displace chlorine	Chlorine can be produ	Sea water contains potassium chloride	chlorine	iodine	bromine	name of halogen	jen.	ine, iodine and bromine	able shows data about	This question is about halogens.
e is observed.	acid. followed by an equal volume of <u>aqueous silver nitrate</u>	that sea water contains chronic toric.	Describe a simple test, other than displacement, that can be used to snow that sea water contains chloride ions.		reason Fluorine, being more reactive than chlorine. displaces chlorine from		choice.	t can displace chlorine.	Chlorine can be produced from sea water by displacement.	um chloride.	-100.9	113.8	-7.2	melting point / °C		chlorine, iodine and bromine. Complete the table by filling the name of each	The table shows data about the melting and boiling points of three halogens	
	us silver nitrate	ual volume of dilute nitric	that can be used to show		e. <u>displaces chlorine</u> from				lacement.		-34.7	184.5	58.8	boiling point / °C		ng the name of each	nts of three halogens,	
[7]		Ξ			[F]	[1]					[1]							

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

.

თ

ი

Queenstown Secondary School

7

[Turn over

œ

_
F
3
Ş
er

(a) The hot air in the blast furnace reacts with sphalerite to f dioxide. When other raw materials are added, the zinc or form zinc. These reactions are represented by the equat Reaction 1 : $ZnS + 2O_2 \rightarrow 2ZnO + C \rightarrow 2Zn + C$	Reat (i) State the oxidising and		oxidising agent <u>Oproxygen</u>	Reaction 2 oxidising agent <u>ZnO / zinc oxide</u>	 (ii) Describe a test for sulfur dioxide test Place a piece of filter paper 	manganate(VII) a	result Gas evolved turi	colourless.	(iii) Suggest a method to remove sulfur dioxide	Desulfurisation / Pass	(b) It was found that solid zinc of	electricity. Explain the differ	molten zinc oxide.		In the solid state, the ions in	In the solid state, the ions in absence of mobile ions pre-	In the solid state, the ions in absence of mobile ions pre- In the molten state the pres
The hot air in the blast furnace reacts with sphalerite to form zinc oxide and sulfur dioxide. When other raw materials are added, the zinc oxide is then reduced to form zinc. These reactions are represented by the equations below. Reaction 1: $ZnS + 2O_2 \rightarrow 2ZnO + SO_2$ Reaction 2: $2ZnO + C \rightarrow 2Zn + CO_2$	ction 2: $2ZnO + C \rightarrow 2Zn + C$ d reducing agents in both rear	State the oxidising and reducing agents in both reactions 1 and 2 Reaction 1			Describe a test for sulfur dioxide. test Place a piece of filter paper soaked with <u>acidified aqueous potassium</u>	manganate(VII) and insert into the mouth of the test tube	result Gas evolved turns <u>purple</u> acidified aqueous potassium manganate(VII)		remove sulfur dioxide.		Desulfurisation / Pass gas through calcium oxide / hydroxide / carbonate	Desulfurisation / Pass gas through calcium oxide / hydroxide / carbonate. It was found that solid zinc oxide had to be melted before it was able to conduct	Desulfurisation / Pass gas through calcium oxide / hydroxide / carbona It was found that solid zinc oxide had to be melted before it was able to conductivity. Explain the difference in electrical conductivity between solid and	gas through <u>calcium oxide / t</u> oxide had to be melted before rence in electrical conductivity	Desulfurisation / Pass gas through calcium oxide / hydroxide / carb It was found that solid zinc oxide had to be melted before it was able to a electricity. Explain the difference in electrical conductivity between solid molten zinc oxide. In the solid state, the tons in zinc oxide are held rigidly in fixed positions	Desulfurisation / Pass gas through calcium oxide / hydroxide / car It was found that solid zinc oxide had to be melted before it was able to electricity. Explain the difference in electrical conductivity between solic molten zinc oxide. In the solid state, the ions in zinc oxide are held rigidly in fixed position absence of mobile ions prevents the electric current from being carried	Desulfurisation / Pass gas through <u>calcium oxide / hydroxide / carbonate</u> . It was found that solid zinc oxide had to be melted before it was able to conduct electricity. Explain the difference in electrical conductivity between solid and molten zinc oxide. In the solid state, the ions in zinc oxide are held rigidly in fixed positions. The absence of mobile ions prevents the electric current from being carried. In the molten state, the presence of mobile ions allows the electric current to be
orm zinc oxide and sulfur ide is then reduced to ons below. SO ₂	tions 1 and 2.	ctions 1 and 2.	reducing agent <u>ZnS</u> / <u>zinc sulfide</u>	reducing agent <u>C</u> / <u>carbon</u>	ed aqueous potassium	e test tube.	otassium manganate(VII)				vydroxide / carbonate.	nydroxide / carbonate.	i <u>ydroxide / carbonate</u> . it was able to conduct between solid and	nydroxide / carbonate. • it was able to conduct • between solid and	rydroxide / carbonate. it was able to conduct between solid and fixed positions. The	nydroxide / carbonate. It was able to conduct between solid and fixed positions The h being carried.	hydroxide / carbonate. It was able to conduct between solid and fixed positions. The heing carried. he electric current to be
-				Ξ	[1]	<u> </u>	E E										

	(aq) + Cu (s) <u>-brown solid</u> is formed. from copper(II) sulfate. ates of zinc and copper. oxidation state in products +2 0 0 this is a redox reaction. ic increases from <u>0 in Zn</u> to +2 on state of copper decreases	reaction occurs: Zn (s) + CuSO ₄ (aq) \rightarrow ZnSO ₄ (aq) + Cu (s) (i) State and explain your observations: The blue solution turns colourless, and a red-brown solid is formed. Zinc. being more reactive, displaces copper from copper(II) sulfate. (ii) Complete the table to show the oxidation states of zinc and copper. element oxidation state in reactants oxidation state in products zinc 0 +2 0 copper +2 0 0 using the information in (c)(ii), explain why this is a redox reaction. 0 2nSO ₄ . ZinSO ₄ . Copper(II) sulfate is reduced. as the oxidation state of copper decreases from <u>0 in Zn</u> to <u>+2 in CuSO₄ to <u>0 in Cu</u>. </u>	(i) State and ex The <u>blue</u> solu- Zinc. being n Zinc. being n element zinc copper (ii) Using the infi Zinc is <u>oxidis</u> Zinc is <u>oxidis</u> Zinc is <u>oxidis</u> Zinc is <u>oxidis</u>			
--	---	---	---	--	--	--

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore! Queenstown Secondary School

10

[Turn over

	Both propane and propene consists of <u>3 carbon atoms</u> .	Both propane and propene consistence of the construction of t				
	Both propane and propene are <u>nydrocarbons</u> / contains	Both propane and propen carbon and hydronen afor				
Ξ		Choose any one:	similarity			
2	I	I I I I				
	H-C=C-C-H	H-C-C-C-H				
			formulae			
2	I I I	н	structural			
	propene	propane				
		propane and propene.	propane a			
	ween the structures of	State one similarity and one difference between the structures of	State one			
	and propene.	Draw the structural formulae of propane and propene	Draw the s			
			propene.			
	ation about propane and	Construct a table to show the following information about propane and	Construct a ta	Ξ	(b	
1	uses by $12 + 1x^2 = 14$.	member. Hence, the relative molecular mass increases by $12+1x^2 = 14$	mber. Hence, the	me		
Ξ	<u>CH/- unit</u> to the next higher	Each member in the homologous series differs by a <u>CH₂- unit</u> to the next higher	ch member in the	Eac		
Ξ		ene: <u>C_nH:_n</u>	Alkane: CnH2rt2; alkene: CnH1n	Alk		
	member.	member of a homologous series to the next higher member	mber of a hornol	mei		
	by 14 on moving up from one	Explain why the relative molecular mass increases by 14 on moving up from one	plain why the rela	Exp		
	ene homologous series.	Give the general formula of both the alkane and alkene homologous series	e the general for	Giv	(a)	7
Ξ		$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	C ₆ H ₁₂ O ₆ → 2C			
		bic conditions.	under anaerobic conditions			
Ξ	ilyst, a temperature of <u>37°C</u> .	The process is carried out using yeast as catalyst, a temperature of 37°C	The process is			
Ξ			Fermentation			
		Include a chemical equation for process X.	Include a cher			
	is carried out in the industry.	State what process X is and describe how this is carried out in the industry	State what pro			
		it can be made into ethanol by process X.	it can be made			
	life. In the chemical industry,	Sugar is an important condiment used in daily life.		(iv)		
Ξ		$C_{6}H_{12}O_{6} + 6O_{2} \rightarrow 6CO_{2} + 6H_{2}O_{2}$	C ₆ H ₁₂ O ₆ + 6O ₂			
	action in (b).	Write a balanced chemical equation for the reaction in (b)	-	(iii)		
Ξ	is present.	If a white precipitate is formed, carbon dioxide is present.	If a white prec			
Ξ		Deliver the colourless gas into limewater	Deliver the col			
			gas.			

-

											ອ
(i) Is this reaction endothermic or exothermic? Explain your answer Exothermic as heat energy is released to the surroundings.	(b) Sugar, C ₆ H ₁₂ O ₆ , burns in excess air to form a colourness gas and water, which happened when the explosion occurred.	Tiny sugar dust particles have a <u>larger surface area</u> of contact between reactain particles. leading to more effective collisions, resulting in a <u>faster</u> rate of reaction	 (a) Explain why tiny sugar dust particles burn more easily than lumps of sugar crystals. 	Source extracled from: http://www.nytimes.com/2008/02/18/us/18sugar.html?fta=y&pagewanted=print	It was inside one of those rooftop dust collectors where the minor explosion occurred weeks before the February 7 blast, which was caused by clouds of tiny sugar dust particles that, when airborne in confined spaces, can ignite like gunpowder.	The refinery was equipped with fans and ducts designed to prevent dust explosions by sucking particles out of the plant and transferring them to dust collectors on the roof, Mr. Selk said.	No one was injured in the earlier explosion. A spokesman for Imperial Sugar, Steve Behm, said it happened about three weeks ago and caused minimal damage that was quickly repaired.	SAVANNAH, Ga. (AP) — Dust that collected in a piece of safety equipment caused a small explosion at a sugar refinery weeks before the deadly blast that killed nine workers, a federal investigator said on Sunday.	By THE ASSOCIATED PRESS	February 18, 2008 Sugar Refinery Had Prior Explosion	6 Read the following article and answer the following questions.
Ir answer.	and water, which	ster rate of reaction. [1]	actant	√?fta=γ&ρagewanted=prin	xplosion occurred weeks gar dust particles that,	dust explosions by ctors on the roof, Mr. Selk	ial Sugar, Steve Behm, ge that was quickly	uipment caused a small id nine workers, a federal			

Section B

-

Answer any two questions.

Write your answers on the writing paper provided.

(ii) Describe a test that can be used to confirm the identity of the colourless

				œ															
(a)			This	Fig.			1	(c)						_					
3			molec	8.1 sh lent Z		€	Ξ	Prop					(ii)						
The molecule in Fig Explain, with refere A compound is ma combined together			This molecule is found in vinegar.	ows the arrange Only outer she	means. Explain why this p incomplete combustion of such as carbon monoxide	This polymer is	Name the polymer formed	Propene can be polymerised	immediately.	observation wi	observation with propane No	propene. In ea	Name a substa			5			
The molecule in Fig. 8.1 is a compound. Explain, with reference to the diagram, what a compound is. A compound is made up of 2 or more <u>different</u> elements <u>chemically</u> <u>combined</u> together.	Fig. 8.1	T N T	vinegar	Fig. 8.1 shows the arrangement of electrons in a compo- element Z. Only outer shell electrons are shown.	means. Explain why this polymer should not be disposed of by burning incomplete combustion of this polymer leads to the formation of toxic g such as carbon monoxide.	This polymer is non-biodegradable and needs to be disposed of by other	mer formed.	merised.		observation with propene The brown aqueous bromine turns colourless	substance Aqueous proprietion	propene. In each case, describe what you would see	Name a substance that can be used to distinguish between propane and	hydrogen atoms.	 Propane consists of <u>8</u> 	bond.	contains <u>C – C single</u>	 Propane is saturated / 	
a compound is. <u>nt</u> elements <u>chemically</u>		T		Fig. 8.1 shows the arrangement of electrons in a compound of hydrogen, H, element Y and element Z. Only outer shell electrons are shown.	means. Explain why this polymer should not be disposed of by burning. Incomplete combustion of this polymer leads to the formation of toxic gases such as carbon monoxide.	is to be disposed of by other				s bromine turns colourtess		ould see.	guish between propane and	hydrogen atoms.	 Propane consists of <u>6</u> 	bond.	contains C = C double	 Propane is <u>unsaturated</u> / 	
[1]				Ind	Ξ	3	Ξ			1	ΞΞ	5							,

(ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule. [1] The molecule is a simple covalent molecule. A small amount of heat energy is required to overcome the weak. [1] (iii) Elements Y and Z have atomic numbers between Z and 11. [1] Name elements Y and Z. [1] V: oxygen; Z: Carbon [1] Y: oxygen; Z: Carbon [1] HC C H C H C H C Y: oxygen; Z: carbon [1] H C Y: oxygen; Z: carbon [1] H: or	Ξ	Zinc, being more reactive than iron in steel, corrodes in place of iron.			
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule. A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Tricxygen; Z. Carbon (iv) Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H - C - C - O - H - H - C - C - O - H (v) Hence, calculate the percentage by mass of hydrogen in the molecule. H - C - C - O - H (v) Hence, calculate the percentage by mass of hydrogen in the molecule. Note: the full structure in Fig 8.1 can help to remove rust. (ii) What type of reaction occurs when the molecule in Fig. 8.1 reacts with iron(III) oxide, rust? (iii) Explain, in terms of particles, how warm vinegar can remove rust more readily. The higher the temperature, the faster the reactant particles move / the higher the temperature, the faster the reactant particles move / the higher the temperature, the faster the reactant particles move / the higher the temperature, the faster the reactant particles nove / the higher the temperature, the faster the reactant particles move / the higher the temperature, the faster the reactant particles heading to more effective collisions, hence resulting in a faster rate of reaction. (iii) Steel is often protected from rusting by coating with zinc. It can be done by dipping steel in molecule zinc. 		Explain why steel can be protected by coating with zinc.			
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at icom temperature and pressure. The molecule is a simple covalent molecule. A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Carbon (iv) Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H - C - C - H - H - C - C - H - H - C - C		dipping steel in molten zinc.			
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at icom temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon (iv) Using the correct atomic symbols for elements Y and Z. draw the full structural formula of the molecule. H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - C - H H - C - C - C -		Steel is often protected from rusting by coating with zinc. It can be done by	(111)		T
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at ioom temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon (iv) Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - C - H H - C - C -	Ξ	more effective collisions, hence resulting in a faster rate of reaction.	1		
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y. oxygen; Z. Carbon (iv) Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H C C H H C C C H H C C H H C C H H C C H H C C H H C C H H C C H H C C H H C C C H H C C C H H C C C H H C C C H H C C C H H C C C H<th></th><td>higher the kinetic energy possessed by the reactant particles, leading to</td><td></td><td></td><td></td>		higher the kinetic energy possessed by the reactant particles, leading to			
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y. oxygen; Z. Carbon Y. oxygen; Z. Carbon H—C—C—C H=C_C_C_H H=C_C_C_H H=C_C_C_H H=C_C_C_H H=C_C_C_H Nust, iron(III) oxide, is formed when steel is exposed to water and oxygen. The molecule in Fig. 8.1 can help to remove rust. (i) What type of reaction occurs when the molecule in Fig. 8.1 reacts with iron(III) oxide, rust? Neutralisation / exothermic reaction (ii) Explain, in terms of particles, how warm vinegar can remove rust more readily. 	Ξ	The higher the temperature, the faster the reactant particles move / the			
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule. A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon (iv) Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H C - C - H - H - C - C - H - H - C - C		readily.			
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule. A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon (iv) Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H C - C O H H C - C O H H C - C O H H ence, calculate the percentage by mass of hydrogen in the molecule. Note: the trion(III) oxide, is formed when steel is exposed to water and oxygen. The molecule in Fig. 8.1 can help to remove rust. (i) What type of reaction occurs when the molecule in Fig. 8.1 reacts with iron(III) oxide, nust? Neutralisation / exothermic reaction 		Explain, in terms of particles, how warm vinegar can remove rust more	(ii)		
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at ioom temperature and pressure. The molecule is a simple covalent molecule. A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Y: oxygen; Z: Carbon H - C - C H - C - C H - C - C Name elements Y and Z. H - C - C NH + 4(1)/60 = <u>6.67%</u> Rust, iron(III) oxide, is formed when steel is exposed to water and oxygen. The molecule in Fig. 8.1 can help to remove rust. (i) What type of reaction occurs when the molecule in Fig. 8.1 reacts with iron(III) oxide, rust? 	Ξ	Neutralisation / exothermic reaction			
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at ioom temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon H - C - C H - C - C - C H - C - C - C H - C - C - C H - C - C - C - C - C - C - C - C - C -		iron(III) oxide, rust?			
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at ioom temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H C C H C H H with the percentage by mass of hydrogen in the molecule. (iv) Hence, calculate the percentage by mass of hydrogen in the molecule. %H = 4(1)/60 = <u>6.67%</u> Rust, iron(III) oxide, is formed when steel is exposed to water and oxygen. The molecule in Fig. 8.1 can help to remove rust. 		What type of reaction occurs when the molecule in Fig. 8.1 reacts with	Э		
 (ii) Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at ioom temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. (iii) Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H - C - C H - C - C H - C - H H - C - H H - C - C NH = 4(1)/60 = <u>6.67%</u> Rust, iron(III) oxide, is formed when steel is exposed to water and oxygen. 		molecule in Fig. 8.1 can help to remove rust.	The		
Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H — C — C — C — H H = C — C — C — H H = C — C — C — H Hence, calculate the percentage by mass of hydrogen in the molecule. %H = 4(1)/60 = <u>6.67%</u>		, iron(III) oxide, is formed when steel is exposed to water and oxygen.	Rust	(d	
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H - C - C - H H H - C - C - H H H - C - C - H H - C - C - H H - C - C - H 	Ε	%H = 4(1)/60 = <u>6.67%</u>			
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H - C - C - C - H 		Hence, calculate the percentage by mass of hydrogen in the molecule.	3		
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H C C 		T			
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H 					
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. H 		1			
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full structural formula of the molecule. 		л О			
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y: oxygen; Z: Carbon Using the correct atomic symbols for elements Y and Z, draw the full 	Ξ	structural formula of the molecule.			
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule. A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. Y oxygen; Z: Carbon 		Using the correct atomic symbols for elements ${\bf Y}$ and ${\bf Z},$ draw the full	(iv)		
 Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11. Name elements Y and Z. 	Ξ	Y: oxygen; Z: Carbon			
Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule A small amount of heat energy is required to overcome the weak intermolecular forces of attraction between molecules. Elements Y and Z have atomic numbers between 2 and 11.		Name elements Y and Z.			
Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule. A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> intermolecular forces of attraction between molecules.		Elements Y and Z have atomic numbers between 2 and 11.	(iii)		
Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid at room temperature and pressure. The molecule is a simple covalent molecule. A <u>small</u> amount of heat energy is required to overcome the <u>weak</u> .	Ξ	intermolecular forces of attraction between molecules.			
	Ξ	A small amount of heat energy is required to overcome the weak			
		The molecule is a simple covalent molecule.			
		at room temperature and pressure.			
		Explain, using ideas about structure, why the molecule in Fig 8.1 is a liquid	(ii)		

Queenstown Secondary School

.

1

[Turn over

Queenstown Secondary School

12

[Turn over

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

	and the second sec
White	Zinc hydroxide
White	Lead(II) hydroxide
Red-brown	Iron(III) hydroxide
Green	Iron(II) hydroxide
Light blue	Copper(II) hydroxide
White	Calcium hydroxide
n Metal Hydroxides	Colours of Some Common Metal Hydroxides

The Periodic Table of the Elements

								Gro	oup								
1	11											111	IV	V	VI	VII	0
							1 H hydrogen 1										4 He rotur 2
7 Li Mithum 3	9 Be berysium					,						11 B boxor 5	12 C carbon 6	14 N nemgen 7	16 O cxvgen 8	19 F Suonne 9	20 Ne neon 10
23 Na	24 Mg 12											27 Al atumanium 13	28 Si secon 14	31 P phosphorus 15	16	35.5 Cl cnionne 17	40 Ar #307 18
39 K potassium 19	40 Ca caloum 20	45 Sc scandium 21	48 Ti stanum 22	51 V vanadrum 23	52 Cr shromsum 24	55 Mn manganese 25	56 Fe 26	59 Co cocait 27	59 Ni nickel 28	64 Cu coouer 29	65 Zn 30	70 Ga çatkum 31	73 Ge germankern 32	75 As ansenic 33	79 Se setenium 34	80 Br bromne 35	84 Kr 57600 36
85 Rb 1000um 37	88 Sr strontum 38	89 Y 100000 39	91 Zr prooneum 40	93 Nb neobram 41	96 Mo motyodenu m 42	Tc vectoretum 43	101 Ru 1071enur 44	103 Rh 1000uni 45	106 Pd catadium 46	108 Ag 47	112 Cd cadmam 48	115 In 49	119 Sn 50	122 Sb anomony 51	128 Te seturium 52	127 1 iodine 53	131 Xe xeno 54
133 Cs caesium 55	137 Ba banum 56	139 La brmanum 57	178 Hf nathum 72	181 Ta tantakum 73	184 W tangster 74	185 Re meren 75	190 Os ostrauti 76	192 Ir indium 77	195 Pt statesum 78	197 Au yold 79	20* Hg mercuri 80	204 Ti trutture 81	207 Pb #.w 82	209 Bi bismuth 83	- P0 ;000micm 84	- At astatese 85	- Rr 1,100
	Ra nation 88 anthanoid																
100-100	- A NG GT HUMU	30003		140 Ce oenum 58	141 Pr 59	144 Nd neodymum 60	– Pm promethum 61	150 Sm samanum 62	152 Eu europum 63	157 Gd gadolinium 64	159 Tb #704/m 65	162 Dy dyserosium 66	165 Ho holmum 67	167 Er erbium 68	169 Tm mulium 69	173 Yb yttertikum 70	17. Lu nden 71
Key a	(X=a	slative atom tornic symb roton (atom	oł	232 Th #onum 90	Pa Pa 91	238 U	Np neptunium 93	Piu piutoneum 94	- Am amencaum 95	- Cm cunum 96	- Bk berkelaum 97	Cf californium 98	Es ensienum 99	Fm Semilum 100	- Md mendolewar 101	No robekum 102	Li Li Li Li Li Li Li Li Li Li Li Li Li L

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

,

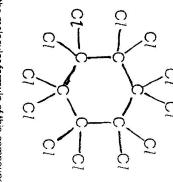

CLASS CLASS PRELIMINARY EXAMINATION PRELIMINARY EXAMINATION ECT SCIENCE(CHEMISTRY) DATE 5076/5078 PAPER 3 DATE SECONDARY 4 EXPRESS DURATIONS IOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DURATION Write your name, class and index number on the Question F Privite Questions in Section A and Se Answer ALL questions in Section A in the spaces provided. Answer ANY TWO FULL questions out of 3 in Section B. Calculators may be used where necessary. Where numericative answers to three (3) significant figures. Calculators number on the Question B.	IAME CLASS INDEX NO. IMPERIAL ST. PATRICK'S SCHOOL PRELIMINARY EXAMINATIONS 2015 PRELIMINARY EXAMINATIONS 2015 INDEXCT SCIENCE(CHEMISTRY) DATE 27 th August 5076/5078 INDEX SCIENCE(CHEMISTRY) DATE 27 th August 2015 INDEX SECONDARY 4 EXPRESS SECONDARY 5 NORMAL DURATION : 1 Hr 15 Mins INSTRUCTIONS TO CANDIDATES DURATION : 1 Hr 15 Mins INSTRUCTIONS TO CANDIDATES DURATION IN COULT ARE TOLD TO DO SO. INSTRUCTIONS OF UNO (2) Sections: Section Paper. 1 Hr 15 Mins 1. Write your name, class and index number on the Question Paper. 1 Hr 15 Mins 2. This paper consists of TWO (2) Sections: Section A and Section B. 3 Answer ALL questions in Section A in the spaces provided. 4. Answer ANY TWO FULL questions out of 3 in Section B. 5 Calculators may be used where necessary. Where numerical answers are not exact. 5 Calculators to thore (3) significant figures. 1 Hr 15 mins	6. DO NOT DETACH any sections from this paper.	5. Calculators may give answers to	 Answer ALL que Answer ANY TV 	 Write your name This paper cons 	INSTRUCTIONS TO CANDIDATES	LEVEL : SEC	SUBJECT : SCIE 5076 PAP	B B B B B B B B B B B B B B B B B B B	NAME
CLASS TRICK'S SCHO Y EXAMINATI DATE DATE DATE DURATION L SS DURATION SS DURATION TO ARE TOLD TO ber on the Question F ber on the Question F ber on the Question F ber on the Question F ber on the Spaces provided. It of 3 in Section B. this paper.	CLASS INDEP TRICK'S SCHOOL Y EXAMINATIONS 20 Y EXAMINATION : 201 DATE : DATE : 201 : DATE : 202 : DATE : 203 : DURATION : 1 H SS : YOU ARE TOLD TO DO SO. ber on the Question Paper. ber on the Question Paper. in section A and Section B. a the spaces provided. at of 3 in Section B. sary Where numerical answers a trigures.	·	be used where neces o three (3) significant CH any sections from t	estions in Section A in	, class and index num ists of TWO (2) Sectic	<u>CANDIDATES</u> S BOOKLET UNTIL	ONDARY 4 EXPRES	NCE(CHEMISTRY) 5/5078 ER 3	ST. PA RELIMINAR	
	INDEX IOL IONS 20 IONS 20 201 201 201 201 201 201 201 201 201 2	B (20 m) Total (85 m)	sary. Where numeric figures. this paper.	the spaces provided. t of 3 in Section B.	ber on the Question I ms: Section A and Se	YOU ARE TOLD T		DATE	TRICK'S SCHO Y EXAMINAT	CLASS

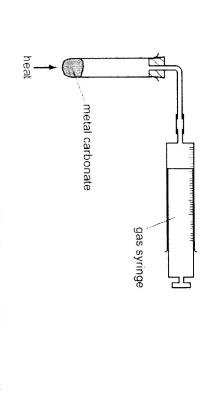
Table & Data Sheet riodic

_

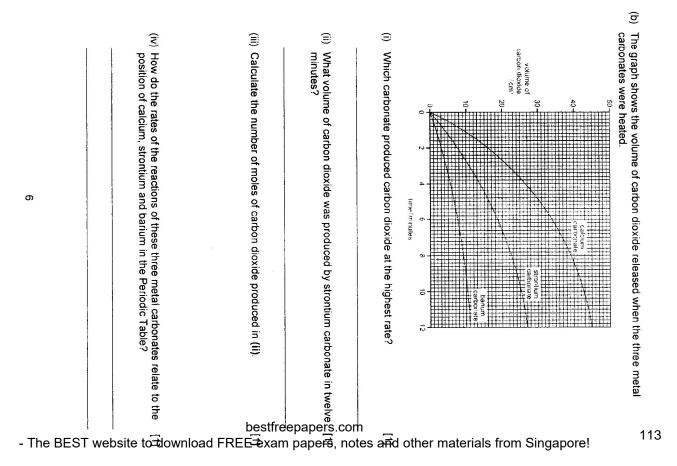
Section A Answer all the questions in this section in the spaces provided. The total mark for this section is 45.

ļ,

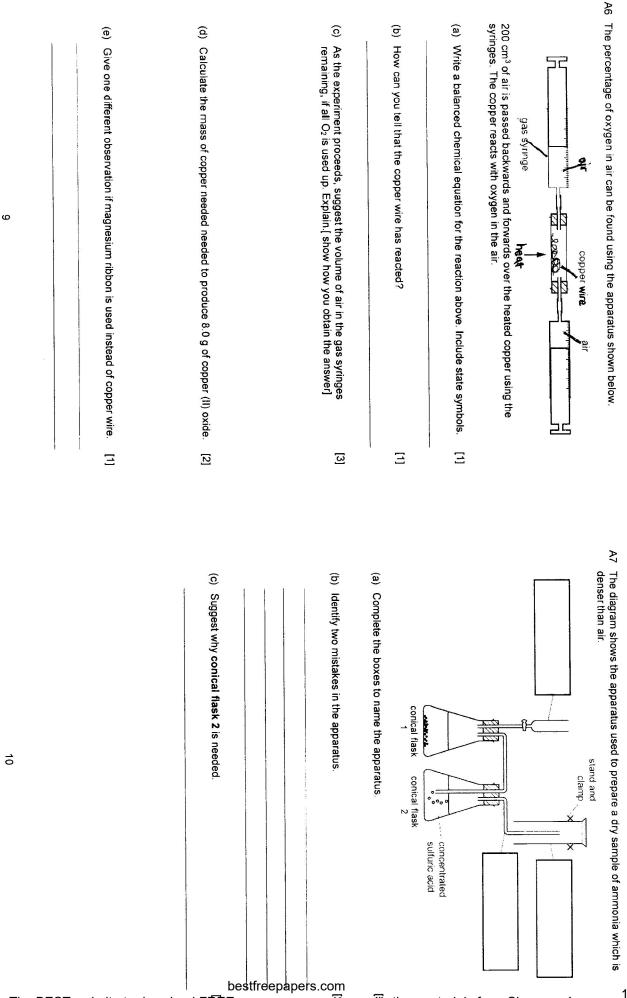
	0						(b) Ti	5			A1 (a) Th
	1	iodine	bromine	chlorine	fluorine	element	ne table shows ble to answer t	hat is the mole	C1-	01-0	ne structure of
N	State the colour of chlorine.	+114	-7	-35	-188	boiling point/°C	some properties of Githe following questions	What is the molecular formula of this compound?			a compound containin
		4.93	44. 1994 1997 1997 1997 1997 1997 1997 1997	1.56	1.51	density in liquid state/g per cm ³	The table shows some properties of Group VII elements. Use the information in the stable to answer the following questions.	ompound?	-01		The structure of a compound containing carbon and chlorine is shown below
		grey-black	red-brown	A CONTRACTOR	yellow	colour	the information in				shown below.
- The BEST v	vebs iffe t	o dov	vnloa	d FR	be EE e	stfreep exam pa	apers.con apers, not	n es affid	other material	s from Singapo	ore!


							(d)		(c)	
ω					electrical conductivity?	solubility in water?		(ii) Suggest why bromine does not react with aqueous potassium chloride.	(i) Write the balanced chemical equation for the reaction of bromine with aqueous potassium iodide. Include the state symbols.	(ii) Describe the trend in boiling point of the halogens down the group.
					. ,		[2]	[1]	[2]	Ξ
4	(f) a molecule containing halogen atoms?	(e) a salt, [1]	(d) a compound which is formed under conditions of high temperature and pressure in [1] car engines,	(c) a gas which turns damp red litmus paper blue,	(b) an ionic structure,	(a) an acidic oxide, [1]	N = N O $N = OAnswer the following questions by choosing from the structures A, B, C, D or E.You can use each structure once, more than once or not at all.Which structure represents$	m	$H = \frac{N}{H}$ $H = \frac{N}{H}$	A2 The structures of some substances containing nitrogen are shown below.

ал ⁶.


.

- The BEST website to download FREE exam papers, notes and other materials from Singapore!


(iì) How many electrons are in one Fe³+ ion?	es differ in their	2 (b) The symbols for two isotopes of iron are shown below.	 A4 Iron is a metallic element. (a) State two properties of iron which are different from the properties of Group I elements. 		(c) Describe how hydrochloric acid and limewater can be used to show that carbonate ions are present in calcium carbonate.
Ξ	E	,	[2]		ເຍ
	(ii) State one harmful effect of carbon monoxide.	 (b) Carbon monoxide is a pollutant gas produced in motor car engines. (i) State why carbon monoxide is formed. 	$Cr_2O_3 + 3CO \rightarrow 2Cr + 3CO_2$ Which substance is the oxidising agent? Explain in terms of oxidation state.	A5 (a) The equation shows the extraction of chromium (III) oxide using carbon monoxide. [2]	 (c) Pure iron rusts very easily. Describe and explain one method of preventing rusting. method

ي م

7

8

best freepapers.com → The BEST website to download FREE exam papers, notes and other materials from Singapore!

- The BEST website to download FREE exam papers, notes an estimate the materials from Singapore!

(a) (i) Ethere, C,H, is namufactured by relations. The total mark for this section is 20. [1] Conditions. [1] (a) (i) Ethere, C,H, is namufactured by net term 'cracking performant factions. [1] Conditions. Conditions. (ii) Caching of docterance, C,H, is. Immufacture of etherns from Caching of docterance, C,H, is. [1] Conditions.	(i) Ethere, C ₂ H ₄ , is manufactured by cracking petroleum fractions. (1) (ii) Ethere, C ₂ H ₄ , is manufactured by cracking petroleum fractions. (1) (iii) Complete the chemical equation for the manufacture of ethene from C ₁₂ H ₂₀ — C ₁₂ H ₂₀ — C ₁₄ H ₄ . (1) (iii) Complete the chemical equation for the manufacture of ethene from C ₁₂ H ₂₀ — C ₁₂ H ₂₀ — C ₁₄ H ₄ . (1) (iii) Complete the chemical equation for the manufacture of ethene from C ₁₂ H ₂₀ — C ₁₄ H ₄ . (1) (iii) Complete the chemical equation for the manufacture of ethene from C ₁₂ H ₂₀ = C ₁₂ H ₄₀ . (2) (iii) Complete the chemical equation for the manufacture of ethene from C ₁₂ H ₂₀ . (2) (iii) Complete the chemical equation for the reaction. (1) (iii) Addition of water to ethene produces ethanol. Write a balanced chemical equation for the reaction. (1) (iii) Oxidation of ethanol produces a compound with a philess than 7. (2) (b) (iii) Oxidation of ethanol produces a compound with a grant for the reaction. (2) (2) (iii) Oxidation of ethene produces a compound formed and the oxidising agent for the reaction. (b) (c) (iii) Oxidation of ethanol produces a compound formed and the oxidising etheless than	à
guestions. section is 20. section is 20. [1] term 'cracking'? [1] for the manufacture of ethene from [1] [1] n. What do you understand by the [2] [2] rocarbon? [1] uces ethanol. Write a balanced [1] [1] n. [1] compound with a pH less than 7 [2] d the oxidising agent for the reaction. [1] [1] [2] (c) [1]	section is 20. "generations" [1] For the manufacture of ethene from [1] procarbon? an. What do you understand by the [2] procarbon? compound with a balanced [1] an. balanced [1] compound with a pH less than 7 the reaction. [2] (b) (c)	
B2 (c) (b) (a) The	(c) (b) (a) (b)	ppene is used to make polypropene. Name the process of obtaining polypropene from propene.
(c) (b) (a) The	(c) (b) (a) The	[]
	eparation: ing the letter of the correct method of the copper (II) sulfate silver chloride potassium chloride andandand	

1

ι. ,

12

B3 (a) Two salt solutions, J and K, were analysed. J was aqueous iron(II) sulfate.

.

The tests on the solutions K are given:

tests	observations
1. Appearance of solution K	dark pink liquid
2. To about 1cm ³ of solution K, an equal	blue ppt formed
volume of aqueous sodium hydroxide was	
added.	
3. To solution K, aqueous sodium	effervescence,
hydroxide and aluminium powder were	pungent gas evolved
added. The mixture was heated.	damp red litmus turns blue

(i) Identify the gas given off in test 3 of solution K.

Ξ

(ii) What two conclusions can you draw about solution K?

2

(b) (i)

Complete the observations on the solution ${\bf J}$ in the table below.

[1]	
	 To about 1cm³ of solution J, dilute nitric acid and barium nitrate solution were added.
[1]	diute nitric acid and aqueous silver nitrate were added.
[2]	sodium hydroxide.
	an equal volume of aqueous sodium hydroxide was added,
	2. To about 1cm ³ of solution J,
2	
	1.Appearance of solution J
observations	tests

Write the ionic equation of iron (II) sulfate solution with barium nitrate solution. Include the state symbols.

Ξ

END OF PAPER

Colours of Some Common Metal Hydroxides

White	Zinc hydroxide
White	Lead (II) hydroxide
Red-brown	Iron (III) hydroxide
Green	Iron (II) hydroxide
Light blue	Copper (II) hydroxide
White	Calcium hydroxide

The Periodic Table of the Elements

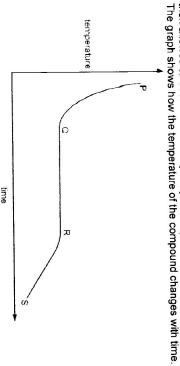
								Gro	Jup								
1												111	IV	V	VI	VII	0
							ti Nydrogen										4 He nek
7 Li Onum 3	9 Be perystum 4							5				11 B toron	12 C carbon	14 N nttrogen	18 O sxyger 8	19 F Sucrime	20 Ne 760
23 Na sodum	24 Mg nagnesium 12											27 A! auminum 13	28 Si silcon 14	31 P mosphorus 15	32 5	e 35.5 Cl atsotne 17	40 40 A1 3490
39 K rotassium 19	40 Ca cakolum 20	45 Sc scandium 21	48 Ti Textaum 22	51 V variadum 23	52 Cr chromum 24	55 Mn manganese 25	56 Fe xon 26	59 Co cotoin 27	59 Ni novel 28	64 Cu copper 29	85 2n 2n 30	13 70 Ga ganum 31	73 Ge gemanium 32	75 As	79 Se seeoum 34	50 Br stornne 35	84 K Kryp 36
85 Rp No.dum 37	88 Sr satertum 28	89 Y yarun 39	91 Zr zrconur 40	93 Nb 1054m 41	96 Mo noybdenu 40	Tc teoretur 43	101 Ru ruthenum 44	103 Rh modum 45	106 Pd sailadum 46	108 Ag 506 47	112 Cd caantum 48	115 In nour 49	119 Sn 30	122 Stb antimony 51	128 Te teaurum 52	127 I bathe 53	13 Xe xeni 54
133 Cs ::::::::::::::::::::::::::::::::::	137 Ba 3000 63	139 La 3773007 57	179 Hf Nathur T2	181 Ta 131360 73	 184 W ungster 74	186 Re necum 75	190 Os centur 76	192 Ir 55001 77	195 Pt satrum 76	197 Au 90d 79	201 Hg nerany SC	204 T,2 masur 31	207 Pb +32 82	209 Bi pertuth 83	Po poionium 64	- At astaure 85	- R((36) 68
	- Ra naum 89 anthanoi Actinoid								•							*****	
				140 Ce setum 58	141 Pr 59	144 No recoymum 60	Pm Pm atomethium 81	150 Sm somation 62	152 Eu europum 63	157 Gd gadoinum 64	169 Tb setsure 66	162 Dy dysprosium 56	165 Ho hoimtun 67	167 Er erolum 68	189 Tan 900,m 89	173 Yb Mertaum 76	17 Lu ioteti 71
ey a	X=xt	lative atomi omic symbo oton (atoms	2í	232 Th thonum 90	Pa protectnum 01	238 U uranium 92	Np nepunum 93	PU piltonum 94	Am anendun 95	- Ст 2010-т 95	Bk berktium 97	Ĉf George George	Es enstenium 99	Fm terrisum 100	Md mendeevu 101	No noteium 102	Li Li Liawiren 103

15

16

٩

•


,

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

•

- 000> Air is a mixture.
 - Methane is a compound. Ammonia is a compound
- Sea water is a compound
- 22 A sample of a pure compound is heated until it is completely molten and the compound is then allowed to cool until it is completely solid again.

time When are liquid and solid both present?

- Q to R P to Q and R to S P to Q
- o n m > R to S
- 23 What suggests that metal M is not in Group I of the Periodic Table?
- Þ M has a bright, silvery appearance and is a good conductor of electricity
- Β M is hard and difficult to cut.
- 0 M produces an alkaline solution when it reacts with water.
- 24 Which particle is found in iodine vapour?
- - +

12

- M produces hydrogen gas when it reacts with water

- $\overline{}$

- 25 Which solution containing one mole per dm³ of the compound would have the lowest pH?
- ethanoic acid
- hydrochloric acid

000>

- sodium chloride
- sodium hydrogencarbonate
- 26 An element is in Period 3 and Group VII of the Periodic Table.

Which statement about this element is correct?

- The element will form 1+ ions.
- 0 00 > The element will have 3 electrons in its outer shell
- The element will have 7 electrons in its outer shell.
- σ The element will have 7 shells of electrons in its atom
- 27. Which molecule has the largest number of electrons involved in covalent bonds?
- C2H4 CO2 CH3OH

O C B >

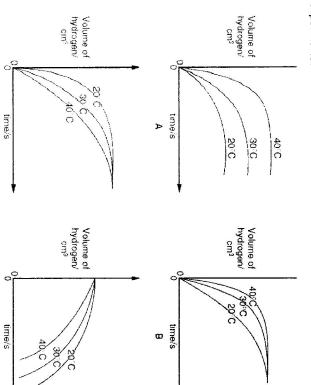
- Metal A displaced metal B from a solution of its ions. Metal B displaced metal C from a solution of its ions. What could A, B and C have been?

28

Silver	Calcium	Calcium	⋗
Calcium	Zinc	Silver	8
Zinc	Silver	Zinc	ი

000>

Zinc


Silver

Calcium

- 29. Which metal can react vigorously with steam but fairly vigorously with cold water?
- o n m > copper calcium
 - fron
- potassium

- 30 When a volcano erupts, which gas is produced in significant amounts?
- carbon monoxide
- o n œ > methane
 - carbon dioxide
- sulfur dioxide
- <u>3</u> A student added 5 g of zinc to 50 cm³ of 1.00 mol/dm³ hydrochloric acid at 20 °C. Hydrogen was produced. The experiment was repeated at 30 °C and 40 °C. In each case the total volume of hydrogen produced was plotted against time

experiments? Which one of the graphs represents the volumes of hydrogen given off in the three

32 sodium sulfate and water. 50 cm³ of 2 mol/dm³ sulfuric acid is reacted with 100 cm³ of sodium hydroxide to form

 H_2SO_4 (aq) + 2NaOH (aq) $\rightarrow Na_2SO_4$ (aq) + 2H₂O (l)

What is the concentration of the sodium hydroxide used?

- 2.0 mol/dm³ 2.5 mol/dm³ 3.0 mol/dm³ 4.0 mol/dm³
- 008>
- 33 Which electronic configurations represent three metallic elements in the same period of the Periodic Table?

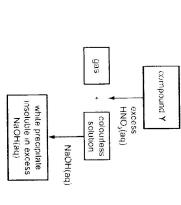
	element 1	element 2	element 3
₽	2, 8,1	2, 8, 7	2, 8, 8
ω	2, 1	2, 8, 1	2, 8, 8, 1
C	2, 2	2, 3	2, 4
D	2, 8, 1	2.8.2	2, 8, 3

34 A student mixed together aqueous solutions of Y and Z. A white precipitate formed.

Which could not be Y and Z?

₽	Y hydrochloric acid
	hydrochloric acid hydrochloric acid
0	sodium sulfate
٥	sodium chloride

O


σ

t

ъ

35 The scheme shows a sequence of reactions starting from compound $\boldsymbol{Y}.$ •

•

What could the compound Y be?

- aluminium sulfate
- calcium carbonate
 - copper(II) carbonate
- zinc carbonate
- 36 A liquid can react with sodium carbonate, potassium hydroxide and calcium.

What is the liquid?

- aqueous ammonia
- hydrochloric acid
 - ethanol

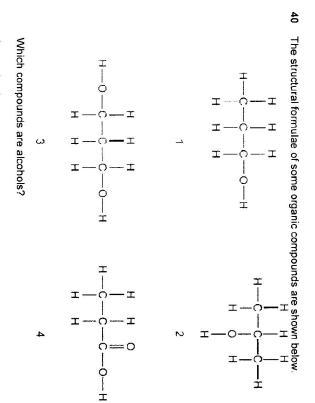
- sodium hydroxide

A positive result for the test is when the aqueous potassium iodide changes Aqueous potassium iodide, KI(aq), can be used as a reducing agent in redox reactions. lodide ions are readilyX

37

colour fromY toZ

Which wo
vords
correctly
complete
gaps X,
Y and
27


D	ဂ	8	Þ	
reduced	reduced	oxidised	oxidised	×
colourless	brown	colourless	brown	¥
brown	colourless	brown	colourless	Z

- 38 Which statement about the properties of propane, $C_3H_8\,$ and hexane, C_6H_{14} is correct?
- Propane has a higher boiling point than hexane.
- Propane has a higher relative molecular mass than hexane
- Propane produced more soot than hexane in combustions

- Propane is more flammable than hexane.
- 39 Petroleum is separated into fractions by fractional distillation.

Which fraction distils off at the highest temperature?

- o n œ > diesel
- paraffin (kerosene)
 - lubricating oils
- petrol (gasoline)

Colours of Some Common Metal Hydroxides

Green	Iron (II) hydroxide
Red-brown	Iron (III) hydroxide
White	Lead (II) hydroxide
White	Calcium hydroxide
Light blue	Copper (II) hydroxide

- o n œ >
- 1 only 1 and 2 only 1, 2 and 3 4 only

•

The Periodic	Table	of the	Elements
--------------	-------	--------	----------

.

123

-

								Gro	up						r		-
1	[]											111	IV	V	VI	VII	0
							H nyarogen								10.000		4 He hetur 2
7 1: 1:0100	ે Be ભજાગ્ર					l						11 B boror 5	-10 C Samon 6	14 N Attager	19 0 229995 8	16 F Tuxone 9	20 Ne ** 10
23 Na socium	24 Mg 74595-07 12											27 A? sumnum 13	28 53 5300 54	3° p snosohorus 15	·e	25.5 C1 chiotre 12	4) Ar 37507 18
39 K potassium	40 Ca saicum	45 Sc scandum	48 Ti izanium	51 V variadium	52 Cr chronum	55 Mn Tanganese	56 Fe 800	59 Co 1004:	f9 Ni noxei	34 Cu cascer	65 Zn 275	70 Ga gatur	73 Ge gerunum	75 As atsette 23	79 Se seenum 34	80 Br 90m.ne 35	94 Kr 17005
19 35	20 89	21 89	22	23 93	24 96	25	28	27	28	29	30	31	32 119	122	128	*27	131
50 Rb 100360 37	Sr Sr storoum 38	у Улгот 38	Zr znoonium 40	Nb nobum 41	Mo	Tc	Ru notenum 44	Rh modum 45	Pd saudum 40	Ag sher 47	Cd womum 48	In naur 49	50 50	5b 372707, 51	Te selunum 52	I ipanse 53	×e 19737 54
133 Cs cxesur 55	137 Ba sarom 56	139 La amanum 57	178 Hf nærsum 72	191 Ta Grown 73	184 W 2019885 74	160 Re menun 75	190 Os semun 76	192 27 naturn 77	195 Pt pathum 78	197 Au god 79	201 Hg meran; 30	204 T/ thasium 81	207 Pb #30 82	209 Bi 96007 83	Po poionsum 54	At ascence 95	- R0 13600 86
Fr Tancium 87	Ra radum 88	Ac actimum 89 t											a				
	anthanoi Actinoid			145	1 141	144	,	150	1 163	157	1.59	162	1 365	167	169	173	175

	140 Ce serum 58	141 Pr 19900000000000000000000000000000000000	144 Nd 1400jm/um 60			162 Eu earopum 63	157 Gd gadoinium 84	159 Tb terolum 65	162 Dy oysprosium de	100 Ho nomun 67	Er eroum 68	109 Tm 7000 89	vita Yib viteritoum 70	Lu exetur 71
Key a a relative atomic mass X = atomic symbol b = proton (atomic) number	232 Th bonum 90	Pa protectnum 91		Np nestuniam 93	- Pu sutonum \$4	- Am ameroum 95		Bk benkenum 97	Cf Cattomum 98	Es enstentor ap	Fm remum 100	Md menacevu m 101	No noteitum 102	Lr Iaanenoum 103

- bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

-

Science	
(Chemistry)	
Sec 4 E /	
5 N level I	
Prelim 2015	

Paper 1

ł

1

Missir	ω	31	σ	21
Missing units/ Answers not to 3 sf (minus half a mark)	Þ	32	Þ	22
Inswers no	D	33	ω	23
ot to 3 sf (ω	34	D	24
minus hal	ω	35	в	25
f a mark)	B	36	c	26
	8	37	A	27
	D	38	в	28
	n	39	Þ	29
	Ċ	40	D	30

Wrong spelling of chemical terms (No marks)

True/ False/ Yes/ No Dependent Marking for explanation

Paper 3- Section A

	4	A / ammonia / NH3	A2c
	الح ا	B / potassium nitrate / KNO3	A2b
6	<u>د</u>	E / nitrogen (di)oxide / NO2	A2a
		electrical conductivity: ionic compounds conduct electricity when molten / in (aqueous) solution and molecular compounds do not (1) note: both needed for mark	
	N	solubility in water: ionic compounds are soluble and molecular compounds are not soluble (1) note: both needed for mark	A1d
	<u> </u>	chlorine is more reactive than bromine	A1cii
	N	Br₂ (aq) + 2Kl (aq)→ 2KBr (aq) + l₂ (s) (1) State symbol (1) State symbol 0 mark if equation wrong	A1ci
	<u>→</u>	increases	A1bii
	_ _	green / yellow-green / light green	A1bi
8 comments	<u> </u>	C6CH2	A1a

A5bi	A5a	A4bii A4c	A4bi	A4a	A3c	A3biv	A3iii	A3bii	A3bi	A3a	A2f	A2e	A2d
incomplete combustion / insufficient or limited or not enough oxygen	Oxidising agent: Cr ₂ O ₃ / Chromium (III) oxide (1) Oxidation state decreases from +3 to 0 (1)	23 suitable method, e.g. coating with paint / zinc / unreactive metal / plastic / oil / grease / galvanising / sacrificial protection; (1) suitable reason, e.g. stops air / water reaching surface; (1) note: reason must be consequential to the method chosen	different number of neutrons / different nucleon number	Any two of: high melting / boiling point; high density; fom coloured compounds or have coloured ions; fom ions of more than one charge / variable valency / variable oxidation state; allow: hard / hardness; used as catalysts;	add acid to carbonate;(1) bubble gas or carbon dioxide (evolved) through limewater / test gas or carbon dioxide with limewater; (1) white ppt seen (1)	calcium faster than strontium which is faster than barium / idea of trend down the group (1) correct trend, i.e. less rapid reaction the further down the group	27/24000 = 0.00113 mole	27 cm ³	calcium carbonate	temperature of Bunsen / distance of Bunsen from the tube / mass of carbonate used	C / NI ₃ / nitrogen (tri)iodide	B / potassium nitrate / KNO3	E / nitrogen (di)oxide / NO2
-	N	2	·	N	ယ		<u>د</u>	<u>۱</u>	~	د	<u> </u>		
	4			රා		······				~	1	,	
- T	he BEST we	bsite to downlo	ad Fl	bestfreepape REE exam paper	rs.com s, notes a	nd other	mat	eria	s fro	om Sir	gap	ore!	

ц

C10H22 allow: reasonable mixtures, e.g. C7H16 + C3H6 3	Breaking down large/longer chain alkane molecules into more useful smaller chain molecules.	to dry gas/ to place a drying agent	gas collection should be done by downward delivery/gas collection should be down using upward air displacement (1)	Sulfuric acid should not be used/ CaO should be used (1)	2 correct (1)	All correct (2)	thistle funnel, gas jar, delivery tube	faster reaction/ white dazzling light seen/ white ash remains instead of black powder	6.4g: 8 g (1/2)	64g: 80 g (1/2)	1mole: 1mole (1)	2moles: 2 moles	Cu : CuO	2Cu (s) + O ₂ (g) →2CuO (s)	Air. (1)	Explain: Copper will only react with 21% of oxygen present in	200-42= 158 cm ³ (1)	21/100 x 200 = 42 cm ³ oxygen used up (1)	pink brown copper turns black	$2Cu(s) + O_2(g) \rightarrow 2CuO(s)$	Death occurs due to starvation of oxygen / suffocates you /stops red blood cells carrying oxygen / binds with hemoglobin in place of oxygen
	ecules into more		delivery/gas collection nt (1)	d be used (1)				vhite ash remains instead								of oxygen present in		(1)			in / suffocates you /stops //th hemoglobin in place of
<u>ح</u>	·	<u> </u>		N			N	د.						N				ω	د	د_	<u>د</u>
	10						G							-						8	

B2c					B2b						B2a			Bdii	B1di		B1cii	B1ci	B1b
Ag⁺(aq) + Cl· (aq)→ AgCl (s) (1) State symbols (1) State symbols given marks only if equation is correct				Silver chloride: silver nitrate (1)/ potassium chloride (1)	Potassium chloride: potassium h	A(1)	C(1)	D(1)	B(1)	Method of preparation		(1)	x 0.0.2 x 0.0.2 x 0.0.2 x 0.0.2 x 0.0.2 x 0.0.2 x 0.0.2 x 0.2 x 0		polymerisation	oxidizing agent: potassium manganate(VII) (1)	Compound formed: ethanoic acid (1)	C_2H_4 (g) + H ₂ O (g) $\rightarrow C_2H_5OH$ (I) (1)	unsaturated: contains double bonds / contains C=C bonds;(1) hydrocarbon: containing carbon and hydrogen only (1)
given marks only if equation is	hydrochloric acid	sodium chloride	ammonium chloride	ootassium chloride (1)	Potassium chloride: potassium hydroxide (1), hydrochloric acid (1)	zinc nitrate	potassium chloride	silver chloride	copper (II) sulfate	Salt to be prepared				catalyst (1/2), high temperature and pressure(1/2)		janate(VII) (1)	id (1)	I) (1)	nds / contains C=C bonds;(1) and hydrogen only (1)
N					4						4			2	د.		N	-	IN
		_								1	5							A	
- The	BESTW	ebs	ite t	o dr	own	load	be FREF	estfreepa	apers.co	m otes	and	oth	er mate	ria	s fre	om S	ing	bor	81

•

.

4

B3bii	83 9	B3aii	B3ai
Ba ²⁺ (aq) + SO₄ ²⁻ (aq)→ BaSO₄ (s) (1) State symbols mark given only if equation correct (1)	 tests 1. Appearance of solution J 2. To about 1cm³ of solution J, an equal volume of aqueous sodium hydroxide was added, then add excess of aqueous sodium hydroxide. 3. To about 1cm³ of solution J, dilute nitric acid and aqueous silver nitrate were added. 4. To about 1cm³ of solution J, dilute nitric acid and barium nitrate solution were added. 	Metals found in the same region as iron in the Periodic Table/transition metal (1). It is a nitrate (1) Or K contains $Cu^{2+}(1)$ and $NO_3-(1)$	NH ₃ / Ammonia
+ (s) (1) equation correct (1)	observations green [1] green precipitate (1), insoluble in excess (1) [2] no reaction/no precipitate/no change/no observation/no visible reaction nothing : incorrect [1] white ppt [1]	ts iron in the Periodic itrate (1) 1)	
N	σ	ı N	<u> </u>
			10

S

ი

• ,

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

.

-

-