| Candidate's Name | Class | Register Number |
|------------------|-------|-----------------|
| 5                |       |                 |



## BALESTIER HILL SECONDARY SCHOOL PRELIMINARY EXAMINATION 2016 SECONDARY 4 NORMAL ACADEMIC

## MATHEMATICS Paper 1

4045/01

Tuesday

2 Aug 2016

2 hours

Additional Materials: Nil

# READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

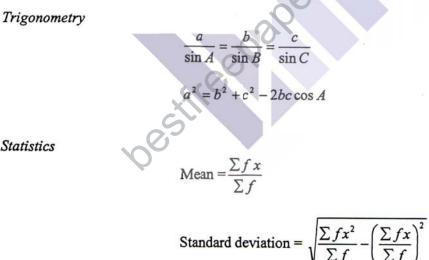
The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's use:

/80

## This question paper consists of <u>16</u> printed pages (including this page).

[Turn over


#### Mathematical Formulae

Compound interest

Total amount = 
$$P(1 + \frac{r}{100})^n$$

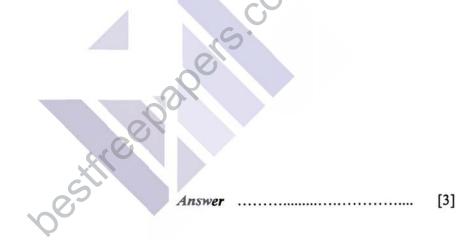
Mensuration

Curved surface area of a cone =  $\pi r l$ Surface area of a sphere =  $4\pi r^2$ Volume of a cone =  $\frac{1}{3}\pi r^2 h$ Volume of a sphere =  $\frac{4}{3}\pi r^3$ Area of triangle  $ABC = \frac{1}{2}ab\sin C$ Arc length =  $r\theta$ , where  $\theta$  is in radians Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

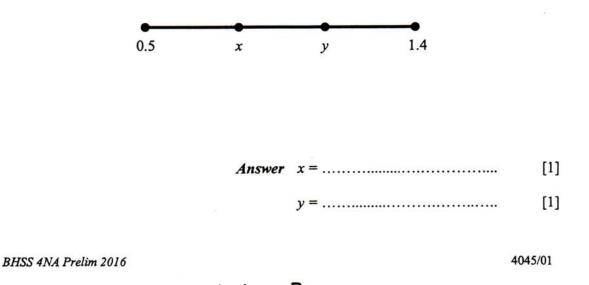


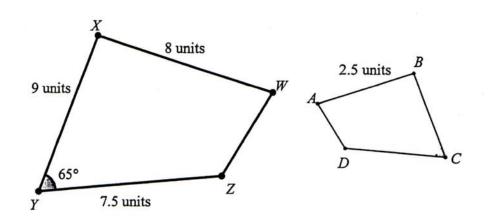
BHSS 4NA Prelim 2016

4045/01


bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

**Statistics** 


(b) Express 44% as a fraction in its lowest terms.


Answer (a) ..... [1]

- 2 Mike has a bag containing 7 yellow balls and 5 blue balls. He picks two balls at random. What is the probability that Mike picks two balls of the same colour?



Four numbers are represented on a number line as shown below.All the numbers are equidistant from each other. Find the value of x and of y.





4

Quadrilateral ABCD is a reduction of quadrilateral WXYZ. Find

- the scale factor, (a)
- (b) BC,

4

- the reflex angle BCD. (c)
- Answer [1] (a)
  - **(b)** ....units
    - [1]
    - [1] (c) •••••
- , find the values of x when y = 2. 5 Given that y = 42x(a)
  - Make p the subject of the formula  $2m = \sqrt{\frac{6+4p}{3n}}$ . **(b)**

..... or ..... [2] Answer (a)  $\mathbf{x} =$ 

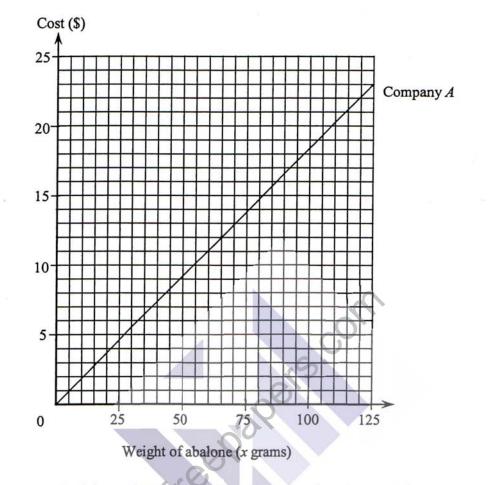
> ..... [2] **(b)**

BHSS 4NA Prelim 2016

#### 4045/01

bestfreepapers.com

(a)


6

Simplify 5x - 2x(-1 + 3x).

- [2] Answer (a)
- **(b)** Solve  $\frac{5+x}{3} = \frac{2}{3}$ . [2] Answer **(b)** x = .....
- Find the highest common factor of 12, 9 and 24. 7 (a)
  - The lowest common multiple for 6, 8 and x is 30. Find the smallest (b) possible value of x.

- [1] ..... Answer (a)
  - [1] *x* = ..... **(b)**

### 4045/01



8 The graph below shows the price of abalone per gram sold by company A.

- (a) Find the total weight of abalone in grams when the cost is \$12.
- (b) A Company *B* sells abalone at a minimum of 40 grams priced at \$5 and additional abalone at 30 cents per gram.
  - (i) Draw the graph on the grid to represent the charge made by Company B.
  - (ii) Use the graph to estimate the weight when the price is the same for both companies.

Answer (a) ..... grams [1]

(b) (ii) ..... grams [1]

BHSS 4NA Prelim 2016

[1]

9 (a) Find x if  $9^{x-3} = 3$ .

(b) Simplify 
$$\frac{2x}{3} \times \frac{15y}{x^{-1}} \times \left(\frac{6y}{z}\right)^0$$
 leaving your answer in positive indices..

10 The storage capacity of a particular handphone is 1 gigabyte. A low resolution picture is 510 kilobytes and a high resolution picture is 2.8 megabytes.

A student takes only low resolution pictures using one handphone and only high resolution pictures on another identical handphone. How many more low resolution pictures can be stored in the handphone compared to high resolution pictures?

[2]

(a)  $x = \dots$ 

BHSS 4NA Prelim 2016

bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

Answer

11 Solve the simultaneous equations.

> 2x + y = 95x - y = 5

Answer x =[3] A river is 8 km long. It is represented by a distance of 5 cm on a map. Find the scale of the map in the form 1:n. [1] Answer (a) 1:....

A city covers an area of 400 km<sup>2</sup>. Find in cm<sup>2</sup>, the area representing the (b) city on the map.

> .....cm<sup>2</sup> [2] Answer **(b)**

BHSS 4NA Prelim 2016

12

(a)

4045/01

13 (a) Factorise completely  $18-8x^2$ .

(b) Solve  $x^2 + 2x = 15$ .

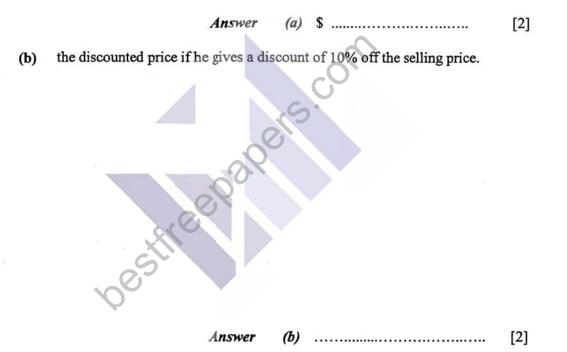
A regular polygon has n sides. The size of one interior angle is 5 times the

**(b)** 

Answer

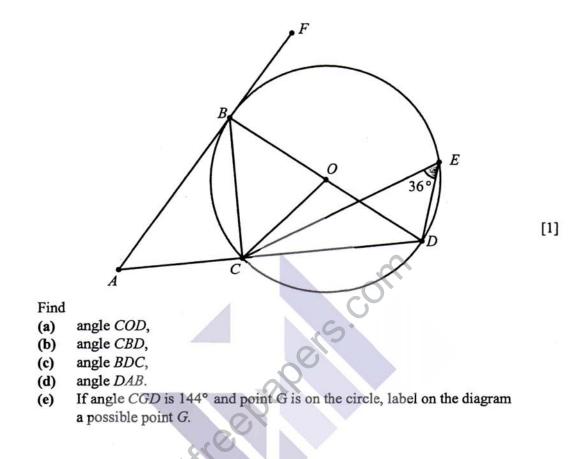
size of one exterior angle. Calculate the value of n.

Answer  $n = \dots$  [3]


14

[2]

..... or .....


bestfreepapers.com

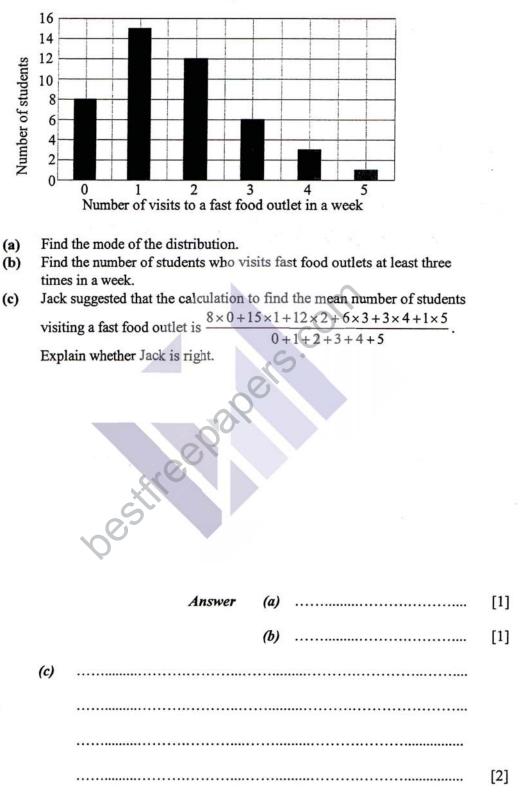
(a) the profit he would have made for each watch,



BHSS 4NA Prelim 2016

In the diagram below, the points B, C, D, E lie on a circle with 16 centre O. BD is the diameter of the circle, AF is tangent to the circle at B, ACD is a straight line and angle  $CED = 36^{\circ}$ .

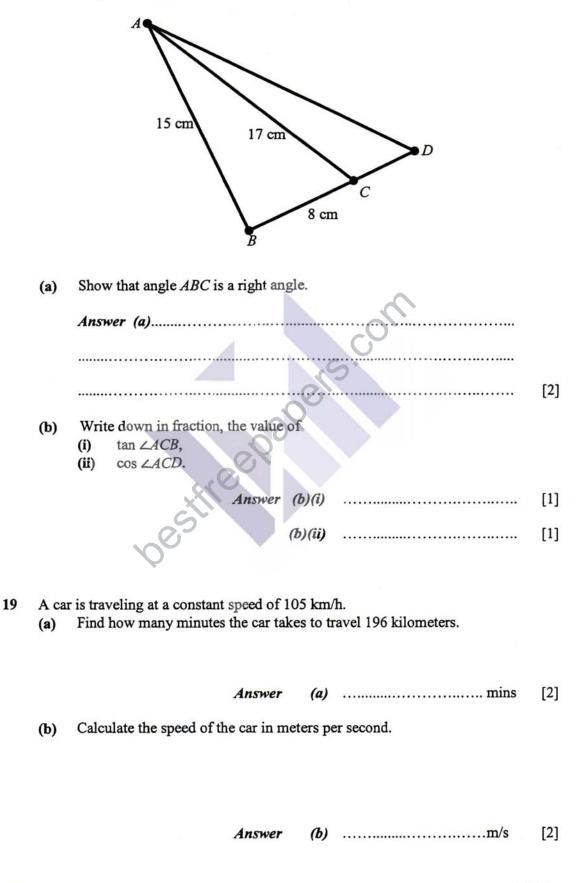



- (a) .....° Answer [1]
  - *(b)* .....° [1]
  - (c) .....° [2]
  - (d) .....° [2]

11

BHSS 4NA Prelim 2016

4045/01

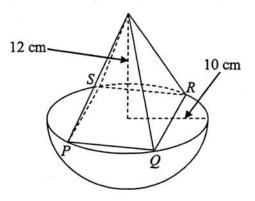

17 The bar chart below shows the results of a survey on the number of visits to a fast food outlet in a week for secondary school students.



BHSS 4NA Prelim 2016

4045/01

18 In the diagram, AB = 15 cm, BC = 8 cm and AC = 17 cm.




BHSS 4NA Prelim 2016

4045/01

bestfreepapers.com

20 The diagram shows a square pyramid with base *PQRS* inscribed in a hemisphere. The height of the pyramid is 12 cm and the radius of the hemisphere is 10 cm.



(a) Show that the length of PQ is approximately 14.1 cm.

| Answer (a) . | -01   |  |
|--------------|-------|--|
|              | 6     |  |
|              | <br>0 |  |

(b) Calculate the total volume of the figure.

esti

14

and provide the second standard by

.....cm<sup>2</sup>

[3]

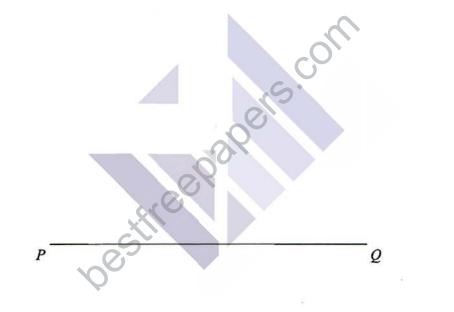
best**ree**papers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

Answer

**(b)** 

- 21 The first four terms of a sequence are 3, 10, 17, 24.
  - (a) Write the next three terms of the sequence.
    - Answer (a) [2]
  - (b) Find the *n*th term of the sequence.

Answer (d) .....[1]


BHSS 4NA Prelim 2016

bestfreepapers.com

| 22 | (a) | Construct parallelogram PQRS in the space given below where             |       |
|----|-----|-------------------------------------------------------------------------|-------|
|    | .,  | angle $PQR = 120^{\circ}$ and $PS = 7.5$ cm.                            | [2]   |
|    | (b) | On the same diagram, construct                                          |       |
|    |     | (i) the angle bisector of angle SPQ,                                    | [1]   |
|    |     | (ii) the perpendicular bisector of $QR$ .                               | [1]   |
|    | (c) | The bisector of angle $SPQ$ meets the perpendicular bisector of $QR$ at | 1.1.1 |

16

n V is me perpen the point X. Measure and write down the length of SX.



Answer (c) ..... cm [1]

### - End of Paper-

BHSS 4NA Math Prelim 2016 P1 solution

| 1 | Solution                                                              | Marks  | Remarks/ Alt soln |
|---|-----------------------------------------------------------------------|--------|-------------------|
|   | <u>39</u>                                                             |        |                   |
|   | <u>11</u><br>25                                                       |        |                   |
| 1 | $\frac{7}{12} \times \frac{6}{11} + \frac{5}{12} \times \frac{4}{11}$ | MI, MI |                   |
|   |                                                                       | AI AI  |                   |
|   | x=0.8, y=1.1                                                          | B1, B1 |                   |
| 1 | 5 or 0.3125                                                           | BI     | ~                 |
|   | 2.8125                                                                | B1     |                   |
|   | 295°                                                                  |        |                   |
|   | 1 =                                                                   | B1,B1  | -XO               |
|   | $12m^2n=6+4p$                                                         | IW     |                   |
|   | $p = \frac{6m^2n - 3}{2}  p = 3m^2n - \frac{3}{2}$                    | V      | 0                 |
| 1 | $5x+2x-6x^2$                                                          | IW     |                   |
| 1 | $7x-6x^2$                                                             | AI     |                   |
|   | 5+x=2                                                                 | IW     |                   |
|   | x = -3                                                                | AI     |                   |
|   | 3                                                                     | BI     |                   |
|   | 5                                                                     | B1     |                   |
| 1 | 65                                                                    | 81     |                   |

|         | 20<br>20<br>15<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Y              | Ē                                                 |
|---------|-------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------|
|         | 0 25 50 75 100 125                                                                                    |                | Must cut the point (85,20)                        |
|         |                                                                                                       |                |                                                   |
| (11)(q) | 60 ≤ answer ≤ 65                                                                                      |                |                                                   |
| 9(a)    | 1                                                                                                     | IM             |                                                   |
|         | x = 3.5 AI                                                                                            | -              |                                                   |
| (q)6    | $\frac{2x}{3} \times \frac{15xy}{1} \times 1$                                                         | IM             |                                                   |
|         |                                                                                                       | VI             |                                                   |
| 10      | Low resolution - 1000 = 1960 bb                                                                       | MI for<br>both | Accept if given 1gb =<br>1024mb, 1mb = 1024 kb    |
|         | = 357                                                                                                 | working        | Low - 2056, high - 366<br>Difference = 1690 (3sf) |
|         | Difference – 1600 (3 sf)                                                                              | AI             |                                                   |
| =       | Either sub or elimination method M                                                                    | IM             |                                                   |
|         |                                                                                                       | AI,AI          |                                                   |
| 12(a)   | Scm : 8km                                                                                             |                |                                                   |
|         |                                                                                                       |                |                                                   |
|         | 1:160000 BI                                                                                           | _              |                                                   |
| 12(b)   | Icm: I.6km                                                                                            |                |                                                   |

| 19(b) | $\frac{105km}{1hr} = \frac{105 \times 1000m}{1 \times 60 \times 60s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W        | -                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|
|       | 29.2 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VI       |                                  |
| 20(a) | Let half of $PQ = x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                  |
|       | $x^2 + x^2 = 10^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                  |
|       | $x = \sqrt{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                  |
|       | PQ = 2x = 14.1 (shown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                  |
| 20(b) | Vol of hemisphere $=\frac{2}{3}\pi(10)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IM       |                                  |
|       | Vol of pyramid = $\frac{1}{3} \times (2\sqrt{50})^2 \times 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IW       |                                  |
|       | Total volume = 2890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٩١       | Accept 2920 (PQ = 14.1)          |
| 21(a) | 31, 38, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B2       | Minus I mark for each<br>mistake |
| 21(b) | 7n-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1       |                                  |
| 21(c) | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81       |                                  |
| 21(d) | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |                                  |
| 22    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BB       | (a) parallel<br>correct length   |
|       | de la construcción de la constru | 81<br>81 | (b)(i)<br>(b)(ii)                |
| 22(c) | 4.7 to 4.9 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81       |                                  |

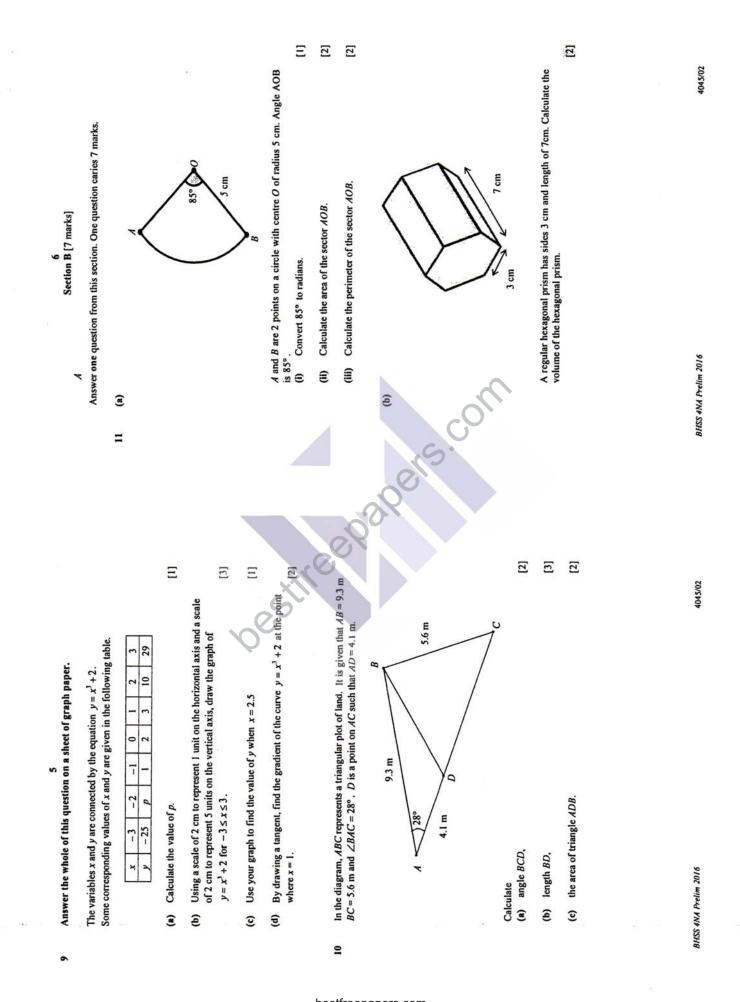
| 5                | 2(9 - 4x²)                                 | IW           |                              |
|------------------|--------------------------------------------|--------------|------------------------------|
| XN               | 2(3-2x)(3+2x)<br>x = -5 or 3               | AI<br>MI, AI | MI (any method), AI( both    |
|                  | 1 int anole = 5 ext anole                  | IW           | (em                          |
| -                | l int + 1 ext = 180°                       |              |                              |
| 0                | 6 ext angles = 180°                        |              |                              |
| -                | I ext angle = 30°                          | IW           | Alt – find 1 int angle       |
| w1. 1            | $\frac{360}{30} = 12$                      | V            |                              |
| 01.              | $\frac{600}{30} = 520 \text{ cost price}$  | IW           | 0                            |
| ē                | 30 - 20                                    |              |                              |
|                  | = \$10 profit                              | AI           | .0.5                         |
|                  | $\frac{90}{100} \times 30$                 | IW           |                              |
| 1 8 1            | = \$27                                     | AI AI        | N                            |
|                  |                                            |              |                              |
| -                | 72                                         | 81           | 2                            |
| m                | 36                                         | 81           |                              |
| -                | 180-90-36                                  | W            |                              |
| -                | 180-90-54                                  | W            |                              |
| 36               | 6                                          | VI           |                              |
|                  | Anywhere on the minor arc CD.              | B1           |                              |
| 1                |                                            |              |                              |
| _=               |                                            | 19           |                              |
|                  | No. calculation should be                  | MI           | Accent if description is use |
|                  | 8×0+15×1+12×2+6×3+3×4+1×5<br>8+15+12+6+3+1 | V            | instead of numbers.          |
|                  | $AB^{1} + BC^{2} = 15^{2} + 8^{2} = 289$   | MI           |                              |
| ۲ ( <sup>1</sup> |                                            |              |                              |
| 1                | $AB^1 + BC^2 = AC^2$                       |              |                              |
|                  | Therefore angle ABC is a 90°.              | AI           |                              |
|                  | 8                                          | BI           |                              |
|                  | - <u>8</u><br>17                           | B1           |                              |
|                  | 60 × 196                                   | IW           | ×                            |
| -                | 112 Mine                                   | AI           |                              |

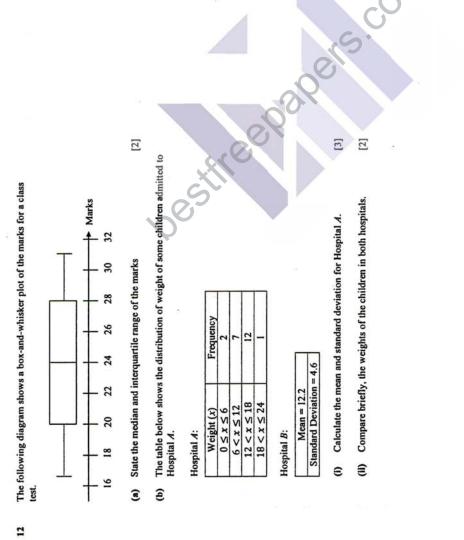
cu'

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore! m

| Candidate's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ame                                                                                                                                             | Class                                                                                                     | Register Number                                                            |                   | 2<br>Mathematical Formulae                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 |                                                                                                           |                                                                            | Compound interest |                                                                                                        |
| BALESTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BALESTIER HILL SECONDARY S<br>PRELIMINARY EXAMINATION 2016<br>SECONDARY 4 NORMAL ACADEMIC                                                       | - SECONDA<br>MINATION 20<br>RMAL ACAD                                                                     | IER HILL SECONDARY SCHOOL<br>ARY EXAMINATION 2016<br>ARY 4 NORMAL ACADEMIC | Mensuration       | Total amount = $P\left(1 + \frac{1}{100}\right)$                                                       |
| MATHE<br>Paper 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MATHEMATICS<br>Paper 2                                                                                                                          |                                                                                                           | 4045/02                                                                    |                   | Curved surface area of a co<br>Surface area of a sphere =<br>Volume of a cone = $\frac{1}{2}\pi^{-2}$  |
| Thursday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 Aug 2016                                                                                                                                     | 6                                                                                                         | 2 hours                                                                    |                   | 3<br>Volume of a sphere $= -\frac{4}{\pi}$                                                             |
| Additional Materials:<br>Writing paper (4 sheets)<br>Graph paper (1 sheet)                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                           | 000                                                                        |                   | Area of triangle $ABC = \frac{1}{2}$                                                                   |
| READ THESE INSTRUCTIONS FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S FIRST                                                                                                                                         |                                                                                                           |                                                                            |                   | Arc length = $r\theta$ , where (Sector area = $\frac{1}{r^2}\theta$ when                               |
| Write your answers and working on the separate writing paper provided.                                                                                                                                                                                                                                                                                                                                                                                                                      | g on the separate wr                                                                                                                            | iting paper provided                                                                                      |                                                                            |                   | $\frac{1}{2}$ , $\frac{1}{2}$ , $\frac{1}{2}$ , $\frac{1}{2}$                                          |
| Write your name, class and register number on all the work you hand in.<br>Write in dark blue or black pen on both sides of the paper.<br>You may use a pencil for any diagrams or graphs.<br>Do not use staples, paper clips, highlightlers, glue or correction fluid.                                                                                                                                                                                                                     | lister number on all th<br>on both sides of the<br>lagrams or graphs.                                                                           | he work you hand in<br>paper.<br>r correction fluid.                                                      |                                                                            | Trigonometry      | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$                                               |
| Section A<br>Answer all questions.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 |                                                                                                           |                                                                            | 0                 | $a^2 = b^2 + c^2 - 2bc\cos A$                                                                          |
| Section B<br>Answer one question.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                           |                                                                            | Statistics        | 514                                                                                                    |
| If working is needed for any question it must be shown with the answer. Omission of essential working will result in bas of marks. Calculators should be used where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of $\pi$ . | estion it must be sho<br>will result in loss of m<br>are appropriate.<br>specified in the que<br>figures. Give answert<br>or value or 3.142, ur | wn with the answer.<br>larks.<br>stion, and if the ansv<br>is in degrees to one i<br>less the question re | ver is not exact, give<br>decimal place.<br>quires the answer in           | com               | Mean = $\frac{\overline{\Sigma f}}{\Sigma f}$<br>Standard deviation = $\sqrt{\frac{\Sigma f}{\Sigma}}$ |
| At the end of the examination, fasten all your work securely together.<br>The number of marks is given in brackets [ ] at the end of each question or part question.<br>The total of the marks for this paper is 60.                                                                                                                                                                                                                                                                        | lasten all your work s<br>n brackets [ ] at the<br>aper is 60.                                                                                  | ecurely together.<br>end of each question                                                                 | n or part question.                                                        |                   |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                 | ш                                                                                                         | For Examiner's use:                                                        |                   |                                                                                                        |
| <b>Tana</b> da saw                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 | ]                                                                                                         | /60                                                                        |                   |                                                                                                        |
| This paper consists of 8 printed pages (including this cover page).<br>Turn o                                                                                                                                                                                                                                                                                                                                                                                                               | of 8 printed page                                                                                                                               | ss (including thi                                                                                         | s cover page).<br>[Tum over                                                |                   |                                                                                                        |

.18


 $\frac{1}{2}ab\sin C$ if  $\theta$  is in radians where  $\theta$  is in radians  $1 \text{ cone} = \pi r l$  $= 4 \pi r^2$ 1-1 Rr's


 $\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2$ 

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

BHSS 4NA Prelim 2016

| 3 $3$ The cuestion at his section. $5$ The cuestion at his section. $6$ $6$ Arswer all the questions in this section. $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ <th></th> <th>[2]<br/>[2]</th> <th>[3]</th> <th>[2]</th> <th></th> <th>[2]</th> <th>Ξ</th> <th>[2]</th> <th>int<br/>[2]</th> <th>[2]</th> <th>[2]</th> <th></th>                                                                    |                                                                                                                                                                                                                                                                                                       | [2]<br>[2] | [3] | [2]                                                             |          | [2]                                            | Ξ  | [2] | int<br>[2] | [2] | [2]                           |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----------------------------------------------------------------|----------|------------------------------------------------|----|-----|------------|-----|-------------------------------|-------------------------|
| 3       3         Action A [35 marks]       Answer all the questions in this section.         Answer all the questions in this section.       (1) $5.4342.17$ , (1)       (1) $5.4345$ , (1)       (1) $5.4345$ , (1)       (1) $5.4356$ , (1)       (1) $5.4356$ , (1)       (1) $5.4356$ , (1)       (1) $5.4356$ , (1)       (1) $5.4356$ , (1)       (1) $5.4356$ , (1)       (1) $5.4356$ , (1)       (1) $5.4356$ , (1)       (1) $5.7326$ , (1)       (1) $5.7326$ , (1)       (1) $5.7326$ , (1)       (1) $5.7326$ , (1)       (1) $5.7326$ , (1)       (1) $5.7326$ , (1)       (1) $5.7326$ , (1)       (1) $5.7326$ , (1)       (1) $5.7326$ , (1)       (1) $6.7566$ , (1)       (1) $6.7566667667666666666666666666666666666$   |                                                                                                                                                                                                                                                                                                       | G          |     | (a) Form an equation in x and show that $2x^2 + 7x - 242 = 0$ . | 6        |                                                |    | (B) |            |     |                               |                         |
| Section A [53 marks]<br>Section A [53 marks]<br>Answer all the questions in this section.<br>$5+6.34 \times 2.17$ ,<br>$5+6.34 \times 2.17$ ,<br>$5+6.34 \times 2.17$ ,<br>$5+6.34 \times 2.17$ ,<br>$5+6.34 \times 2.17$ ,<br>5+7.36<br>S $7.725$<br>S $7.725$<br>S $7.725$<br>More all the product of the two numbers is noted.<br>An all the product of the product of the two numbers is noted.<br>The product of the product of the two numbers is noted.<br>The product is 9,<br>the product is 9,<br>the product is 9,<br>the product is 0,<br>and the other is a 20% deposit with monthly<br>the first is a full cash payment and the other is a 20% deposit with monthly<br>the product is not pay if she chooses the second option. |                                                                                                                                                                                                                                                                                                       | 2          | 20  |                                                                 | L        |                                                |    | •   |            |     |                               | ŝ                       |
| Section A [53 marks]<br>Section A [53 marks]<br>Answer all the questions in this section.<br>$5+6.34 \times 2.17$ ,<br>$5+6.34 \times 2.17$ ,<br>$5+6.34 \times 2.17$ ,<br>$5+6.34 \times 2.17$ ,<br>$5+6.34 \times 2.17$ ,<br>5+7.36<br>S $7.725$<br>S $7.725$<br>S $7.725$<br>More all the product of the two numbers is noted.<br>An all the product of the product of the two numbers is noted.<br>The product of the product of the two numbers is noted.<br>The product is 9,<br>the product is 9,<br>the product is 9,<br>the product is 0,<br>and the other is a 20% deposit with monthly<br>the first is a full cash payment and the other is a 20% deposit with monthly<br>the product is not pay if she chooses the second option. | 6 62                                                                                                                                                                                                                                                                                                  | ΕE         | [2] | X                                                               | 002      |                                                |    |     | ΞΞ         |     |                               |                         |
| 3<br>Section A [53 mar<br>Answer all the questions in<br>25 + 6.34 × 2.17,<br>25 + 6.34 × 2.17,<br>25 + 6.34 × 2.17,<br>25 + 8.36<br>25 × 7.25<br>and the prove is spun twice and the p<br>opy and complete the possibility diagra<br>opy and complete the possibility diagra<br>1 + 1 + 2 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4                                                                                                                                                                                                                                                                                                                                                                                                            | <ol> <li>The smaller portion is then divided<br/>lest share of the 3 parts is \$18, find the<br/>lest share of the 3 parts is \$18, find the<br/>the was offered two options to pay for<br/>the other is a 20% deposit with monthly<br/>if she chooses the second option.</li> <li>A045/02</li> </ol> |            |     |                                                                 | m below. | roduct of the two numbers is noted.            | 25 | 6   |            |     | this section.                 | <b>ks</b> ]             |
| 1       Calculat         2       (b) 4/2         (a) 5.       5         3       A spinn         4       (a) C         (b) Fi       (b) Fi         (c) (a) C       (a) C         3       A sum c         (a) A sum c       (a) C         (b) Fi       (b) Fi         (c) Sam wa       (b) W         (b) W       (b) W                                                                                                                                                                                                                                                                                                                                                                                                                          | A sum<br>into 3<br>origin<br>Sam v<br>the lar<br>install<br>(b)<br>(b)                                                                                                                                                                                                                                | (ii)       |     | -3                                                              |          | A spinner shown above is spun twice and the pr |    | 2   |            | 2   | Answer all the questions in t | 3<br>Section A [53 mark |





-



BHSS 4NA Prelim 2016

4045/02

| 9  |      |
|----|------|
| 01 | ne   |
| 5  | chei |
| 5  | Sc   |
| E  | a u  |
| Ч  | ż    |
| ¥  | Aa1  |
| 4  | 2 1  |
| SS | 5    |
| H  | ap   |
| -  | 1    |

| Remarks   |         |       |   | Minus 1 mark for each<br>mistake |      |      |       |        | 0        | 00     |                                                                  |         | Any other method with | working clearly shown |                         |              |            |                                         |       |             |                                  | Or B2      |                 |                     |        |                     |                 | Or B2             |
|-----------|---------|-------|---|----------------------------------|------|------|-------|--------|----------|--------|------------------------------------------------------------------|---------|-----------------------|-----------------------|-------------------------|--------------|------------|-----------------------------------------|-------|-------------|----------------------------------|------------|-----------------|---------------------|--------|---------------------|-----------------|-------------------|
| Marks     | BI      | BI    |   | B2                               |      |      |       |        | 81       | BI     |                                                                  | IM      | IW                    | AI                    | MI                      | MI           | AI         | IW                                      | AI    |             | Ш                                | BI         | IM              | 41                  |        | Ш                   |                 | AI                |
|           |         |       |   | -3 4                             | -3 4 | -6 8 | 9 -12 | -12 16 |          |        | 3                                                                | •       |                       |                       |                         |              |            |                                         |       |             |                                  |            |                 |                     |        |                     |                 |                   |
|           |         |       | ł | 7<br>7                           | 2    | 4    | 9     | 8 -1   |          |        | 6:4:3<br>te as                                                   |         |                       |                       |                         |              |            |                                         |       |             |                                  |            |                 |                     |        |                     |                 |                   |
|           |         |       |   | -                                | 1    | 2    | ņ     | 4      | ]        |        | is the same as                                                   | 518     | - 578                 | 3182                  | 240                     | = 1200       | =1440      | -×100%                                  |       |             |                                  | 2 5        | )=4             | -4 = 0              |        |                     |                 |                   |
| Solutions | 19.0078 | 0.331 |   | × ,                              | 1    | 2    | 'n    | 4      | <br> - 9 | 15     | <u>-</u> : <u>-</u> : <u>-</u><br><u>-</u> : <u>-</u> : <u>-</u> | 3 units | 11                    | 7 units               | $0.2 \times 1200 = 240$ | 50×12×2=1200 | 1200 + 240 | $\frac{1440 - 1200}{1200} \times 100\%$ | = 20% | 2x - 5y = 4 | $y = \frac{2}{5}x - \frac{4}{5}$ | Gradient = | 2n - 5(n+1) = 4 | 2n - 5n - 5 - 4 = 0 | n = -3 | y = mx $-2 = m(-3)$ | $m=\frac{2}{3}$ | $y = \frac{2}{x}$ |
| Π         |         | 1(b)  |   | 2(a)                             |      |      |       |        | (i)(d)   | (i)(d) | <b>6</b> bi                                                      | otfr    | eep                   |                       | 6 4(a)                  |              | -          | (q)                                     |       | 5(a)        |                                  |            | (9)             |                     |        | (c)                 |                 |                   |

|                          | Ш                         |      | AI                        | 81   |                     |               | IW | AI      | IW                |                             | AI                            | IW                               |      | AI,AI            | IW                            | AI    |      | IW                    | IV    | Ш                                     | IW                            | 41       | z    | IW                                    | AI |  |  |  |
|--------------------------|---------------------------|------|---------------------------|------|---------------------|---------------|----|---------|-------------------|-----------------------------|-------------------------------|----------------------------------|------|------------------|-------------------------------|-------|------|-----------------------|-------|---------------------------------------|-------------------------------|----------|------|---------------------------------------|----|--|--|--|
| $y = \frac{k}{\sqrt{x}}$ | $3 = \frac{k}{\sqrt{16}}$ | k=12 | $y = \frac{12}{\sqrt{x}}$ | 12   | 23<br>9 men 15 davs | 1man 135 days |    | 27 days | (x+4)(2x-1) = 238 | $2x^{2} - x + 8x - 4 = 238$ | $2x^3 + 7x - 242 = 0$ (shown) | $-7 \pm \sqrt{7^2 - 4(2)(-242)}$ | 2(2) | x =9.39 or -12.9 | 2(9.3882 + 4) +2[2(9.3882)-1] | =62.3 | 1-0  | (22 + 7) = -2(7 + 22) | (7)   | $\frac{2x-1}{x+1} - \frac{4}{2(x+1)}$ | $\frac{2(2x-1)-4}{2(2x-1)-4}$ | X7 + 7 b | 2+23 | $\frac{2x}{3} \times \frac{27}{8x^2}$ |    |  |  |  |
| 6(a)(i)                  |                           |      |                           | (ii) | (q)                 |               |    |         | 7(a)              |                             |                               | (q)                              | 1    |                  | (c)                           |       | 1-10 | 0(3)                  | 10110 |                                       |                               | 2        |      | (ii)(d)                               |    |  |  |  |

2

-

|                                                                                                                                                                   |                  |                                                                                                               |                  |                                            |                                                            |                |                                                                                                                             |                              | 4 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------|------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|---|
| B1       B1         Both hospitals recorded same mean weight. However, B1         the weight in hospital B is more spread out as SD is         B1         larger. |                  |                                                                                                               |                  |                                            | C                                                          | SUL            |                                                                                                                             |                              |   |
| Ē                                                                                                                                                                 | _                |                                                                                                               |                  | Re                                         | S                                                          |                |                                                                                                                             | it.                          |   |
|                                                                                                                                                                   |                  | Im for correct formula,<br>Im for correct substitution                                                        |                  |                                            | sol                                                        |                |                                                                                                                             |                              | m |
| AI PI                                                                                                                                                             | BI<br>MI<br>AI   | AI<br>MI, MI                                                                                                  | IM<br>AI         | BI<br>MI                                   | AI<br>MI<br>MI                                             | MI<br>MI<br>AI | BI, BI<br>MI                                                                                                                |                              |   |
|                                                                                                                                                                   | int <i>x</i> = 1 | $\frac{1}{5.66} = \frac{2.22}{9.3}$ $\frac{1}{51.7^{\circ}} = 9.3^{\circ} + 4.1^{\circ} - 2(4.1)(9.3)\cos 28$ | ×4.1×sin 28<br>2 | 1.48 rad<br>1<br>2 × 5 <sup>2</sup> × 1.48 | 5<br>agon can be divided into 6 congruent<br>ngths of 3cm. |                | Median = 24, IQR = 8<br>Mean $\ddot{x} = \frac{(3 \times 2) + (9 \times 7) + (15 \times 12) + (21 \times 1)}{22}$<br>= 12.2 | Standard deviation<br>= 4.32 |   |
| 9(a)<br>(b)                                                                                                                                                       | (c)              |                                                                                                               | (2)              | (ii)                                       | (iii)                                                      |                | 12(a)<br>(b)(i)                                                                                                             |                              |   |

bestfreepapers.com - The BEST website to download FREE examplers, notes and other materials from Singapore!

# BEDOK NORTH SECONDARY SCHOOL



Vision : Leaders for the future ; Creative lifelong learners ; Morally upright, caring and loyal

Mission : To develop our students holistically through quality programmes within a nurturing environment.

# GCE 'N' LEVEL PRELIMINARY EXAMINATION 2016

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reg.No.                                                                                                                      | Class              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------|
| MATHEMATICS SYLLABUS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              | 4045/01            |
| PAPER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | Date: 22 July 2016 |
| Sec Four Normal Academic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                            | 2 hours            |
| Candidates answer on the Question Paper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO.                                                                                                                          |                    |
| READ THESE INSTRUCTIONS FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 013                                                                                                                          |                    |
| <ul> <li>Write your name, class register number and class of Write in dark blue or black pen.</li> <li>You may use a pencil for any diagrams or graphs.</li> <li>Do not use staples, paper clips, glue or correction flute</li> <li>Answer all questions.</li> <li>The number of marks is given in brackets [] at the end of the marks is given in brackets [] at the end of the marks for this paper is 80.</li> <li>The use of an approved scientific calculator is expect of the degree of accuracy is not specified in the quest three significant figures. Give answers in degrees to the specified in the quest to the specified of the degree of the degree of the degree of the degree of the degrees.</li> </ul> | uid.<br>nd of each question or pa<br>wn with the answer.<br>arks.<br>cted, where appropriate.<br>tion and if the answer is n | rt question.       |
| For $\pi$ , use either your calculator value or 3.142.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |                    |
| Setter: Mr Alvin Ho and Mdm Wong CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              | For Examiner's Use |

This document consists of 19 printed pages.

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01)

#### Mathematical Formulae

**Compound Interest** 

Total amount 
$$= P \left( 1 + \frac{r}{100} \right)^n$$

Mensuration

Curved Surface area of a cone = 
$$\pi rl$$
  
Surface area of a sphere =  $4\pi r^2$   
Volume of a cone =  $\frac{1}{3}\pi r^2 h$   
Volume of a sphere =  $\frac{4}{3}\pi r^3$   
Area of triangle  $ABC = \frac{1}{2}ab\sin c$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area 
$$=\frac{1}{2}r^2\theta$$
, where  $\theta$  is in radians  
 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

**Statistics** 

Mean = 
$$\frac{\Sigma f x}{\Sigma f}$$
  
Standard deviation =  $\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$ 

(a) Find  $\sqrt[3]{5\times 12}$ . Write down all the figures on your calculator display.

Answer (a) [1]

(b) Write your answer to part (a), correct to 1 significant figure.

2 Draw on the grid an enlargement, scale factor 0.5, of the figure below.

Answer

[1]

[1]

3

(a) Calculate  $\frac{1234.567 + 8.9^2}{3^3 + \sqrt{0.5}}$ 

| Answer | (a) | <br>[1] | ] |
|--------|-----|---------|---|
|        |     |         |   |

(b) Write 0.25% as a fraction in its lowest terms

Answer (b) [1]

4 The pictogram below shows the number of marks scored by a class of students for a Mathematics test.

| Numb     | ber of marks scored by students |                                    |
|----------|---------------------------------|------------------------------------|
| 2 marks  |                                 |                                    |
| 4 marks  |                                 | $\bigcirc$                         |
| 6 marks  | 0000000                         | Key: Each<br>represents 2 students |
| 8 marks  |                                 |                                    |
| 10 marks | $\bigcirc$                      |                                    |

(a) Find the fraction of the students who scored at most 8 marks.

(b) Given that the passing mark is 6 marks, find the percentage of students who passed the test.

4

5 A wire 64 cm in length is cut into two pieces in the ratio 5 : 11.

(a) Find the length of the shorter piece.

6

(b) If the longer piece is bent to form a circle, find its radius.

Oreo Milkshake Recipe 480 ml Chocolate Syrup 64 Oreo Cookies 2000 ml Milk 16 cups Vanilla Ice-cream Makes 8 Milkshakes

Joe wants to make 35 Milkshakes for his class gathering.

How much milk will he use? Give your answer in litres.

7 (a) Convert 5.4 km/h to m/s.

Answer (a) \_\_\_\_\_m/s [1]

(b) After school, a boy decided to walk home, covering a total of 2250 m. He travelled at an average speed of 3 km/h for his return journey. Calculate the time he reached home, if he left school at 1625 hours.

Answer (c) hours [2]

- 8 A polygon has *n* sides. Three of its exterior angles are 70°, 25° and 15° while each of the remaining exterior angles is 50°. Find
  - (a) the value of n,

Answer (a) n = ..... [1]

(b) the largest interior angle

- (a) Shelly, Joe and Russell are having a discussion over the *similar* properties of both a Rhombus and a Parallelogram. Below are the statements made by each of them:
  - Shelly: For both quadrilaterals, they have opposite sides which are parallel, and the diagonals bisect each other at 90°.
  - Joe: For both quadrilaterals, diagonally opposite angles are equal, and opposite sides are of equal length.

Russell: For both quadrilaterals, the diagonals bisect each other, and the sides are of equal lengths.

Whose statement is correct?

(b) Some properties of a Rectangle are different from those of a Parallelogram.

Write down one such property.

Answer \_\_\_\_\_ [1]

Answer

10 (a) Factorise completely  $18a^2 - 98$ 

Answer (a) [2]

\_\_\_\_\_

[1]

(b) Simplify  $\frac{(2x)^3}{4y} \div \frac{12x}{30y^3}$ 

Answer (b) [2]

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01) bestfreepapers.com - The BEST website to download FREE example papers, notes and other materials from Singapore!

9

- - *(b)* Answer [2]

[1]

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01) bestfreepapers.com - The BEST website to download FREE exam pares, notes and other materials from Singapore!

picking a red ball and a blue ball.

(a) Amirah picks a ball at random. Given that the probability of picking a green ball is 0.4, find the value of m.

(b) If Amirah picks two balls at random, without replacement, find the probability of

..... Answer (b) [1] 12 (a) Solve  $12(\frac{1}{2}x-3) = 60$ 

Answer (a)

(b) Find the smallest integer that satisfies  $5 \le 2(x-3)$ .

(a) Given that  $49^{h} = 7^{4} \times 7^{12}$ , find the value of h. 13

(b) Given that 
$$\frac{1}{2^{-k}} = \frac{2^{18}}{2^{\frac{5}{2}}}$$
, find the value of k. [1]

**b**.

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01) bestfreepapers.com - The BEST website to download FREE examples, notes and other materials from Singapore!

10

14 A line AB is drawn below,

A

| (a) | Construct a triangle ABC such that $AC = 10$ cm and $BC = 11$ cm,                                                                          | [1] |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | Construct the perpendicular bisector of AB,                                                                                                | [1] |
| (c) | Construct the angle bisector of angle BAC,                                                                                                 | [1] |
| (d) | The point $P$ is on the bisector of angle $BAC$ and is the same distance from $A$ as it is from $B$ . Mark and label the position of $P$ . | [1] |

В

15 (a) Express 756 as the product of its prime factors.

Answer (a) [1]

(b) Given that  $\frac{756k}{2}$  is a perfect square, write down the smallest possible integer value of k.

Answer (b) [3]

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01)

The diagram is a distance-time graph for the journey of a vehicle from point A to point B and its journey back to A during a period of 3.5 hours.

(a) Find the distance the vehicle had travelled by 09 50.

17

Answer (a) \_\_\_\_\_\_km [1]

(b) Calculate the speed that the vehicle must travel during the last part of its journey in order to return to its starting point by 12 30.

(c) What is the average speed, in km/h, of the vehicle for the whole journey if it returns to the starting point at 12 30?

| (d) | A second vehicle leaves $B$ for $A$ at 09 30. It travelled at a constant speed of    |
|-----|--------------------------------------------------------------------------------------|
|     | 80 km/h.                                                                             |
|     | By adding a straight line on the graph, state an estimate of the time at which the t |

By adding a straight line on the graph, state an estimate of the time at which the two vehicles first met, giving your answers to the nearest minute.

Answer (d) [2]

18  $x^2 + 6x - 11$  can be expressed in the form  $(x+p)^2 + q$ .

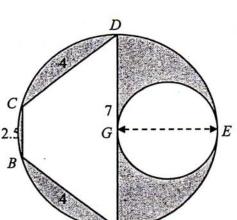
(a) Find the value of p and q.

Answer (a)  $p = \dots$ 

q =

- (b) Hence, solve  $x^2 + 6x 11 = 0$ , correct your answers to two decimal places.

- 19 Mr Teo, a shoe shop owner makes a profit of 20% for every pair of shoes that was sold.
  - (a) Find the selling price of a pair of shoe if its cost price is \$150.


(b) A pair of Nike shoes is sold for \$360. Find the cost price of the Nike shoes.

During the End of Year Sale, there is a discount of 15%.

(c) Find the amount the customer has to pay for the same pair of Nike shoes now.

Answer

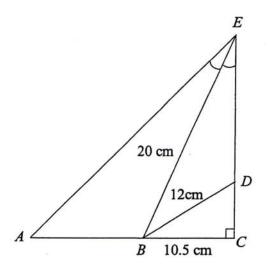
(d) Find the new percentage profit of the pair of Nike shoes.



A The diagram shows a circular cardboard ABCDE of diameter AD. A trapezium ABCD and a circle of diameter, GE, are removed from the cardboard. It is given that BC = 2.5 m, AD = 7 m and AB = CD = 4 m.

### Calculate

(a) the height of the trapezium,


Answer (a) ..... m [1]

(b) the area of the shaded region,

- (c) the perimeter of the shaded region.

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01)

- The BEST website to download FREE exampapers, notes and other materials from Singapore!



In the figure, triangle ACE is a right-angle triangle. B and D are points on AC and CE respectively such that BC = 10.5 cm, BE = 20 cm and BD = 12 cm. The line BE bisects the angle AEC.

Find

(a) angle BEC,

Answer (a)  $\angle BEC = \dots \circ [1]$ 

(b) the length of AE,

(c)  $\sin \angle BDE$ , giving your answer as a fraction in the simplest form.

Answer (c)  $\sin \angle BDE =$  [1]

22 (a) The table below shows the distribution of Mathematics test marks of a class of students.

| Marks           | $40 \le x \le 50$ | $50 \le x \le 60$ | $60 \le x \le 70$ | $70 \le x \le 80$ | $80 \le x \le 90$ |
|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| No. of students | 4                 | 12                | р                 | 8                 | 6                 |

(i) If p = 10, find the mean mark.

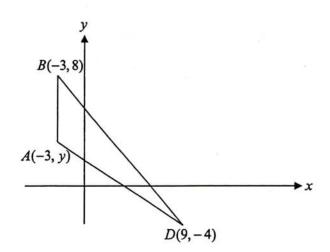
Answer (a)(i) marks [2]

- (ii) If the modal mark is 55, state the greatest value of p.

Answer (a)(iii)  $p = \dots$  [1]

- (iii) If the median mark is 65, state the least value of p.
- (b) The stem and leaf diagram shows the time taken to serve customers at a fast food restaurant.

Time Taken to Serve a Customer


1 1 2 3 2 4 5 5 6 7 8 2 3 4 Key 3 1 means 3.1 minutes

(i) What was the median time taken to serve a customer?

(ii) The fast food restaurant claims that the average time taken to serve a customer is 2.7 minutes. Is the claim true? Explain your reasoning.

| Answer | (b)(ii)   |                                                                                        |     |
|--------|-----------|----------------------------------------------------------------------------------------|-----|
|        |           |                                                                                        | [1] |
| BN     | SS 4NA GC | E 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01)<br>bestfreepapers.com |     |

- The BEST website to download FREE exam papers, notes and other materials from Singapore!



(a) Calculate the gradient of the line BD.

|     | Answer (a)                                                                    | [1] |
|-----|-------------------------------------------------------------------------------|-----|
| (b) | Calculate the length of BD.                                                   |     |
|     | .5.                                                                           |     |
|     | Answer (b) units                                                              | [1] |
|     |                                                                               |     |
| (c) | The point A is $(-3, y)$ . If the gradient of the line AD is $-\frac{2}{3}$ , |     |
|     | show that the value of $y = 4$ .                                              |     |
|     | Answer                                                                        |     |
|     | 1083 V 1                                                                      | [1] |

(d) Hence, find the equation of the line through A which is parallel to BD.

| Answer | (d) | <br>[2] |  |
|--------|-----|---------|--|
|        |     |         |  |

(e) Calculate the area of ΔABD.
Answer (e) \_\_\_\_\_\_units<sup>2</sup> [1]
BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01)
bestfreepapers.com
- The BEST website to download FREE exam papers, notes and other materials from Singapore!

- His total expenditure was \$105.
- (a) Form a equation in x and y and show that it reduces to 22x + 3y = 420.

Answer

24

Due to the revision in food prices, the cost of a bar of chocolate was increased by \$0.70 and the cost of a six-pack cans of coke was increased by \$0.60. He calculated that his monthly expenditure on chocolates and coke would increase by \$13.50.

(b) Form another equation in x and y to represent the increase in expenditure and show that it reduces to 7x + y = 135.

Answer

(c) (i) Solve these equations to find the number of bars of chocolates and the number of cans of coke Mr Lee consumed in a month.

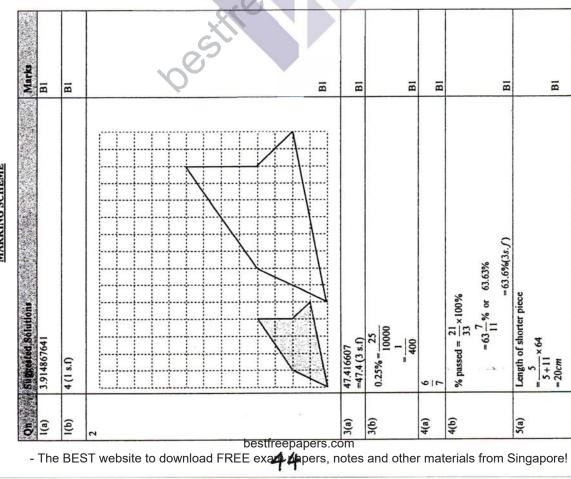
- Answer (c)(i) bars
  - ..... cans [3]

(ii) Find the total number of six-pack cans of coke Mr Lee drank in one year.

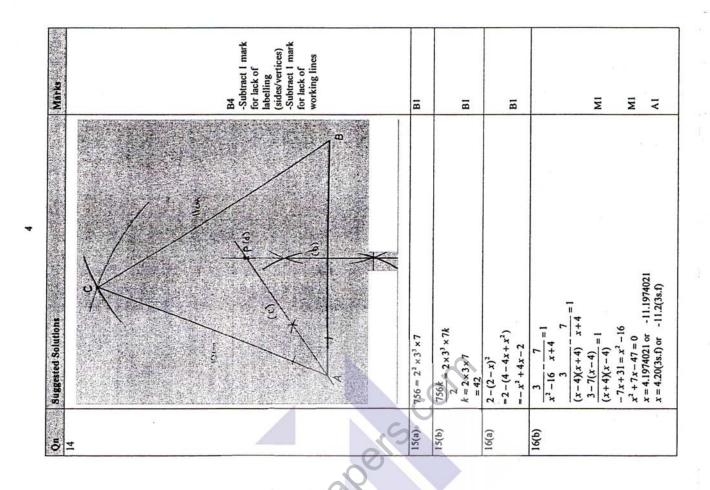
Answer (c)(ii) \_\_\_\_\_\_ six-pack cans [1]

### End of Paper Please CHECK your WORK

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 1 (4045/01)


- The BEST website to download FREE examples, notes and other materials from Singapore!

[1]


[1]



2016 BNSS 4NA Preliminary Examinations Mathematics Paper 1 (4045/01) <u>MARKING SCHEME</u>



| Suggested Solutions<br>Length of longer piece<br>=64 - 20                                                                                                  | lations<br>ser piece                                                | larks a second |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------|
| zm = 44<br>r = 7.001909612<br>r ≈ 7.00cm (3 s.f)                                                                                                           | 2                                                                   |                |
| $2000 \text{ ml} = 2 \text{ l}$ $35 \text{ milkshakes require} = \frac{2}{8} \times 35$ $= 8\frac{3}{4} \text{ l} \text{ o}$                               | $= \frac{2}{8} \times 35$<br>= $8\frac{3}{4}$ f or 8.75 lof milk B1 | =              |
| $5.4 \text{ km/h} = \frac{5.4 \times 1000 \text{ m}}{1 \times 3600 \text{ s}}$ $= 1.5 \text{ m/s}$                                                         | B                                                                   | F              |
| Time taken = $\frac{2.25km}{3km/h}$<br>=0.75 h<br>=45 mins                                                                                                 | W                                                                   | 1              |
| 1625h + 45 mins = 1710h                                                                                                                                    | VI                                                                  | 7              |
| $70^{\circ} + 25^{\circ} + 15^{\circ} + 50^{\circ}(n-3) = 360^{\circ}$ $n-3 = \frac{360^{\circ} - 70^{\circ} - 25^{\circ} - 15^{\circ}}{50^{\circ}}$ $n=8$ | 660°                                                                | I              |
| Largest interior angle = 180° - 15°<br>= 165°                                                                                                              | -15° BI                                                             |                |
| Joe'is correct.                                                                                                                                            | 8                                                                   |                |
| There are 4 right angles.<br>OR<br>The two diagonals are equal in length.                                                                                  | B1 B1                                                               |                |
| 18a <sup>2</sup> - 98<br>=2(9a <sup>2</sup> - 49)<br>=2(3a + 7)(3a - 7)                                                                                    | MI                                                                  | MI             |
| $=\frac{8x^3}{4y} \times \frac{30y^3}{12x}$ $=5x^2y^2$                                                                                                     | AI                                                                  | МІ<br>АІ       |



| Marks                                   | IM                                                   | АІ                     | BI                                                                             | 000                                                       | BI                                                              | MI                                              | BI                                                                                   | ī                                                                                                                                                                             |
|-----------------------------------------|------------------------------------------------------|------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On <sup>2</sup> 3.5 Brindeted Solutions | P(green):<br>$\frac{m}{5+4+m} = 0.4$<br>m = 0.4(9+m) | m = 3.6 + 0.4m $m = 6$ | P(1 red and 1 blue)= $2(\frac{5}{15} \times \frac{4}{14})$<br>= $\frac{4}{21}$ | $12(\frac{1}{2}x - 3) = 60$<br>( $\frac{1}{2}x - 3$ ) = 5 | $\begin{array}{c} 2\\ \frac{1}{2}x=8\\ x=16\\ x=16 \end{array}$ | 5 ≤ 2(x - 3)<br>5 ≤ 2x - 6<br>11 ≤ 2x<br>Ans: 6 | $49^{4} = 7^{4} \times 7^{12}$ $(7^{2})^{4} = 7^{4+12}$ $\therefore 2h = 16$ $h = 8$ | $\frac{1}{2^{-4}} = \frac{2^{16}}{2^{\frac{3}{2}}}$ $2^{4} = 2^{14} \frac{3}{2}$ $2^{4} = 2^{14} \frac{3}{2}$ $\therefore k = 15 \frac{1}{2}$ $\therefore k = 15 \frac{1}{2}$ |
| Qh -                                    | 11(a)                                                |                        | 11(b)                                                                          | 12(a)                                                     |                                                                 | 12(b)                                           | 13(a)                                                                                | 13(b)                                                                                                                                                                         |

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

|       |                                                                        | ないためであるとないであるという |
|-------|------------------------------------------------------------------------|------------------|
| 18(b) | $x^{2} + 6x - 11 = 0$                                                  |                  |
|       | $(x+3)^2 - 20 = 0$                                                     |                  |
|       | $(x+3)^2 = 20$                                                         |                  |
|       | $x+3=\pm\sqrt{20}$                                                     | IM               |
|       | $x = \sqrt{20} - 3$ or $-\sqrt{20} - 3$                                |                  |
|       | = 1.47213 or - 7.47213                                                 |                  |
|       | =1.47 or $-7.47$ (2 decimal places)                                    | И                |
| 19(a) | Selling price of the pair of shoe                                      |                  |
|       | 0C1 € x 92.071 =                                                       |                  |
|       | $=\frac{120}{100} \times $150$                                         |                  |
|       | = \$180                                                                | 81               |
| 19(b) | Cost Price of Nike shoes                                               |                  |
|       | $=\frac{100}{100} \times 3360$                                         |                  |
|       | = \$300                                                                | BI               |
| 19(c) | Amount the customer has to pay                                         |                  |
|       | = 85% × \$360                                                          |                  |
|       | = \$306                                                                | 81               |
| (p)61 | $\%$ profit = $\frac{$30}{}$                                           |                  |
| 5     | = 2%                                                                   | 81               |
| 20(a) | Height of trapezium = $\sqrt{CD^2 - \left(\frac{AD - BC}{2}\right)^2}$ |                  |
|       | $= \sqrt{4^2 - 2.3^2}$                                                 |                  |
|       | = /16 - 5.0625                                                         |                  |
|       | = 3.31 m                                                               | <b>B</b> 1       |

| BI                                   | B                                                                                | mo e                                                                              | Ē     | BI                                               | W                                                                                          | Al for both |
|--------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------|--------------------------------------------------|--------------------------------------------------------------------------------------------|-------------|
| Distance travelled = $40 \text{ km}$ | speed = $\frac{\text{distance}}{\text{time}}$<br>= $\frac{20}{0.5}$<br>= 40 km/h | Average speed = $\frac{160}{3.5}$<br>= $45\frac{5}{7}$ km/h<br>(accept 45.7 km/h) |       | Time at which the 2 vehicles first met is 10 00. | $x^{2} + 6x - 11 = (x + 3)^{2} - 3^{2} - 11$ $= (x + 3)^{2} - 9 - 11$ $= (x + 3)^{2} - 20$ | 3 20        |
| l 7(a)                               | 17(b)                                                                            | 17(c)                                                                             | 17(d) |                                                  | 18(a)                                                                                      |             |

- The BEST website to download FREE examplers, notes and other materials from Singapore!

Marks Ā IV Ī VI BI BI BI BI В B BI The claim is not true because the restaurant used the mode. A more accurate time would be the mean or median.  $Mean = \frac{4 \times 45 + 12 \times 55 + 10 \times 65 + 8 \times 75 + 6 \times 85}{4 \times 62 \times 85}$ The median is the number in the  $\left(\frac{n+1}{2}\right)^{th}$  position, 4+12+10+8+6Length of  $BD = \sqrt{[8 - (-4)]^2 + (-3 - 9)^2}$ which is  $\frac{19+1}{2} = 10$  th position. Median = 3.2 min  $\sqrt{(12)^2 + (-12)^2}$ ≈ 17.0 units  $\cos 63.3365^\circ = \frac{\sqrt{289.75}}{AE}$ AE = 37.932= 16.9706 ≈ 37.9 cm = √288 ZAEC = 2(31.6682°) = 63.3365° Gradient =  $\frac{8 - (-4)}{(-3) - (9)}$ greatest value of p=11 Suggested Solutions  $\sin \angle BDE = \frac{10.5}{12}$ = 65 22(a)(iii) least value of p = 3 $CE = \sqrt{20^2 - 10.5^2}$ = 3 = √289.75 22(a)(i) If p = 10, 22(a)(ii) 22(b)(ii) 22(b)(i) Qu 21(b) 23(b) 21(c) 23(a)

| 20(b) | Area of trapezium = $\frac{BC + AD}{2}$ x height | M1 for either area<br>of trapezium or |
|-------|--------------------------------------------------|---------------------------------------|
|       | = 4.75 × 3.307                                   | the 2 circles.                        |
|       | $= 15.708 \mathrm{m}^2$                          |                                       |
|       | Area of circle $ABCDE = \pi \times 3.5^2$        |                                       |
|       | = 38.4895 m <sup>2</sup>                         | я                                     |
|       |                                                  | -                                     |
|       | Area of circle $GE = \pi \times 1.75^2$          |                                       |
|       | $= 9.622375 \mathrm{m}^2$                        |                                       |
|       | Shaded area = 38,4895 - 9.622375 - 15.708        | Ç                                     |
|       | = 13, 150125                                     | 2                                     |
|       | $= 13.2 \mathrm{m^2}$ (3 sie fie.)               |                                       |
|       |                                                  | AI AI                                 |
| 20(c) | Circumference of circle GE                       | MI for either                         |
|       | $= 2\pi \times 1.75$                             | perimeter of                          |
|       | = 11.00 m                                        | trapezium or                          |
|       | Circumference of circle JEDE                     | the 2 circles.                        |
|       | $= 2\pi \times 3.5$                              |                                       |
|       | = 22.00 m                                        |                                       |
|       |                                                  |                                       |
|       | = 2.5 + 4 + 4 + 7                                |                                       |
|       | = 17.5 m                                         |                                       |
|       | Perimeter of shaded region                       |                                       |
|       | = 17.5 + 22 + 11                                 |                                       |
|       | = 50.5 m (3 sig. fig.)                           | AI                                    |
| 21(a) | $\sin \angle BEC = \frac{10.5}{20}$              |                                       |
|       | 20<br>2 / 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2    |                                       |
|       | ZDEC = 31,0062                                   |                                       |
|       | -/·IC #                                          | -                                     |

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

-

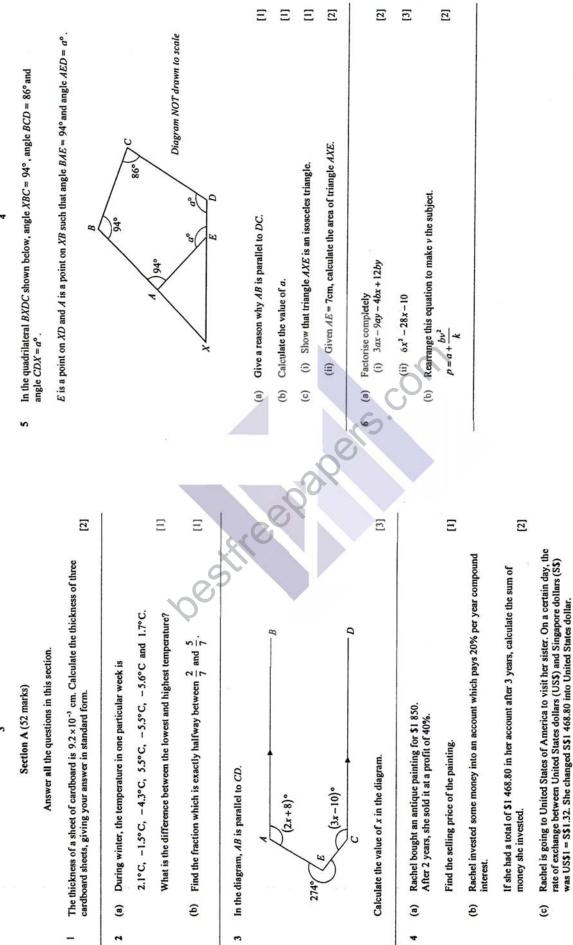
-

|                                            | W                                                                               | ч                               | IV                   | IM                                    | ١٧                | A1              | 1                                                                                |                                             | B                                                                                           |                                                                 |                           |
|--------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|----------------------|---------------------------------------|-------------------|-----------------|----------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------|
| 22x + 3y = 420 - (1)<br>7x + y = 135 - (2) | From (2), $y = 135 - 7x - (3)$<br>Sub. (3) into (1),<br>27x + 3(115 - 7x) = 420 | 22x + 405 - 21x = 420<br>x = 15 | $(c_1)/-c_{c_1}=v_1$ | Or<br>(2) × 3, $21x + 3y = 405 - (3)$ | (1) - (3), x = 15 | y = 135 - 7(15) | - 00<br>No. of chocolate bars consumed in a month = 15                           | No. of cans of coke drank in a month = $30$ | No. of six-pack cans of coke drank in a year<br>= $(30 \times 12) + 6$<br>= $60$            |                                                                 | Ç                         |
| <b>2</b> 4(c)(i)                           |                                                                                 |                                 |                      |                                       | 4                 |                 |                                                                                  |                                             | 24(c)(ii)                                                                                   | 5                                                               |                           |
|                                            |                                                                                 |                                 |                      |                                       |                   |                 | 00                                                                               |                                             |                                                                                             |                                                                 |                           |
|                                            | -                                                                               |                                 |                      | N N                                   | 2                 | VI              |                                                                                  |                                             |                                                                                             |                                                                 |                           |
|                                            |                                                                                 | 2                               | <                    | ~ ~                                   |                   |                 | B                                                                                |                                             | <u>n</u>                                                                                    | B                                                               |                           |
| $\frac{1}{(9)} = -\frac{2}{3}$             | $\frac{y+4}{12} = \frac{2}{3}$ $y+4=8$ $y=4$ (shown)                            | y = mx + c $4 = -[(-3) + c$     | c=1<br>∴y=-x+1       | Or $v = 4 = -1[r - (-3)]$             |                   | y=-x+1          | Area of $\Delta ABD = \frac{1}{2} \times 4 \times 12$<br>= 24 units <sup>2</sup> | 4.50                                        | $y_{12} = y_{12} = y_{22} = 100$<br>550x + 75y = 10500<br>$y_{22} = y_{23} = 0.0$ (channel) | $(110010)  0.27 - 7 (2.722) \\ 0.7x + \frac{0.60}{2} + x (7.0)$ | 0<br>7×+ u = 135 (Chound) |
| $\frac{y - (-4)}{(-3) - (9)}$              |                                                                                 |                                 |                      |                                       |                   |                 |                                                                                  |                                             |                                                                                             |                                                                 |                           |

6

- The BEST website to download FREE exam the best of the second stress and other materials from Singapore!

· · ·




| Mathematical Formulae        | Compound Interest<br>Total amount = $P\left(1 + \frac{r}{100}\right)^{a}$                                                                                                                                           | Mensuration                | Curved Surface area of a cone = $ml$ | Surface area of a sphere = $4\pi^2$ | Volume of a cone $=\frac{1}{3}\pi^2 h$ | Volume of a sphere $=\frac{4}{3}m^3$ | Area of triangle $ABC = \frac{1}{2}absinc$                  | Arc length = $r\theta$ , where $\theta$ is in radians | Sector area $= \frac{1}{2}r^2\theta$ , where $\theta$ is in radians<br>Trigonometry                                                                                                                                                                                                                          | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ | $a^2 = b^2 + c^2 - 2bc\cos A$     | Statistics                                                                                                           | $Mean = \frac{\Sigma f x}{\Sigma f}$ Standard deviation = $\left[ \frac{\Sigma f x^2}{\Sigma f x^2} - \left( \frac{\Sigma f x}{\Sigma f} \right)^2 \right]$                                                                                                                                  |                                                                        |                                    |                                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|-------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------|---------------------------------------------|
| SCHOOL                       | learners ; Morally upright, caring<br>ugh quality programmes within a                                                                                                                                               | o. Class                   |                                      | 4045/02                             | Date: 12 August 2016                   | 2 hours                              |                                                             |                                                       | L hand in.                                                                                                                                                                                                                                                                                                   |                                                          |                                   | question or part question.                                                                                           | appropriate.<br>The answer is not exact, give the answer to<br>tal place.                                                                                                                                                                                                                    |                                                                        |                                    | d pages.                                    |
| BEDOK NORTH SECONDARY SCHOOL | Vision : Leaders for the future ; Creative lifelong learners ; Morally upright, caring<br>and loyal<br>Mission : To develop our students holistically through quality programmes within a<br>nurturing environment. | Name Rever Incluminant LAN |                                      | MATHEMATICS SYLLABUS A              | PAPER 2                                | Sec Four Normal Academic             | Additional Materials: Answer Paper<br>Graph Paper (1 sheet) | READ THESE INSTRUCTIONS FIRST                         | Write your answers and working on the separate Answer Paper provided.<br>Write your name, class register number and class on all the work you hand in.<br>Write in dark blue or black pen.<br>You may use a pencil for any diagrams or graphs.<br>Do not use staples, paper clips, glue or correction fluid. | Section A<br>Answer all questions.                       | Section B<br>Answer one question. | The number of marks is given in brackets [] at the end of each quest<br>The total of the marks for this paper is 60. | The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question and if the answer is three significant figures. Give answers in degrees to one decimal place. For $\pi$ , use either your calculator value or 3.142. | At the end of the examination, fasten all your work securely together. | Seller: Mdm Lam CP and Mrs Jan Yap | This document consists of 11 printed pages. |

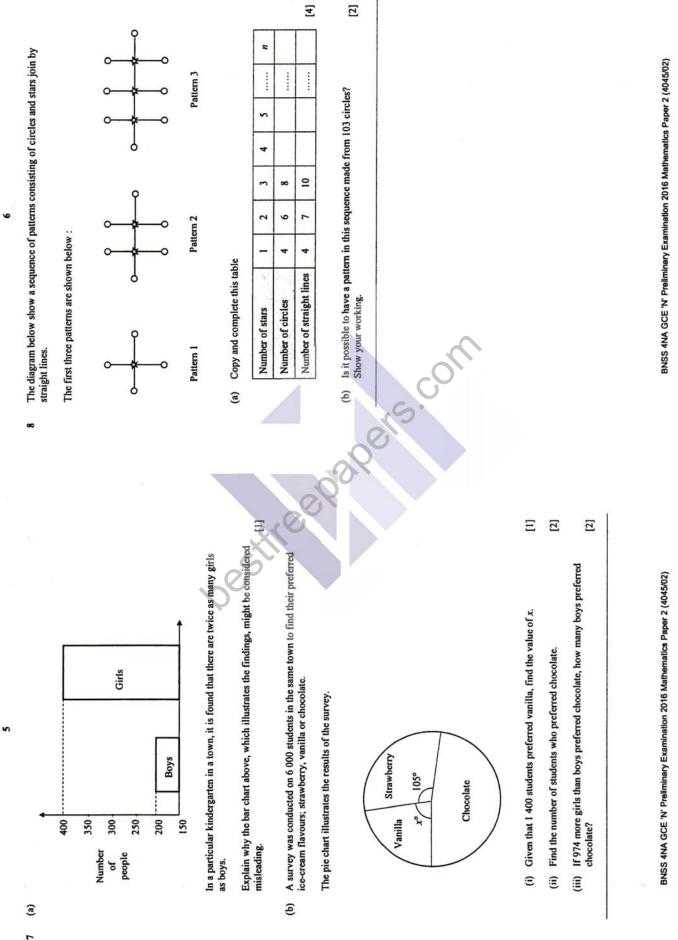
bestfreepaperg.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 2 (4045/02)

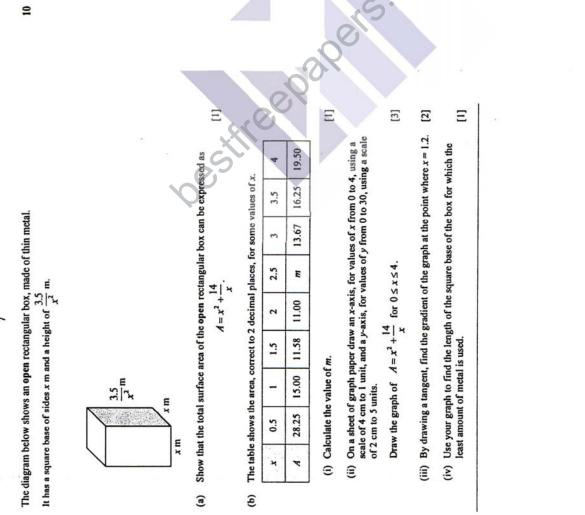
BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 2 (4045/02)

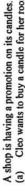


bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!


BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 2 (4045/02)

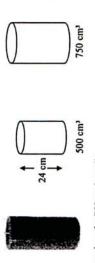
[2]


How many United States dollars did she receive? Give your answer to the nearest


dollar.

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 2 (4045/02)



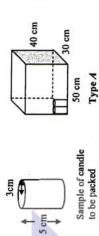

bestfreepapers.com - The BEST website to download FREE exam papers notes and other materials from Singapore!

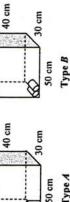




Cleo wants to buy a candle for her room and plans to place it on her bookshelf. The bookshelf has a height of 35 cm.

In the diagram below, two candles are similar in shape. The 500 cm<sup>3</sup> candle has a height of 24 cm.





Determine if the 750 cm3 candle can fit into her bookshelf. Show your working. Cleo would like to buy the 750 cm<sup>2</sup> candle.

[3]

airfreight. He has to pack the candles into the cartons. In order to lower the airfreight cost, he has to minimise the empty space left in the carton after packing the candles. The shop owner needs to export some candles to his customers in Korea by 9

The diagram shows the two types of packing. Type A and Type B.





The table shows the dimensions of the carton and candle, as well as the packing

requirements.

| Canoli unidensions    | Carton dimensions   Length 30 cm, width 30 cm, Height 40 cm.                                                                                                                                |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Candle dimensions     | Height 5 cm, Radius 3 cm.                                                                                                                                                                   |
| Type <u>A</u> packing | Candles are placed vertically in the carton.                                                                                                                                                |
| Type <u>B</u> packing | Candles are placed horizontally in the carton.                                                                                                                                              |
| Assumptions           | <ol> <li>Candles can be packed in as many layers as possible.</li> <li>Candles are to be packed in the same manner within the<br/>same carton in the respective type of packing.</li> </ol> |

Which type of packing could minimise the empty space left in the carton after packing the candles? Show your working. Ξ

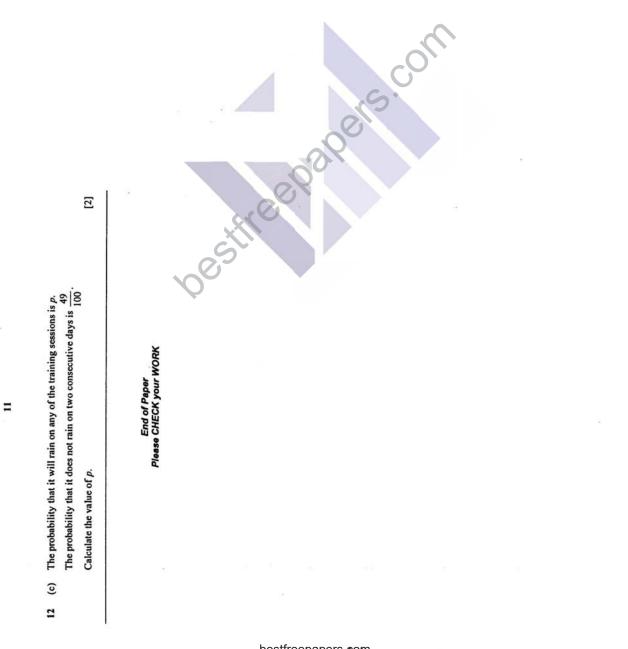
[3]

[2]

Using your answer in part (i), calculate the volume of the empty space left in the carton after packing the candles in the carton. Leave your answer to the nearest whole number. Ξ

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 2 (4045/02)

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 2 (4045/02)


bestfreepapers.com - The BEST website to download FREE examplers, notes and other materials from Singapore!

Ξ [2] Ξ Ξ Ξ State which athlete was the more consistent runner, giving a reason for your answer. 65 Ethan's times had a lower quartile of 62.5 minutes, a median of 63 minutes and an Which percentile of the distribution can be used to find the answer in  $(\mathrm{iii})(\mathbf{a})?$ Ernest and Ethan are two athletes who have training sessions together. In 80 sessions during 2015 they ran the same route, and their times were recorded. The cumulative frequency curve shows the distribution of Ernest's times. (iii) (a) A session with timing greater than 64 minutes is classed as How many of Ernest's training sessions are unsatisfactory? 3 63 Time (minutes) find the interquartile range of the times, 62 Using the above graph, (i) find the median time, upper quartile of 64 minutes. 61 unsatisfactory. 3 40 80 3 20 9 Cumulative 1 Frequency (a) **(**9 12 [3] [2] Ξ Ξ The diagram shows the positions of a harbour, H, a lighthouse, L, and two buoys A and B. Given that the boat reached A at 07 15, calculate the time at which it left the Answer one question from this section. Each question carries 8 marks. Calculate the shortest distance between the boat and the lighthouse A boat sailed from the harbour along the line HAB. The boat sailed at a constant speed of 3 m/s. Section B (8 marks) HA = 4.5 km, AL = 2.8 km and angle  $HAL = 115^{\circ}$ . 2.8 (ii) the area of triangle HAL. Find the bearing of H from A. The bearing of A from H is 042°. HAB is a straight line. harbour. 4.5 (i) HL, Calculate 42% North Ξ Ē T (a) (q) (c) =

BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 2 (4045/02)

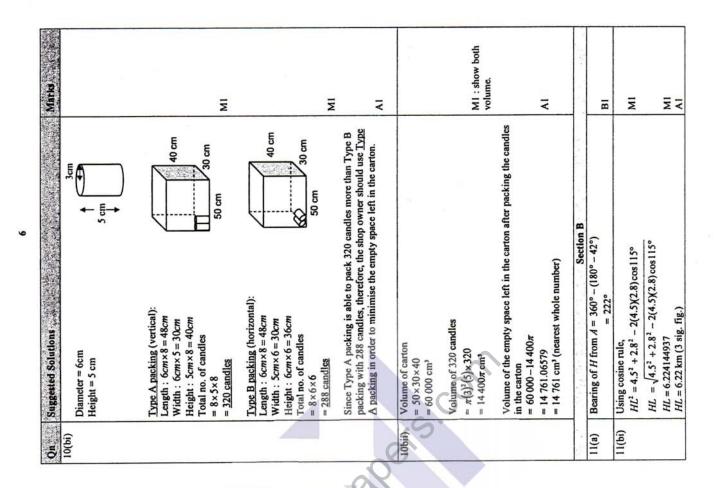
BNSS 4NA GCE 'N' Preliminary Examination 2016 Mathematics Paper 2 (4045/02)

bestfreepapers.com - The BEST website to download FREE exam papere, notes and other materials from Singapore!



| Ŋ    | Suggested Solutions                                                                                                                         | Marks |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4(a) | $100\% 51850$ $140\% \frac{1850}{100} \times 140$ $= 52590$                                                                                 | BI    |
| 4(b) | Let the sum of money Rachel invested be \$P.                                                                                                |       |
|      | <i>r</i> = 20%, <i>n</i> = 3, <i>A</i> = <b>5</b> 1468.80                                                                                   |       |
|      | $A = P\left(1 + \frac{r}{100}\right)^n$                                                                                                     |       |
|      | $1468.80 = P\left(1 + \frac{20}{100}\right)^3$                                                                                              | Ш     |
|      | $1468.80 = P\left(1 + \frac{20}{100}\right)^3$                                                                                              |       |
| _    | 1468.80 = 1.728P<br>P = \$850                                                                                                               | ١٧    |
| 4(c) | S\$1.32 = US\$1                                                                                                                             |       |
|      | $S_{31468.80} = \frac{1}{132} \times 1468.80$                                                                                               | MI    |
|      | = US\$1 112.727273<br>≈ \$1 113 (nearest dollar)                                                                                            | AI .  |
| 5(a) | $\angle ABC + \angle BCD = 94^{\circ} + 86^{\circ}$                                                                                         |       |
| 2    | $=180^{\circ}$ (int. $\angle s$ , // lines)                                                                                                 |       |
| 5    | $\angle ABC$ and $\angle BCD$ are Interior angles, $AB$ is parallel to $DC$                                                                 | BI    |
| 5(b) | Sum of int angles of a 5-sided polygon<br>= (5-2)×180°                                                                                      |       |
|      | $= 540^{\circ}$ $94^{\circ} + 94^{\circ} + 86^{\circ} + 2a = 540^{\circ}$ $2a = 540^{\circ} - 274^{\circ}$ $2a = 560^{\circ} - 274^{\circ}$ |       |
|      | $a = 133^{\circ}$                                                                                                                           | B1    |

| Marks                           | Ш                                                                                     | VI                         | E.                                                                                                                                                                                               | Silli                                                                                       |                                                                                                                                                                                             | IM                                                                | IW                                                                                                                                                                                                                                                                                                                                                   | A1            |
|---------------------------------|---------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Supported Solutions A Section A | 3 × 9.2 × 10 <sup>-1</sup><br>= 27.6 × 10 <sup>-1</sup><br>= 2.76 × 10 <sup>-14</sup> | $= 2.76 \times 10^{-2} cm$ | Highest temperature is 5.5° C.<br>Lowest temperature is $-5.6^{\circ}$ C.<br>Difference between the lowest and highest temperature is $5.5^{\circ}$ C $-(-5.6)^{\circ}$ C<br>= $11.1^{\circ}$ C. | $\frac{2}{7} + \frac{5}{7} = \frac{7}{7}$ $\frac{7}{7} + 2$ $= \frac{1}{2}$ $= \frac{1}{2}$ | 274° $(2x+8)^{\circ}$ $(2x+8)^{\circ}$ $(2x+8)^{\circ}$ $(2x+8)^{\circ}$ $(2x+8)^{\circ}$ $(3x-10)^{\circ}$ $(3x-10)^{\circ}$ $D$ Construct a line <i>EF</i> such that <i>EFII/ABI/CD</i> . | $\angle AEC = 360^{\circ} - 274^{\circ}$ ( $\angle s$ at a point) | $= 86^{\circ}$ $\angle BAE + \angle FEA = 180^{\circ} (int \angle s \ ABI/IEF)$ $\angle FEC + \angle DCE = 180^{\circ} (int \angle s \ EFI/CD)$ $\therefore (2x+8)^{\circ} + (3x-10)^{\circ} + 86^{\circ} = 360^{\circ}$ $5x^{\circ} - 2^{\circ} + 86^{\circ} = 360^{\circ}$ $5x^{\circ} = 360^{\circ} - 84^{\circ}$ $= 276^{\circ}$ $= 276^{\circ}$ | $\frac{x}{5}$ |
| Qu                              | _                                                                                     |                            | 2(a)                                                                                                                                                                                             | 2(b)                                                                                        | epapers.com                                                                                                                                                                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                      |               |


- The BEST website to download FREE exam papers.com

12:201

| Accept any one of the following reasons and other reasonable<br>explanation :The vertical axis does not start with '0'.The bar chart seems to illustrate that there are 5 times as many<br>than boys. $x = \frac{1400}{6000} \times 360^{\circ}$ $= 84^{\circ}$ $= 84^{\circ}$ Angle of sector representing chocolate $= 360^{\circ} - 103^{\circ} - 84^{\circ}$ ( $\angle s$ at a point) $= 171^{\circ}$ No. of boys who preferred chocolate $= 171^{\circ}$ No. of boys who preferred chocolate $= 2850^{\circ} - 974$ $= 2850^{\circ} - 800^{\circ}$ $= 2850^{\circ} - 974$ $= 2850^{\circ} - 874^{\circ} + 44^{\circ} + 44^{\circ} + 44^{\circ} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qu      | Suggested Solutions (************************************                                                                                                                                                        | Marks and and                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| The bar chart seems to illustrate that there are 5 times as many than boys.<br>$x = \frac{1400}{6000} \times 360^{\circ}$ $= 84^{\circ}$ Angle of sector representing chocolate<br>$= 360^{\circ} - 105^{\circ} = 84^{\circ} (\angle s$ at a point)<br>$= 171^{\circ}$ No. of sector representing chocolate<br>$= \frac{171^{\circ}}{360^{\circ}} \times 6000$ $= 2.850$ No. of boys who preferred chocolate<br>$= \frac{171^{\circ}}{360^{\circ}} \times 6000$ $= 2.850$ No. of boys who preferred chocolate<br>$= \frac{171^{\circ}}{360^{\circ}} \times 6000$ $= 2.850 - 974$ $= \frac{2850 - 974}{2}$ $= 938$ No. of boys under the secondate of the seco                                                                                                                                                      | 7(a)    |                                                                                                                                                                                                                  | B1 (cither answer<br>is acceptable)   |
| $x = \frac{1400}{6000} \times 360^{\circ}$ $= 84^{\circ}$ Angle of sector representing chocolate<br>$= 360^{\circ} - 105^{\circ} - 84^{\circ} (\angle s$ at a point)<br>$= 171^{\circ}$ No. of students who preferred chocolate<br>$= \frac{171^{\circ}}{360^{\circ}} \times 6000$ $= 2850 - 974$ $= \frac{171^{\circ}}{360^{\circ}} \times 6000$ $= 2850 - 974$ $= \frac{2850 - 974}{2}$ $= 2850 - 974$ $= \frac{2850 - 974}{2}$ $= 938$ No. of the second etermine in the sequence made free in the sequenc                                                                                                                                                                         |         | The bar chart seems to illustrate that there are 5 times as many girls than boys.                                                                                                                                | -                                     |
| Angle of sector representing chocolate<br>= 360° - 105° - 84° ( $\angle x$ at a point)<br>= 171°<br>No. of students who preferred chocolate<br>= $\frac{171°}{360°} \times 6000$<br>= 2.850<br>= 2.850<br>No. of boys who preferred chocolate<br>= $\frac{2850 - 974}{3}$<br>= 938<br>= 938<br>No. of $\frac{1}{4}$ $\frac{2}{7}$ $\frac{3}{10}$ $\frac{1}{13}$ $\frac{1}{16}$ $\frac{11}{12}$ $\frac{111}{1100}$<br>Straight $\frac{1}{4}$ $\frac{7}{7}$ $\frac{10}{10}$ $\frac{13}{13}$ $\frac{1}{16}$ $\frac{111}{1100}$<br>2n + 2 = 103<br>2n + 2 = 103<br>2n + 2 = 103<br>No, of the provent of the sequence made fit is not possible to have a pattern in the sequence made fit is not possible to have a pattern in the sequence made fit is $x^2 + 4x \left(\frac{3.5}{x^2}\right)$<br>= $x^2 + 4x \left(\frac{3.5}{x}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7(bi)   | $x = \frac{1400}{6000} \times 360^{\circ}$<br>= 84°                                                                                                                                                              | BI                                    |
| = 2.850 $= 2.850 - 974$ $= 2.850 - 974$ $= 2.850 - 974$ $= 2.850 - 974$ $= 2.850 - 974$ $= 2.850 - 974$ $= 2.100$ $= 2.100$ $= 2.100$ $= 2.100$ $= 2.100$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$ $= 2.103$                                                                                                                                                                                                                                                                 | 6(bii)  | Angle of sector representing chocolate<br>= $360^{\circ}-105^{\circ}-84^{\circ}$ ( $\angle s$ at a point)<br>= $171^{\circ}$<br>No. of students who preferred chocolate<br>= $\frac{171^{\circ}}{2} \times 6000$ | IW                                    |
| (i) No. of boys who preferred chocolate<br>$= \frac{2850 - 974}{2}$ $= 938$ $= 938$ $= 938$ No. of 1 2 3 4 5<br>No. of 4 6 8 10 12<br>No. of 4 5 10 13 16<br>No. of 4 7 10 13 16<br>Stars 2n + 2 = 103<br>2n + 2 = 103<br>2 | 4       | 360°<br>= 2 850                                                                                                                                                                                                  | М                                     |
| No. of12345No. of4681012No. of47101316No. of47101316straight17101316straight2(n+1)=103 $2n+2=103$ $2n+2=103$ $2n+2=103$ $2n+2=103$ $2n+2=103$ $2n+2=103$ $2n+2=103$ $n=\frac{101}{2}=50.5$ No, it is not possible to have a pattern in the sequence made frecircles because 101 is not divisible by 2.Total surface area $= x^2 + 4x \left( \frac{3.5}{x} \right)$ $= x^2 + 4x \left( \frac{3.5}{x} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6(biii) | No. of boys who preferred chocolate<br>= $\frac{2850 - 974}{2}$<br>= 938                                                                                                                                         | IM<br>AI                              |
| No. of12345starsNo. of4681012No. of47101316starsight11101316No. of47101316Straight21103 $2(n+1) = 103$ $2n+2 = 103$ $2n+2 = 103$ $2n+2 = 103$ $2n+2 = 103$ No, it is not possible to have a pattern in the sequence made fractices because 101 is not divisible by 2Total surface area= $x^2 + 4x \left( x \cdot \frac{3.5}{x^2} \right)$ $= x^2 + 4x \left( \frac{3.5}{x} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7(a)    |                                                                                                                                                                                                                  | Total 4 marks :                       |
| StatusNo. of4681012No. of47101316No. of47101316Straight2(n+1)=103 $2(n+1)=103$ $2(n+1)=103$ $2n = 101$ $n = \frac{101}{2} = 50.5$ No, it is not possible to have a pattern in the sequence made frn = $\frac{101}{2} = 50.5$ No, it is not possible to have a pattern in the sequence made frcircles because 101 is not divisible by 2.Total surface area= $x^2 + 4x \left( x \cdot \frac{3.5}{x^2} \right)$ = $x^2 + 4x \left( \frac{3.5}{x} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | of 1 2 3 4 5                                                                                                                                                                                                     | B1: 10, 12                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S       | 4 6 8 10 12                                                                                                                                                                                                      | BI: 13, 16                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 4 7 10 13                                                                                                                                                                                                        | B1: $2(n + 1)$ .<br>Accept $2n + 2$ . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                                                                                                                                                                                  | 1 + 46 :10                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7(b)    | 2(n+1) = 103<br>2n+2 = 103<br>2n = 101<br>$n = \frac{101}{2} = 50.5$<br>No, it is not possible to have a pattern in the sequence made from 103<br>circles because 101 is not divisible by 2.                     | IW                                    |
| (x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9(a)    | Total surface area<br>= Area of bottom + area of 4 sides<br>= $x^{2} + 4x\left(x \cdot \frac{3.5}{x^{2}}\right)$<br>= $x^{2} + 4x\left(\frac{3.5}{x^{2}}\right)$                                                 | 5                                     |
| $=x^2+\frac{14}{x}$ cm <sup>2</sup> (shown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *       | $(x) = x^{2} + \frac{14}{x} \text{ cm}^{2} \text{ (shown)}$                                                                                                                                                      | BI                                    |

| $\begin{aligned} \sum_{AAX} = 180^{v} - 133^{v} (c_{S} \text{ on a str. line}) \\ = 47^{v} \\ = 47^{v} \\ = 47^{v} \\ \text{Since } \angle AXE = 94^{v} - 47^{v} (ext. \angle Cf a \Delta) \\ = 47^{v} \\ \text{Since } \angle AXE = 94^{v} - 47^{v} (ext. \angle Cf a \Delta) \\ \text{Since } \angle AXE = 94^{v} - 94^{v} (c_{S} \text{ on a str. line}) \\ \hline \Delta B \\ \angle EAX = 180^{v} - 94^{v} (\angle S \text{ on a str. line}) \\ = 86^{v} \\ \angle AXE = 180^{v} - 133^{v} (\angle S \text{ on a str. line}) \\ = 47^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta . \\ A \\ = 80^{v} \\ A \\ = 47^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta . \\ A \\ \text{Since } \angle AXE = 180^{v} - 94^{v} \\ = 47^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta . \\ A \\ \text{Since } \angle AXE = 180^{v} - 94^{v} \\ = 47^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta . \\ A \\ \text{Since } \angle AXE = 180^{v} - 94^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta . \\ A \\ \text{Since } \angle AXE = 180^{v} - 94^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta . \\ A \\ \text{Since } \angle AXE = 180^{v} - 94^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is a nisosceles } \Delta . \\ A \\ \text{Since } \angle AXE = 180^{v} - 94^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is a nisosceles } \Delta . \\ A \\ \text{Since } \angle AXE = 180^{v} - 94^{v} \\ \text{Since } \angle AXE = 47^{v} \text{ therefore } \Delta AXE \text{ is a nisosceles } \Delta . \\ A \\ \text{Since } A \\ \text{Since } \angle AXE = 47^{v} \text{ is necleorised completely} \\ \frac{3x^{v} - 5}{2(3x + 1(x - 5))} \\ \text{Since } A \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Add      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $A^{\phi} - 47^{\circ} (ext. \angle of a \Delta)$ $T^{\phi} = \angle AXE = 47^{\circ}, \text{ therefore } \Delta XE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta XE \text{ is an isosceles } \Delta.$ $-133^{\circ} (\angle s \text{ on a str. line})$ $-86^{\circ} - 47^{\circ} (\angle s \text{ sun of } \Delta)$ $-86^{\circ} - 47^{\circ} (\angle s \text{ sun of } \Delta)$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta XE \text{ is an isosceles } \Delta.$ $-86^{\circ} - 47^{\circ} (\angle s \text{ sun of } \Delta)$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta XE \text{ is an isosceles } \Delta.$ $-86^{\circ} - 47^{\circ} (\angle s \text{ sun of } \Delta)$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta XE \text{ is an isosceles } \Delta.$ $-86^{\circ} - 47^{\circ} (\angle s \text{ sun of } \Delta)$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta XE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta XE \text{ is an isosceles } \Delta.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | ∠AEX = 180° - 133° (∠s on a str. line)<br>= 47°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| = $\angle AXE = 47^\circ$ , therefore $\triangle AXE$ is an isosceles $\triangle$ .<br>$-94^\circ$ ( $\angle s$ on a str. line)<br>$-133^\circ$ ( $\angle s$ on a str. line)<br>$-133^\circ$ ( $\angle s$ on a str. line)<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-86^\circ - 47^\circ$ ( $\angle s$ um of $\triangle$ )<br>$-132^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>$-16^\circ$<br>- |            | Δ <i>AXE</i> = 94°-47° (ext.∠of a Δ)<br>= 47°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| -94° ( $\angle$ s on a str. line)<br>-133° ( $\angle$ s on a str. line)<br>-86° - 47° ( $\angle$ s sum of $\Delta$ )<br>-86° - 47° ( $\angle$ s sum of $\Delta$ )<br>= $\angle AXE = 47°$ , therefore $\Delta AXE$ is an isosceles $\Delta$ .<br>(80° - 94°)<br>(80° - 94°)<br>(10° - 94°)<br>(10° - 94°)<br>30)<br>31×1 - 31<br>31×1 - 5<br>-11×1<br>-14×<br>(1 ± is omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sii<br>(st | nce $\angle AEX = \angle AXE = 47^{\circ}$ , therefore $\triangle AXE$ is an isosceles $\Delta$ . nown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BI                   |
| $-94^{\circ} \ (\angle s \text{ on a str. line})$ $-133^{\circ} \ (\angle s \text{ on a str. line})$ $-86^{\circ} - 47^{\circ} \ (\angle s \text{ sum of } \Delta)$ $-86^{\circ} - 47^{\circ} \ (\angle s \text{ sum of } \Delta)$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AE \text{ is an isosceles } \Delta.$ $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AE \text{ is an isosceles } \Delta.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| -133° ( $\angle s$ on a str.line)<br>-86° - 47° ( $\angle s$ sum of $\Delta$ )<br>= 2.4XE = 47°, therefore $\Delta 4XE$ is an isosceles $\Delta$ .<br>(180° - 94°)<br>(180° - 94°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V          | $EAX = 180^\circ - 94^\circ$ ( $\angle s$ on a str. line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C                    |
| $= \mathcal{L}A\mathcal{K}E = 47^{\circ} \text{ (}\mathcal{L}s \text{ sum of }\Delta\text{)}$ $= \mathcal{L}A\mathcal{K}E = 47^{\circ} \text{, therefore }\Delta\mathcal{A}\mathcal{K}E \text{ is an isosceles }\Delta\text{.}$ $= \mathcal{L}A\mathcal{K}E = 47^{\circ} \text{, therefore }\Delta\mathcal{A}\mathcal{K}E \text{ is an isosceles }\Delta\text{.}$ $(180^{\circ} - 94^{\circ})$ $(180^{\circ} - 94^{\circ})$ $= (180^{\circ} - 94^{\circ})$ $= 46(x - 3y)$ $= 46(x - 3y)$ $= 3x + 12by$ $= 46(x - 3y)$ $= 3x + 12by$ $= 46(x - 3y)$ $= 3x + 12by$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V          | = 86°<br>AEX = 180°-133° (\sigmas on a str.line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                    |
| $= \angle AXE = 47^{\circ}, \text{ therefore } \Delta AXE \text{ is an isosceles } \Delta.$ $1(80^{\circ} - 94^{\circ})$ $1(80^{\circ} - 94^{\circ})$ $3(10^{\circ} - 94^{\circ})$ $3(10^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N          | = 47°<br>.4XE = 180° - 86° - 47° (∠s sum of Δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
| $(180^{\circ} - 94^{\circ})$ $(180^{\circ} - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~          | = 47°<br>ince $\angle AEX = \angle AXE = 47^\circ$ therefore $\angle AXE$ is an invectles $\triangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| $\frac{1}{3} (180^{\circ} - 94^{\circ})$ $\frac{1}{3} (180^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5          | the manual manual and the man |                      |
| $(180^{\circ} - 94^{\circ})$ $(180^{\circ} - 94^{\circ})$ $(180^{\circ} - 3y)$ $(180^{\circ} - 3y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <          | rea of $\Delta AXE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| x + 12by $4b(x - 3y)$ $3y)$ $3x + 1 + x$ $-5)$ $3x + 1 + x$ $x - 5 - 15x$ $x - 5 - 14x$ $x - 5 - 14x$ $(1 + x)(2x - 10)$ $(1 + 1)(2x - 10)$ $(1 + 1)(2x - 10)$ $(1 + 1)(2x - 10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | $\frac{1}{2} \times 7 \times 7 \times \sin(180^\circ - 94^\circ)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IW                   |
| $x + 12by$ $4b(x - 3y)$ $3y)$ $3y)$ $-5)$ $3x + 1 + x$ $x - 5 - 15x$ $x - 5 - 15x$ $x - 5 - 10y$ $3x^2 - 5 - 14x$ $x - 5 - 14x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 24 4403 1 9 2 3<br>24 .4 cm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VI                   |
| $\frac{46(x-3y)}{3y}$ $\frac{46(x-3y)}{3y}$ $\frac{3x+1}{-5} \frac{1+x}{-14x}$ $\frac{x-5}{-14x}$ $\frac{1}{-14x}$ if not factorised completely $\frac{x-5}{3x^2-5} \frac{-1}{-14x}$ $\frac{1}{2}$ if $1 \pm is$ omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5          | ax - 9av - 4bx + 12bv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| 3y) -5) 3x +1 +x<br>-5) 3x +1 +x<br>x -5 -15x<br>x -5 -15x<br>x -5 -14x<br>2(x - 5) or (3x + 1)(2x - 10) 2(x - 5) or (3x + 1)(2x - 10) (x + 1)(2x + 1)(2x + 10) (x + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 3a(x-3y) - 4b(x-3y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3x^{+1}}{x^{-5}} + \frac{1}{x^{-5}}$ $\frac{3x^{+1}}{-14x} + \frac{1}{x^{-5}}$ $\frac{1}{-14x}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U          | (3a-4b)(x-3y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AI                   |
| -5) $3x + 1 + x$<br>5) $x - 5 - 15x$<br>6 fr not factorised completely<br>2(x - 5) or (3x + 1)(2x - 10)<br>2(x + 1)(2x - 10)<br>(f ± is omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | x <sup>2</sup> - 28x - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| 5)<br>if not factorised completely<br>2(x-5) or $(3x+1)(2x-10)3x^3 - 5 - 14x3x^3 - 5 - 14x(3x+1)(2x-10)(3x+1)(2x-10)(3x+1)(2x-10)(3x+1)(2x-10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8          | 3x +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MI<br>MI (show cross |
| z(x-5)  or  (3x+1)(2x-10) $2(x-5)  or  (3x+1)(2x-10)$ $z(x+1)(2x-10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          | 3x <sup>2</sup> -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method working       |
| ∑<br>sift ± is omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                    |
| ∑<br>sift ± is omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P          | $=a+\frac{bv^2}{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| ∑<br>sif ± is omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -01        | $\frac{v^2}{k} = p - a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ā                    |
| <u>∫</u><br>cif±is omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4          | $p^2 = k(p-a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~~         | $=\frac{k(p-a)}{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2          | $=\pm \sqrt{\frac{k(p-a)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥          | finus 1 mark if $\pm$ is omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R                    |

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!



| 9(bi)      | m = 11.85                                                                                                                                                                                                               | BI                                                                                                                 | 1 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---|
| 9(bii)     | See graph on the last page                                                                                                                                                                                              | <u>3 marks</u> :                                                                                                   |   |
|            |                                                                                                                                                                                                                         | I mark : correct<br>axes and scales<br>drawn, graph<br>labelled                                                    |   |
|            |                                                                                                                                                                                                                         | I mark: Correct<br>shape of a smooth<br>graph                                                                      | - |
|            |                                                                                                                                                                                                                         | 1 mark: All 8<br>points plotted and<br>joined by smooth<br>curve                                                   | - |
| bestfreepa | Gradient of the curve at the point $= -7.32 \ (\pm 0.5)$                                                                                                                                                                | $\frac{2 \text{ marks}}{1 \text{ mark: tangent}}$<br>correctly drawn at x=1.2.<br>1 mark: gradient allow $\pm 0.5$ |   |
| 9(biv)     | From minimum value of $A$ , height of the box for which the least amount of metal is used = 1.9 m.                                                                                                                      | BI                                                                                                                 |   |
| 10(a)      | Use similar solids concept.<br>Let the height of the 750 cm <sup>3</sup> candle be <i>h</i> cm.<br>$\frac{V_2}{V_1} = \left(\frac{h_2}{h_1}\right)^3$ $\frac{750}{500} = \left(\frac{h}{24}\right)^3$ $\frac{750}{500}$ | Ψ                                                                                                                  |   |
|            | $\frac{h}{24} = \sqrt[3]{\frac{750}{500}}$ $h = \sqrt[3]{\frac{750}{500}} \times 24$ $= 27.473141$ $= 27.5 \text{ cm (1 sight of bookshelf)}$ $\therefore \text{ The 750 cm' candle can fit into her shelf.}$           | MI                                                                                                                 |   |

- The BEST website to download FREE exam papers notes and other materials from Singapore!

ŝ

| r<br>Caantiblate Picits 2016. (s. 1<br>Statise 1<br>Dasation (do , 1<br>Dasation (do , 1                                                       |                                                                                                                                 |                                                                                                                             |                                                     |                                                       | 3                                                  |                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marka                                                                                                                                          | Ē                                                                                                                               | BI                                                                                                                          | IW IV                                               | BI                                                    | BI                                                 | B1<br>*Ethan's IQR<br>must be<br>calculated, show<br>comparison of<br>values, to be<br>awarded B1                                                      | W                                                                                                                                                                                                        | Z                                                                                                                                                                                                  |
| Supported Solutions<br>Area of triangle $HAL = \frac{1}{2}(4.5)(2.8) \sin 115^{\circ}$<br>= 5.709739058<br>= 5.71 km <sup>2</sup> (3 sig fig.) | sin(180° - 115°) = <u>Shortest distance</u><br>2.8<br>Shortest distance = 2.8sin65°<br>= 2.537661804<br>= 2.54 km (3 sig. fig.) | Time taken = $\frac{4.5 \times 1000}{3}$ = 1500 seconds = 25 minutes<br>The boat left the harbour at 0650.<br>Median = 64.2 | Interquartile range (Ernest) = 64.5 - 63.6<br>= 0.9 | Number of "unsatisfactory" sessions = 80 – 30<br>= 50 | Percentile = $\frac{50}{80} \times 100\% = 62.5\%$ | Interquartile range (Ethan) = 64 - 62.5 = 1.5<br>Ernest is a more consistent runner with a lower interquartile range of<br>0.9 as compared with Ethan. | Probability that it does not rain on any one day of the training sessions<br>$= \sqrt{\frac{49}{100}} = \frac{7}{10}$ Probability that it will rain on any of the training sessions = $1 - \frac{7}{10}$ | $= \frac{3}{10} \text{ or } 0.3$<br>$\frac{\mathbf{OR}}{\mathbf{OR}}$<br>$(1-p)^2 = \frac{49}{100}$<br>$(1-p)^2 = \frac{49}{100}$<br>$1-p = \frac{7}{10}$<br>$p = 1 - \frac{7}{10} = \frac{3}{10}$ |
| On Suga<br>11(bii) Area<br>= 5.7                                                                                                               | 11(ci)                                                                                                                          | 11(cii)<br>12(ai)                                                                                                           | 12(aii)                                             | (a) 12(aiii)                                          | 12(aiii)<br>(b)                                    | 12(b)                                                                                                                                                  | 12(c)                                                                                                                                                                                                    |                                                                                                                                                                                                    |

2h

HH

Ŧ

1111

C

- The BEST website to download FREE exercise papers, notes and other materials from Singapore!

the second

Coffie Dynafer

Parles P.2

c

The second s

刊刊



CANBERRA SECONDARY SCHOOL

# 2016 Preliminary Examination 1

## Secondary Four Normal (Academic)

)

MATHEMATICS Paper 1 (4045/01) 3<sup>rd</sup> August 2016 2 hours 0800 – 1000 h

Name: \_\_\_\_\_\_(

Class: \_\_\_\_\_

### READ THESE INSTRUCTIONS FIRST

Write your full name, class and index number on all work you hand in.Write in dark blue or black pen on both sides of the paper.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

| FUK   | MARKER'S         | USE          |
|-------|------------------|--------------|
|       | Marks<br>Awarded | Max<br>Marks |
| Total | 3                | 80           |

This question paper consists of 18 printed pages including the cover page.

### Mathematical Formulae

**Compound Interest** 

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

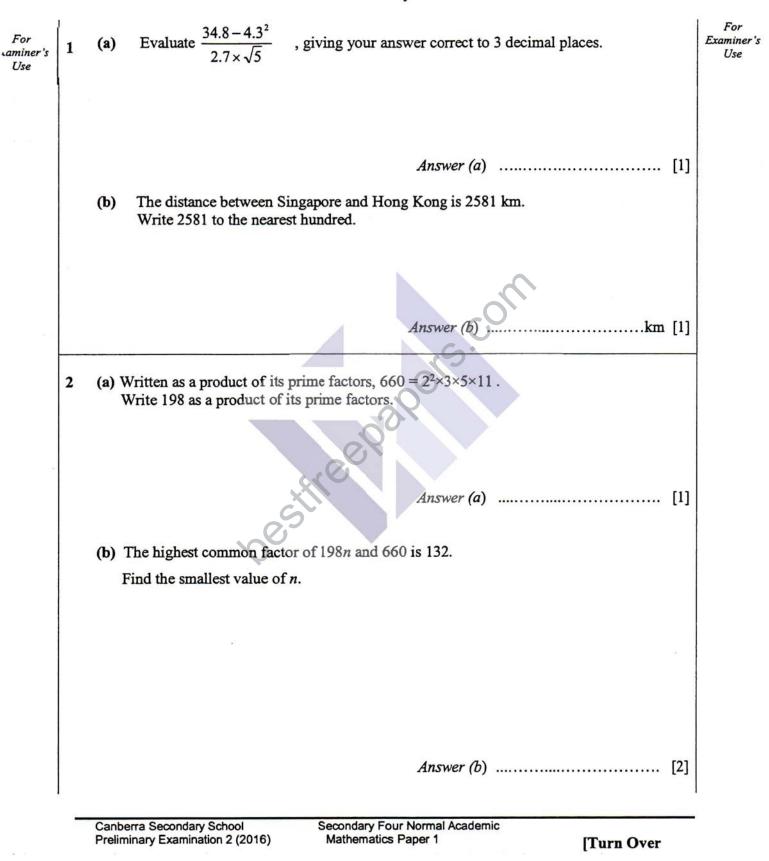
Curved surface area of a cone =  $\pi r l$ Surface area of a sphere =  $4\pi r^2$ Volume of a cone =  $\frac{1}{3}\pi r^2 h$ Volume of a sphere =  $\frac{4}{3}\pi r^3$ Area of a triangle  $ABC = \frac{1}{2}ab\sin C$ Arc length =  $r\theta$ , where  $\theta$  is in radians Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

 $a^2 = b^2 + c^2 - 2bc \cos A$ 

**Statistics** 

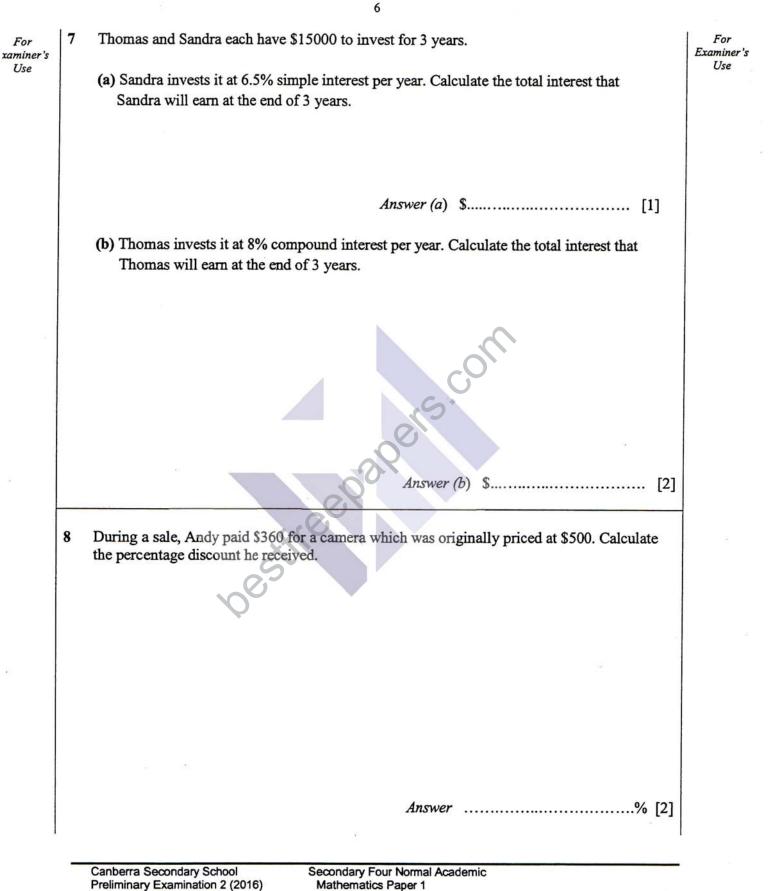

.

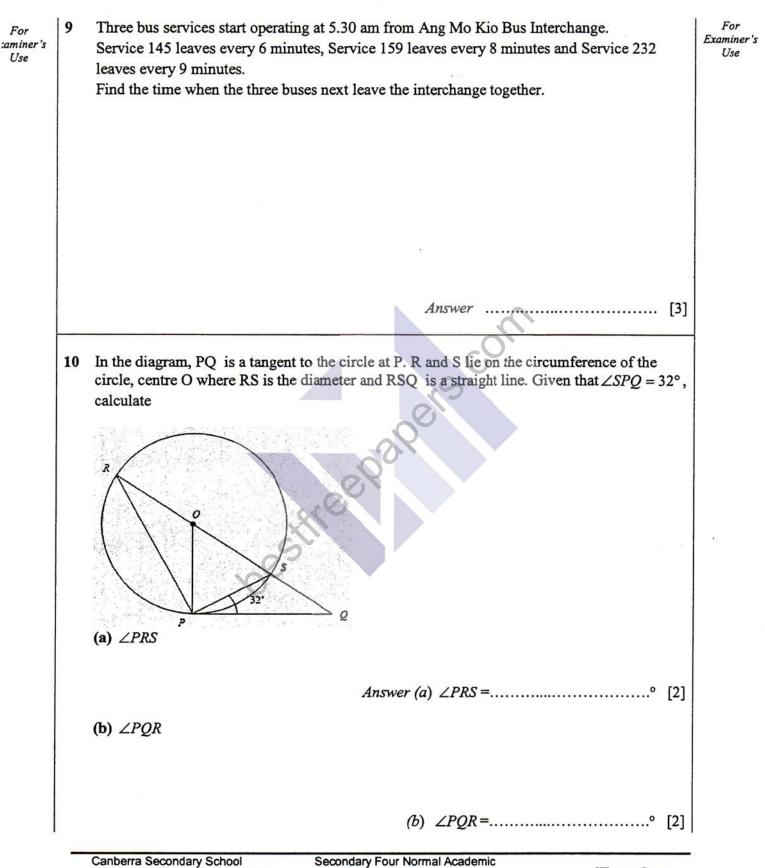
Mean = 
$$\frac{\sum fx}{\sum f}$$
  
Standard deviation =  $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$ 

Canberra Secondary School Preliminary Examination 2 (2016) Secondary Four Normal Academic Mathematics Paper 1

bestfreepapers.com

Answer all the questions.





| 1 |                                                                                       |
|---|---------------------------------------------------------------------------------------|
| 3 | (a) Express 83 billion in standard form.                                              |
|   |                                                                                       |
|   | Answer (a)                                                                            |
|   | (b) By rounding each number to 1 significant figure, estimate the value of            |
|   |                                                                                       |
|   | $\frac{54.13 \times 8.06}{2.95 + 7.09}$                                               |
|   |                                                                                       |
|   |                                                                                       |
|   |                                                                                       |
|   |                                                                                       |
|   |                                                                                       |
|   | Answer (b)[2]                                                                         |
|   |                                                                                       |
| - |                                                                                       |
| 4 | An athlete is running at a speed of 10 m/s.<br>Find his speed in kilometres per hour. |
|   |                                                                                       |
|   |                                                                                       |
|   | <b>V</b>                                                                              |
|   |                                                                                       |
|   |                                                                                       |
|   |                                                                                       |
|   |                                                                                       |
|   |                                                                                       |
|   | Answer                                                                                |
|   |                                                                                       |

Canberra Secondary School Preliminary Examination 2 (2016) Secondary Four Normal Academic Mathematics Paper 1

| 's 5 | A map is drawn to a scale of 1 : 400 000.                                                                                | F<br>Exan |
|------|--------------------------------------------------------------------------------------------------------------------------|-----------|
| 5    | (a)Two towns are joined by a 28 km expressway.<br>Find the length of the expressway, in cm, on the map.                  |           |
|      |                                                                                                                          |           |
|      |                                                                                                                          |           |
|      |                                                                                                                          |           |
|      | Answer (a) cm [1]                                                                                                        |           |
|      | (b) The area of a farm on the map is 3.5 cm <sup>2</sup> .<br>Calculate the actual area of the farm in km <sup>2</sup> . |           |
|      |                                                                                                                          |           |
|      | on                                                                                                                       |           |
|      | 5                                                                                                                        |           |
|      | Answer (b)                                                                                                               |           |
| 6    | Solve the equation $(3x-1)(4x-7) = 10$ , giving your answers correct to 2 decimal places.                                |           |
| ŝ    | ALCON                                                                                                                    |           |
|      | pest                                                                                                                     |           |
|      |                                                                                                                          |           |
|      |                                                                                                                          |           |
|      |                                                                                                                          |           |
|      |                                                                                                                          |           |
|      | Answer $x =$ or                                                                                                          |           |
|      |                                                                                                                          |           |

bestfreepapers.com

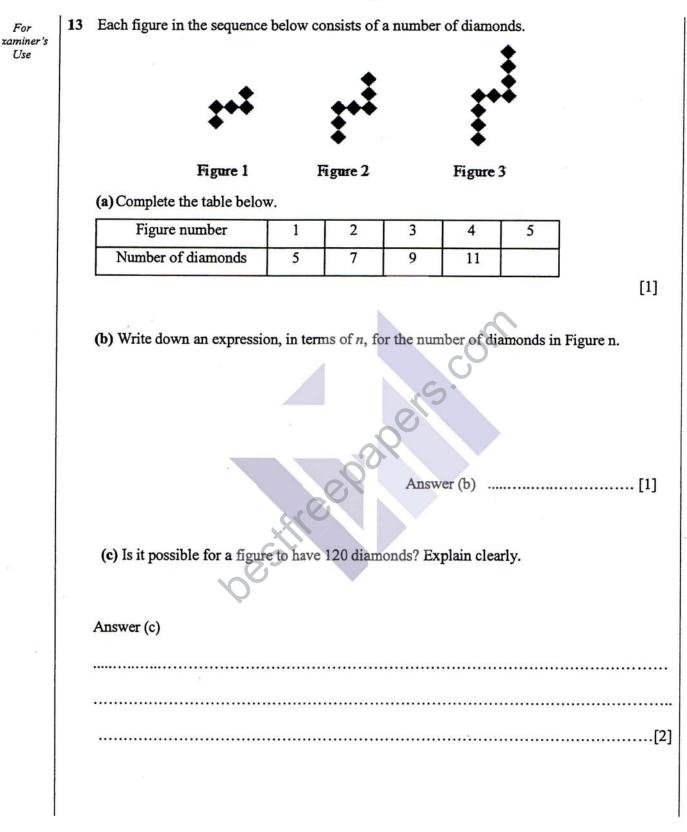




Canberra Secondary School Preliminary Examination 2 (2016)

Secondary Four Normal Academ Mathematics Paper 1 For xaminer's Use 11 Jack buys 5 pens and 8 erasers and total cost is \$11.10. Joel buys 2 pens and 10 erasers and the total cost is \$7.50. Pens cost x cents each and erasers cost y cents each. The cost of the Jack's stationaries is shown by the equation 5x + 8y = 1110. The cost of Joel's stationaries is shown by the equation 2x + 10y = 750.

For Examiner's Use


Solve the simultaneous equations to find the cost of each pen and each eraser.

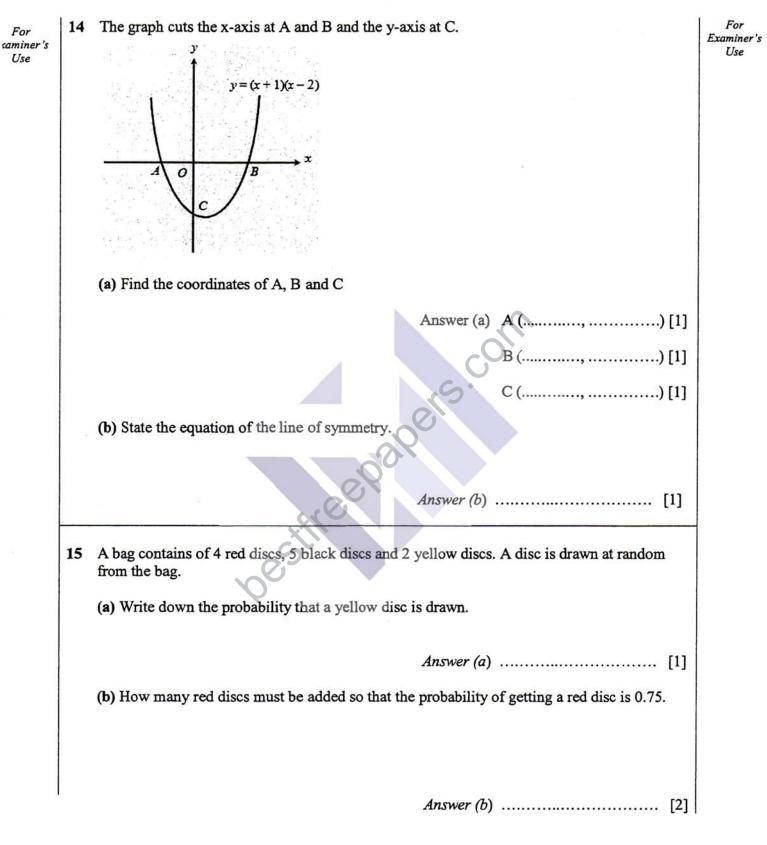
5x + 8y = 11102x + 10y = 750

| Answer $x =$ | <br>•   |
|--------------|---------|
| $v = \dots$  | <br>[3] |

Canberra Secondary School Preliminary Examination 2 (2016) Secondary Four Normal Academic Mathematics Paper 1

|                  |    | 9                                                                                                                                    |                   |
|------------------|----|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| For<br>caminer's | 12 | A pear producer weighs a sample of 100 pears from one of his trees (A).                                                              | For<br>Examiner's |
| Use              |    | The mean mass of pears from tree (A) is 117.8 g and the standard deviation is 6.32 g.                                                | Use               |
|                  |    | The producer also weighs a sample of pears from a second tree (B).<br>The mean mass is 115.6 g and the standard deviation is 6.42 g. |                   |
|                  |    | (a) Which tree has the lighter pears on average? Give a reason for your answer.                                                      |                   |
|                  |    | Answer (a)                                                                                                                           |                   |
|                  |    |                                                                                                                                      |                   |
|                  |    |                                                                                                                                      |                   |
|                  |    |                                                                                                                                      |                   |
|                  |    | (b) Which tree has pears which are more consistent in mass? Give a reason for your answer.                                           |                   |
|                  |    | Answer (b)                                                                                                                           |                   |
|                  |    | S                                                                                                                                    |                   |
|                  |    | [2]                                                                                                                                  |                   |
|                  |    |                                                                                                                                      |                   |
|                  |    |                                                                                                                                      |                   |
|                  |    |                                                                                                                                      |                   |
|                  |    |                                                                                                                                      |                   |
|                  |    |                                                                                                                                      |                   |
|                  |    |                                                                                                                                      |                   |




Canberra Secondary School Preliminary Examination 2 (2016)

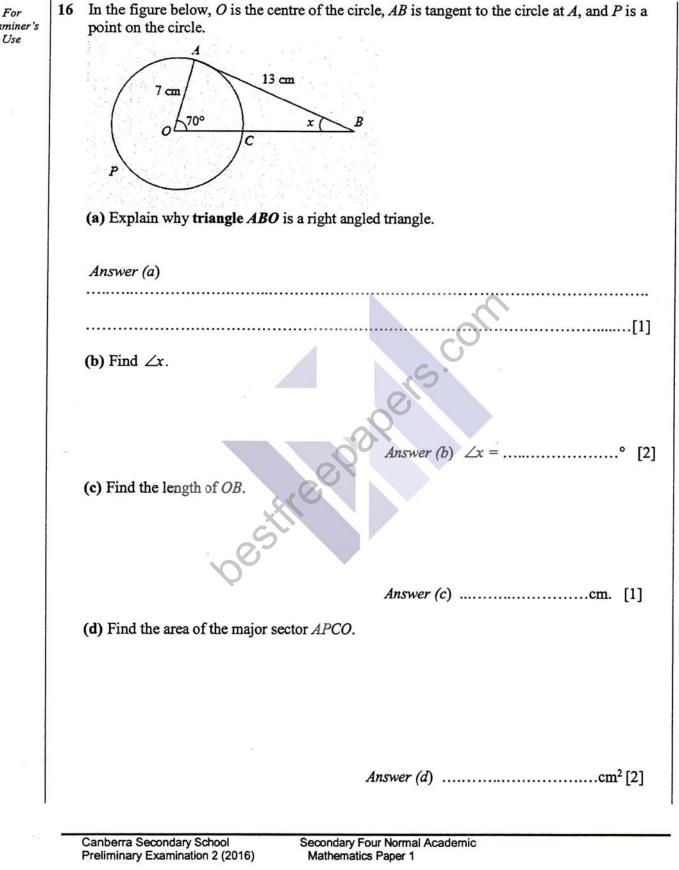
For

Use

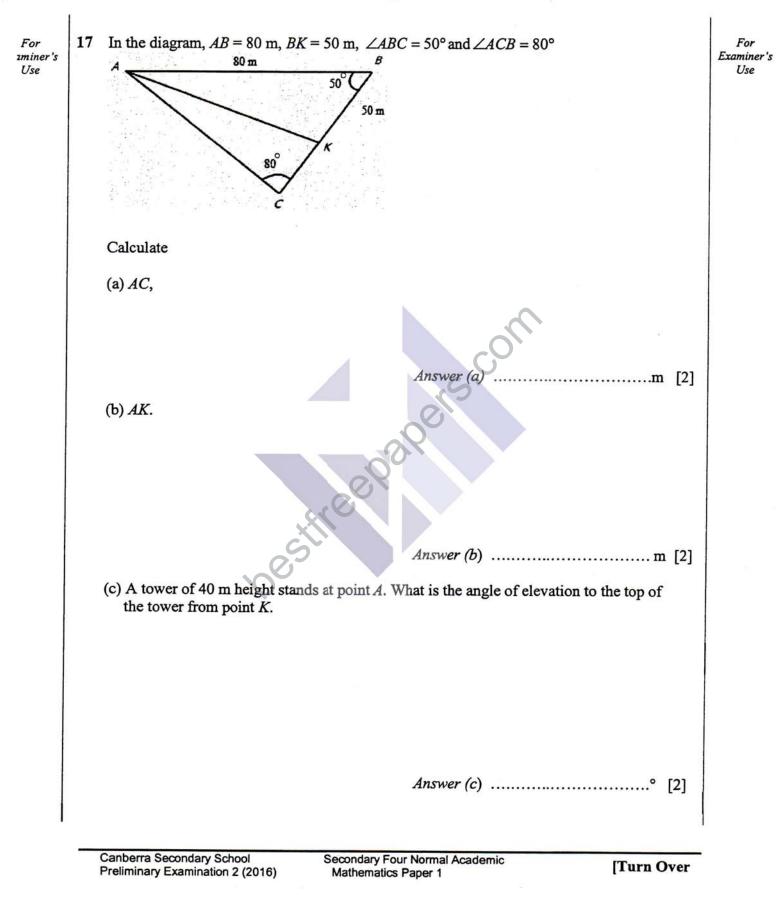
Secondary Four Normal Academic Mathematics Paper 1

For Examiner's Use

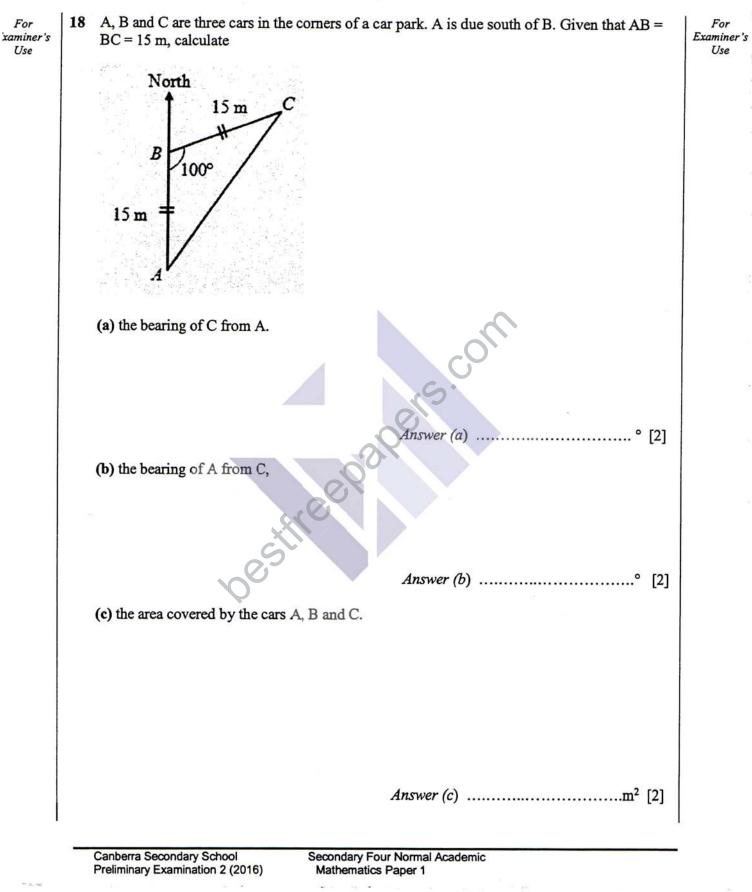



Canberra Secondary School Preliminary Examination 2 (2016) Secondary Four Normal Academic Mathematics Paper 1

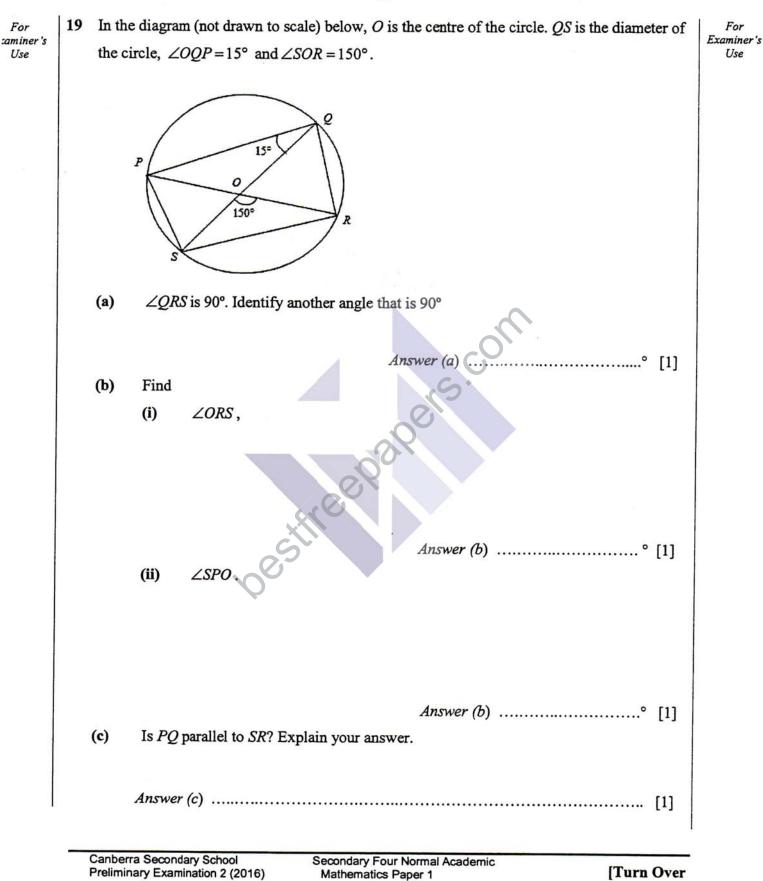
ers.com


bestfreebane

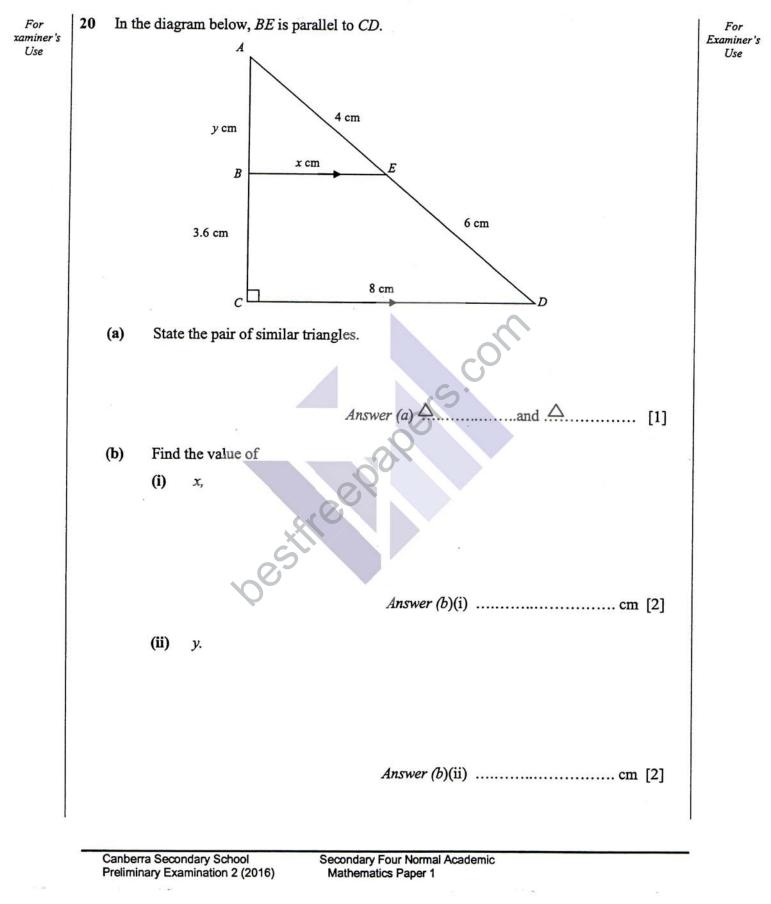
[Turn Over


For xaminer's

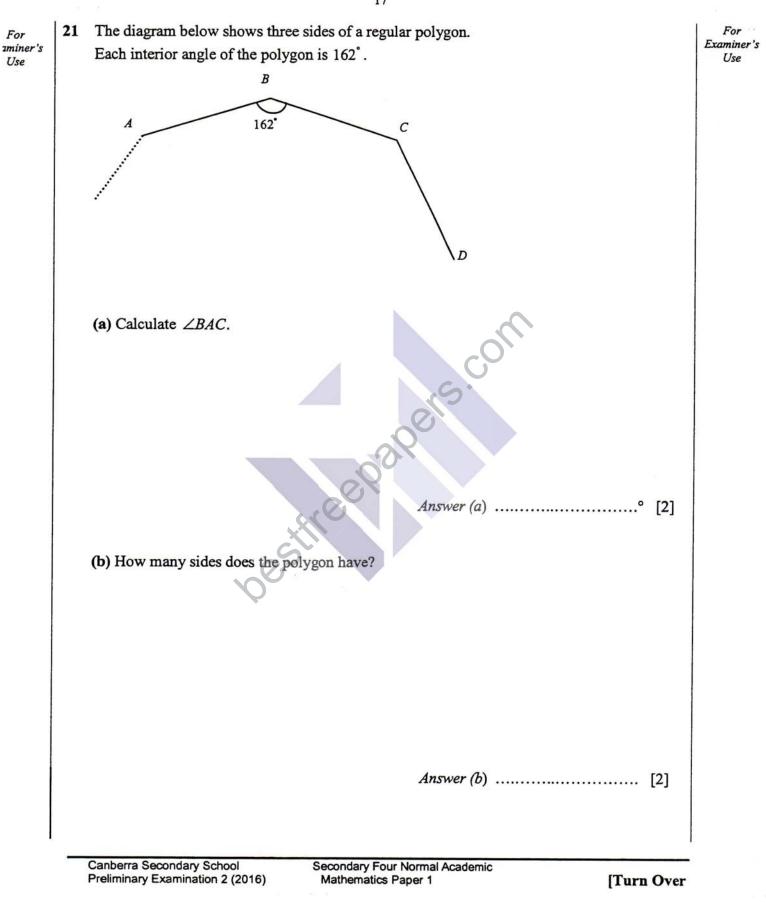



For Examiner's Use




bestfreepapers.com




bestfreepaper2.com

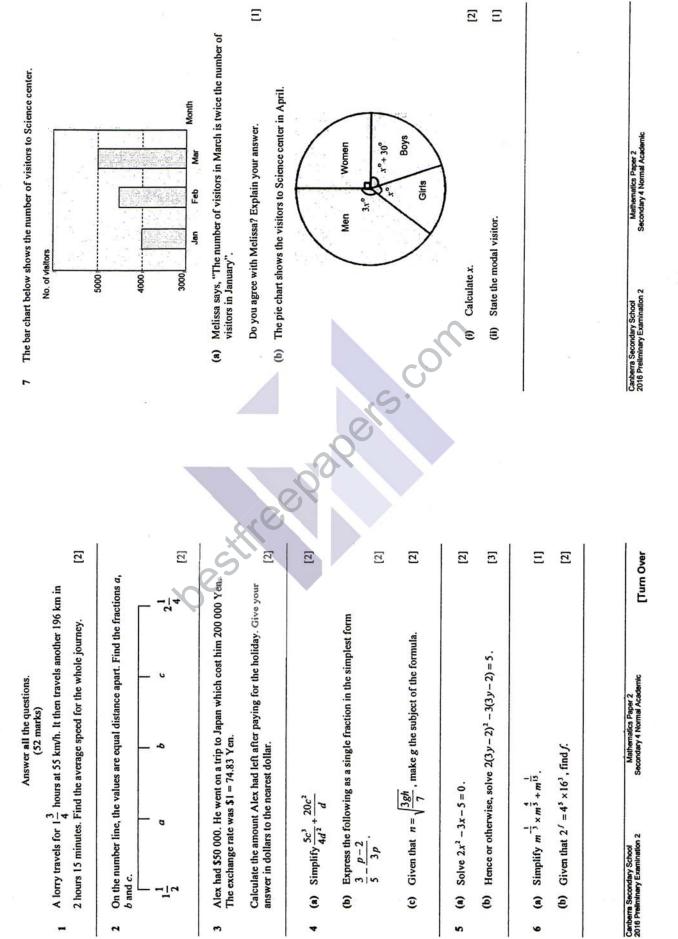


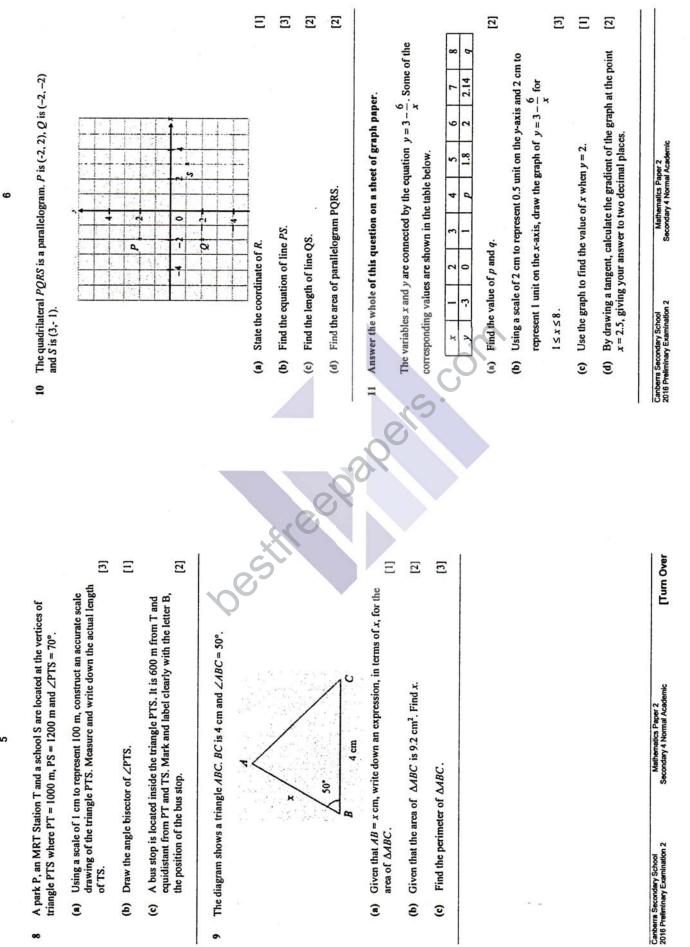
## bestfreepapers.com



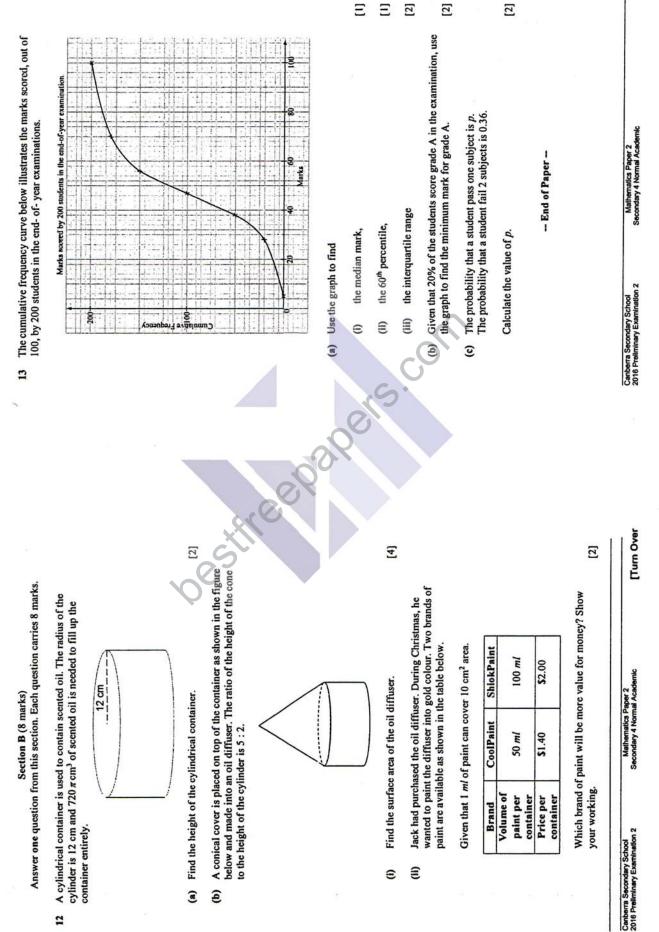
bestfreepapers.com




(a) Solve the inequality 6(3x+4) > 10(2x-1). For 22 For xaminer's Examiner's Use Use Answer (a) ..... [2] (b) Hence, write down the largest prime number, which satisfy 6(3x+4) > 10(2x-1)Answer (b) ..... [1] -End of Paper-


Canberra Secondary School Preliminary Examination 2 (2016) Secondary Four Normal Academic Mathematics Paper 1

bestfreepap ers.com


| CANBERRA SECONDARY SCHOOL                                                                                                                     | ARY SCHOOL                                    |                                                             | 7                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 3                                                                                                                                             |                                               |                                                             | Mathematical Formulae                                                                  |
| 2016 Preliminary Examination 2                                                                                                                | amination 2                                   | Compound interest                                           |                                                                                        |
| Secondary Four Normal Academic                                                                                                                | al Academic                                   |                                                             | Total amount = $P(1 + \frac{r}{r})^n$                                                  |
| MATHEMATICS<br>Paper 2 (4045/02)                                                                                                              | 5 August 2016<br>2 hours<br>0800 – 1000h      | Mensuration                                                 | ( 100 )                                                                                |
| Name:                                                                                                                                         | ( ) Class:                                    |                                                             | Curved surface area of a cone = $\pi rl$                                               |
| READ THESE INSTRUCTIONS FIRST                                                                                                                 |                                               |                                                             | Surface area of a sphere = $4m^2$                                                      |
| Write vour full name, class and index number on all work vou hand in                                                                          |                                               |                                                             | Volume of a cone = $\frac{1}{3}\pi^2 h$                                                |
| Write in dark blue or black pen on both sides of the paper.                                                                                   | 5                                             |                                                             | Volume of a sphere = $\frac{4}{2}m^3$                                                  |
| rou may use a no pencul for any diagrams or graphis.<br>Do not use staples, paper clips, highlighters, glue or correction fluid.              | tion fluid.                                   |                                                             | s<br>Area of triancle <i>ARC</i> = - absin C                                           |
| Section A                                                                                                                                     | 3                                             |                                                             |                                                                                        |
| Answer all the questions.                                                                                                                     |                                               | 0                                                           | Arc length = 70, where 0 is in radians                                                 |
| Section B                                                                                                                                     |                                               | 0                                                           | Sector area = $\frac{1}{2}r^2\theta$ , where $\theta$ is in radians                    |
| Answer one question.                                                                                                                          |                                               | 2                                                           |                                                                                        |
| The number of marks is given in brackets [ ] at the end of each question or part question.<br>The total number of marks for this paper is 60. | aach question or part question.               | Trigonometry                                                | a b c                                                                                  |
| The use of an approved scientific calculator is expected, where appropriate.                                                                  | iere appropriate.                             | C                                                           | $\frac{1}{\sin A} = \frac{1}{\sin B} = \frac{1}{\sin C}$                               |
| If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer                                   | d if the answer is not exact, give the answer | ò                                                           | $a^2 = b^2 + c^2 - 2bc\cos A$                                                          |
| to three significant figures. Give answers in degrees to one decimal place.                                                                   | decimal place.                                | Statistics                                                  |                                                                                        |
| row, use entried your carculator value of 0.142.                                                                                              |                                               | CHICADO                                                     | $\Sigma_{R}$                                                                           |
| At the end of the examination, fasten all your work securely together.                                                                        | together.                                     |                                                             | $Mcan = \frac{U}{\sum f}$                                                              |
|                                                                                                                                               | 00                                            |                                                             | Standard deviation = $\frac{\sum \beta^2}{\sum \beta^2} - \left(\sum \beta^2\right)^2$ |
|                                                                                                                                               | Total Awarded Marks                           |                                                             | V ZV                                                                                   |
|                                                                                                                                               |                                               |                                                             |                                                                                        |
| This question paper consists of § printed pages including the cover page.                                                                     | ges including the cover page.                 |                                                             |                                                                                        |
|                                                                                                                                               |                                               | Canoerra Secondary School<br>2016 Preliminary Examination 2 | Mathematics Paper 2<br>Secondary 4 Normal Academic                                     |

2





ŝ



N

|                                                   | MI<br>AI, AI                                                       | BI                                                                        | MI                                                       | AI<br>AI         | BI                                                                     | MI                     | Ĭ                  |   | 81  | BI                                                 | MI                          | MI                                                | M                                                                   | <u>BI</u> | ĪW                                                      |
|---------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|------------------|------------------------------------------------------------------------|------------------------|--------------------|---|-----|----------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------------------------|-----------|---------------------------------------------------------|
| $x = \frac{5}{2}$ or $x = -1$<br>Let $x = 3y - 2$ | $3y-2=\frac{5}{2}$ $3y-2=-1$<br>$y=\frac{3}{2}$ or $y=\frac{1}{3}$ | $\frac{1}{3} \times m^{\frac{1}{5}} + \frac{1}{m^{13}} = m^{\frac{2}{5}}$ | $2^f = 4^5 \times 16^3$<br>$2^f = 2^{10} \times 2^{4.3}$ | f = 10 + 12 = 22 | No. The y-axis did not start from zero.<br>Or March = 5000, Jan = 4000 | 3x + x + 30 + 90 = 360 | 5x = 240<br>x = 46 |   | Men | $\frac{1}{2}(x)(4)\sin 50^\circ = 2x\sin 50^\circ$ | 2xsin 50° = 9.2<br>x = 6.00 | $AC^{2} = 6^{2} + 4^{2} - 2(6)(4)\cos 50^{\circ}$ | $AC^{2} = 21.146$<br>AC = 4.60<br>Perimeter = 4.6 + 4 + 6 = 14.6 cm | (c- 'c)   | Grad PS = $\frac{2 - (-1)}{-2 - 3}$<br>= $-\frac{3}{5}$ |
| م                                                 |                                                                    | 6a                                                                        | q                                                        |                  | 7a                                                                     | bi                     |                    |   | =   | 9a                                                 |                             | c                                                 |                                                                     | 10a       | ٩                                                       |
|                                                   |                                                                    |                                                                           |                                                          |                  |                                                                        |                        | ~                  | 2 | S   | 2                                                  |                             |                                                   |                                                                     |           |                                                         |

.P<sup>O</sup>1

| Total distance = $1\frac{2}{6} \times 55 + 196 = 292.25 \text{ km}$<br>Avg speed = $292.25 \text{ J}4$<br>= 73.1  km/h<br>$= -1\frac{1}{16}$<br>$b = 1\frac{7}{8}$<br>$c = 2\frac{1}{16}$<br>$b = 1\frac{7}{8}$<br>$c = 2\frac{1}{16}$<br>$c = 2\frac{1}{16}$<br>$c = 2\frac{1}{16}$<br>200 000  yen = 52672.72<br>Amount left = 50 000 - 2672.72<br>200 000  yen = 52672.72<br>$\frac{56^3}{4d^2} \times \frac{20c^2}{2}$<br>$= \frac{247327.28}{4d^2}$<br>$= \frac{9p-5(p-2)}{15p}$<br>$= \frac{9p-5(p-2)}{15p}$<br>$n = \sqrt{\frac{38h}{7}}$<br>$n^2 = \frac{38h}{7}$<br>$n^2 = \frac{38h}{7}$<br>$n^2 = \frac{38h}{7}$<br>$n^2 = \frac{38h}{7}$<br>$n^2 = \frac{38h}{7}$<br>$n^2 = \frac{38h}{7}$<br>$n^2 = \frac{38h}{7}$<br>$2x^2 - 5x - 5x - 5x - 1$<br>$2x^2 - 5x - 5x - 1$ | MI<br>AI                                                                                                    | B1 for any 2<br>Must be fraction                            | MI<br>AI                                                                               | MI                                                                                                   | MI                                                                         | MI                                                                     | MI IA                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total distance = $1\frac{3}{4} \times 55 + 196 = 292.25 \text{ km}$<br>Avg speed = 292.25 /4<br>= 73.1 km/h | $a = 1\frac{11}{16}$ $b = 1\frac{7}{8}$ $c = 2\frac{1}{16}$ | 200 000 yen = \$2672.72<br>Amount left = 50 000 - 2672.72<br>= \$47327.28<br>≈ \$47327 | $\frac{5c^3}{4d^2} + \frac{20c^2}{d}$ $= \frac{5c^3}{4d^2} \times \frac{d}{20c^2}$ $= \frac{c}{16d}$ | $\frac{3}{5} - \frac{p-2}{3p} = \frac{9p-5(p-2)}{15p} = \frac{4p+10}{15p}$ | $n = \sqrt{\frac{3gh}{7}}$ $n^2 = \frac{3gh}{7}$ $g = \frac{7n^2}{3h}$ | $\frac{-5}{-3} = \frac{-5}{-3x-5} = (1 - 3x - 5)(x + 1) = -5)(x + 1) = -1$ |

6.

#### bestfreepapers.com

| bootfro | Andrara aam |  |
|---------|-------------|--|
| pesure  | papers.com  |  |

|                      |                   | MI                         | АІ        |                                   | IM                            | AI<br>AI                          |   | WI IV                                | AI                     |         | IM                                               |   | IM                                            |                | MI                                           |                    |                    | MI - show all calculations                                                                                                               | АІ                                          | BI       | 81       | MI                    | MI<br>AI                                          | MI                  | AI                       |
|----------------------|-------------------|----------------------------|-----------|-----------------------------------|-------------------------------|-----------------------------------|---|--------------------------------------|------------------------|---------|--------------------------------------------------|---|-----------------------------------------------|----------------|----------------------------------------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|----------|-----------------------|---------------------------------------------------|---------------------|--------------------------|
| $y = -\frac{3}{x+c}$ | Sub x = 3, y = -1 | $-1 = -\frac{3}{5}(3) + c$ | c = 4<br> | $y = -\frac{3}{5}x + \frac{4}{5}$ | Length OS= $\sqrt{5^2 + 1^2}$ | $= \sqrt{26}$<br>= 5.10 (to 3 sf) |   | Arca = $5 \times 4$<br>= $20 unit^2$ | $\pi(12)^2 h = 720\pi$ | h = 3cm | Height of cone = $\frac{5}{5} \times 5 = 12.5cm$ | 2 | Slant height of cone = $\sqrt{12.5^2 + 12^2}$ | Surface area = | $\pi(12)(17.3277) + 2\pi(12)(5) + \pi(12^2)$ | $= 1482.62 cm^{2}$ | ≈ 1480 <i>cm</i> ² | Amount of paint needed = 148.3 ml<br>3 coolpaint = <b>5</b> 1.40 x 3 = <b>5</b> 4.20<br>2 shiokpaint = <b>5</b> 2.00 x 2 = <b>5</b> 4.00 | Jack should buy shiokpaint as it's cheaper. | 47 marks | 50 marks | 56 – 38<br>= 18 marks | 20% =40 students<br>From graph, minimum mark = 59 | $\sqrt{0.36} = 0.6$ | <i>p</i> = 1 - 0.6 = 0.4 |
|                      |                   |                            | X         |                                   | c                             |                                   | - | 0                                    | 12a                    |         | Þi                                               |   |                                               |                |                                              |                    |                    | bii                                                                                                                                      |                                             | 13ai     |          | II                    | q                                                 | c                   |                          |

o apers col.

|       | 20                                                          |                  |
|-------|-------------------------------------------------------------|------------------|
| 9     | (3x-1)(4x-7) = 10                                           |                  |
|       | $12x^2 - 21x - 4x + 7 = 10$                                 |                  |
|       | $12x^2 - 25x + 7 = 10$                                      | IM               |
|       | $12x^2 - 25x - 3 = 0$                                       |                  |
| 2     | $\sum_{n=0}^{\infty} -(-25) \pm \sqrt{(-25)^2 - 4(12)(-3)}$ | D1 6             |
|       | 2(12)                                                       | 101 101          |
|       | x = 2.20 or $-0.114$                                        | cach<br>value of |
| 7(a)  |                                                             | BI               |
| i.    | $I = \frac{1}{100} = \frac{1}{100} = \frac{2}{100} = 52925$ | 6                |
| 7(b)  | $A = P(1 + \frac{r}{100})^3 = 15000(1 + \frac{8}{100})^3$   |                  |
|       | = \$18895.68                                                | W                |
|       |                                                             | AI               |
|       | Interest = $$18895.68 - $15000 = 3895.68$                   |                  |
| 80    | % discount = $\frac{500 - 360}{500} \times 100$             | WI               |
|       | = 28%                                                       | <b>B</b> 1       |
| 6     | LCM of 6, 8 and 9                                           |                  |
|       | =2 x 3 x 1 x 4 x 3                                          | MI               |
|       | = 72 min = 1 hr 12 min                                      | AI               |
|       | 0530 + 1hr 12min = 0642                                     | BI               |
| 10(a) | OPS = 90-32 = 58                                            | MI               |
| C     | OPR = 90-58 = 32                                            |                  |
| 0     | PRS = 32° (lso Triangle)                                    | ٩I               |
| 10(b) | PQR = 180 - 32 - (90+32)                                    | IM               |
|       | =26°                                                        | ٩I               |
| п     | 5x+8y=1110                                                  | IW               |
|       | 2x + 10y = 750                                              | B1 for           |
|       |                                                             | each x           |
|       |                                                             |                  |

5

2

Secondary Four Normal Academic Mathematics Paper 1

Canberra Secondary School Preliminary Examination 2 (2016)

Secondary Four Normal Academic Mathematics Paper 1

Canberra Secondary School Preliminary Examination 2 (2016)

| Marks             | BI    | BI   | BI                             |                                           | W                                                                             | ٩١  | BI                                                        | IW                                                                  | (Å)                 |          | IW                                       |                                          | AI         |           |           | BI          | IW                                       |                                       | AI                                                |
|-------------------|-------|------|--------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|-----|-----------------------------------------------------------|---------------------------------------------------------------------|---------------------|----------|------------------------------------------|------------------------------------------|------------|-----------|-----------|-------------|------------------------------------------|---------------------------------------|---------------------------------------------------|
| Solutions/Answers |       |      |                                |                                           |                                                                               | 6   | S                                                         |                                                                     |                     |          |                                          |                                          |            |           |           |             |                                          |                                       | n²                                                |
|                   | 2.702 | 2600 | $198 = 2 \times 3^2 \times 11$ | $198 n = 2 \times 3^3 \times 11 \times n$ | $660 = 2^{2} \times 3 \times 5 \times 11$<br>$132 = 2^{2} \times 3 \times 11$ | и=2 | 82 billion = $83 \times 10^{9}$<br>= $8.3 \times 10^{10}$ | $\frac{54.13 \times 8.06}{2.95 + 7.09} = \frac{50 \times 8}{3 + 7}$ | $=\frac{400}{10}=4$ | 10m = 1s | $\frac{10}{1000} km = \frac{1}{3600} hr$ | $\frac{10}{1000} \times 3600  km = 1 hr$ | 36km = 1hr | 1:400 000 | 1cm : 4km | 7cm : 28 km | 1cm <sup>2</sup> : 4 x 4 km <sup>2</sup> | Icm <sup>4</sup> : 16 km <sup>4</sup> | $3.5 \text{ cm}^2$ : 16 x $3.5 = 56 \text{ km}^2$ |
| Ŕ                 | l(a)  | 1(b) | 2(a)                           | 2(b)                                      |                                                                               |     | 3 (a)                                                     | 3 (b)                                                               |                     | 4        |                                          |                                          |            | 5(a)      |           |             | (q)                                      |                                       |                                                   |

61

# bestfreegapers.com

| I6(c) $0B^{4} = OA^{2} + AB^{3} = 13^{2} + 7^{2}$ MI $0B^{2} = 218$ $0B = 14.8cm$ BI $0B = 14.8cm$ $0B = 14.8cm$ BI $Area = \frac{200}{360} \times \pi^{2}$ $Area = \frac{200}{360} \times \pi^{2}$ MI $Area = \frac{200}{360} \times \pi^{2}$ $Area = \frac{200}{360} \times \pi^{2}$ MI $Area = \frac{200}{360} \times \pi^{2}$ $Area = \frac{200}{360} \times \pi^{2}$ $MI$ $Area = \frac{200}{360} \times \pi^{2}$ $Area = \frac{200}{360} \times \pi^{2}$ $MI$ $Area = \frac{200}{360} \times \pi^{2}$ $Area = \frac{200}{360} \times \pi^{2}$ $MI$ $Area = \frac{200}{360} \times \pi^{2}$ $Area = \frac{200}{300} \times \pi^{2}$ $MI$ $IT(a)$ $Area = \frac{200}{200} \times \pi^{2}$ $MI$ $IT(b)$ $Area = \frac{200}{40^{0}} \times \pi^{2}$ $MI$ $IT(b)$ $Area = \frac{40}{2}$ $MI$ $Area = \frac{1}{2} absinc$ $MI$ $MI$ $IB(b)$ $Area = \frac{1}{2} absinc$ $MI$ $IB(c)$ $Area = \frac{1}{2} absinc$ $MI$ $Area = \frac{1}{2} absinc$ $MI$ $MI$ $II(b)$ $Area = \frac{1}{2} absinc$ $MI$                                                                                                                |       | 22                                                  |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|----|
| $OB^{4} = OA^{4} + AB^{2} = 13^{2} + 7^{2}$ $OB^{4} = 218$ $OB = 14.8cm$ $Area = \frac{290}{360} \times \pi^{-3}$ $Area = \frac{200}{360}$ $Area = \frac{1}{2}$ $Bearing = 40^{\circ}$ $Bearing = 40^{\circ}$ $Bearing = 220^{\circ}$ $Area = \frac{1}{2} absinc$ $= \frac{1}{2} \times 15 \times \sin 100$ $= 111m^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101   |                                                     |    |
| $OB^{1} = 218$ $Area = \frac{290}{360} \times m^{2}$ $Area = \frac{290}{360} \times m^{2}$ $Area = \frac{290}{360} \times \pi(7)^{2}$ $Area = \frac{290}{100} \times \pi(7)^{2}$ $Area = \frac{1}{2}absinc$ $Area = \frac{1}{2}absinc$ $= 101m^{2}$ $= 111m^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16(c) | $OB^2 = OA^2 + AB^2 = 13^2 + 7^2$                   | IW |
| OB = 14.8cm $Area = \frac{290}{360} \times \pi^2$ $Area = \frac{290}{360} \times \pi^7$ $Area = \frac{1}{61.3}$ $Area = \frac{1}{2}$ $Area = \frac{1}{2}$ $Bearing = 40^\circ$ $Braing = 220^\circ$ $Area = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                         |       | $OB^2 = 218$                                        |    |
| $Area = \frac{290}{360} \times m^{2}$ $Area = \frac{290}{360} \times \pi(7)^{3}$ $Area = \frac{290}{360} \times \pi(7)^{3}$ $= 124cm^{3}$ $Area = \frac{290}{360} \times \pi(7)^{3}$ $AC = 62.2 \text{ m}$ $AC = 62.2 \text{ m}$ $AC = 62.2 \text{ m}$ $AC = 61.3 \text{ m}$ $AC = 61.3 \text{ m}$ $AK = 61.3 \text{ m}$ $AK = 61.3 \text{ m}$ $AK = 61.3 \text{ m}$ $AR = 61.3 \text{ m}$ $AR = 61.3 \text{ m}$ $AR = 61.3 \text{ m}$ $Area = \frac{40}{2}$ $Bearing = 40^{\circ}$ $Bearing = 40^{\circ}$ $Bearing = 220^{\circ}$ $Braing = 220^{\circ}$ $Braing = 220^{\circ}$ $Braing = 220^{\circ}$ $Braing = 220^{\circ}$ $Area = \frac{1}{2}absinc$ $= \frac{1}{2}x 15 \times 15 \times sin 100$                                                                                                                                                                                                                                                                                                                                                                                                              |       | <i>OB</i> = 14.8 <i>cm</i>                          | BI |
| $Area = \frac{290}{360} \times \pi(7)^{2}$ $= 124cm^{2}$ $\frac{AC}{\sin 80} = \frac{80}{\sin 80}$ $AC=62.2 \text{ m}$ $AC=62.2 \text{ m}$ $AC=62.2 \text{ m}$ $AK^{2} = 80^{2} + 50^{2} - 2(80)(50)\cos 50$ $AK^{2} = 61.3 \text{ m}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{2}$ $\operatorname{Bearing} = 40^{\circ}$ $\operatorname{Bearing} = 220^{\circ}$ $\operatorname{Bearing} = 210^{\circ}$ | 16(d) | $Area = \frac{290}{360} \times m^2$                 | IM |
| $= 124cm^{3}$ $= 124cm^{3}$ $\frac{AC}{\sin 80} = \frac{80}{\sin 80}$ $AC=62.2 \text{ m}$ $AC=62.2 \text{ m}$ $AK^{2} = 80^{3} + 50^{3} - 2(80)(50)\cos 50$ $AK = 61.3 \text{ m}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{2}$ $\tan x = \frac{180}{2}$ $\tan x = \frac{180}{2}$ $\tan x = \frac{1}{2} \text{ absinc}$ $= \frac{1}{2} \times 15 \times 15 \times 100$ $= 111m^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (*).  | $Area = \frac{290}{200} \times \pi (7)^2$           |    |
| $\frac{AC}{\sin 80} = \frac{80}{\sin 80}$ $AC=62.2 \text{ m}$ $AC=62.2 \text{ m}$ $AK = 61.3 \text{ m}$ $AK = 61.3 \text{ m}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{2}$ $\tan x = \frac{40}{2}$ $\tan x = \frac{40}{2}$ $\tan x = \frac{40}{2}$ $\tan x = \frac{1}{2} \text{ as in the series}$ $\operatorname{Hagle} = 40^{\circ}$ $\operatorname{Hagle} = 40^{\circ}$ $\operatorname{Hagle} = 40^{\circ}$ $\operatorname{Hagle} = 40^{\circ}$ $\operatorname{Hagle} = 220^{\circ}$ $\operatorname{Hagle} = 111 \text{ m}^{2}$                                                                                                                                                                                                                                                                                                                                              |       | = 124cm <sup>2</sup>                                | AI |
| $\frac{AC}{\sin 50} = \frac{80}{\sin 80}$ $AC=62.2 \text{ m}$ $AC=62.2 \text{ m}$ $AK^{2} = 80^{2} + 50^{2} - 2(80)(50)\cos 50$ $AK = 61.3 \text{ m}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{2}$ $\operatorname{Hagle} = \frac{180 - 100}{2} = 40^{\circ}$ $\operatorname{Hagle} = \frac{180 - 100}{2} = 40^{\circ}$ $\operatorname{Hagle} = \frac{180}{2}$ $\operatorname{Hagle} = 40^{\circ}$ $\operatorname{Hagle} = \frac{1}{2} \operatorname{dbsinc}$ $\operatorname{Hagle} = \frac{1}{2} \operatorname{dbsinc}$ $= \frac{1}{2} \times 15 \times \sin 100$ $= 111 \operatorname{Ha}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17(a) |                                                     |    |
| AC=62.2 m $AK^2 = 80^2 + 50^2 - 2(80)(50)\cos 50$ $AK = 61.3 m$ $AK = 61.3 m$ $tan x = \frac{40}{61.3}$ $tan x = \frac{40}{61.3}$ $x = 33.1^{\circ}$ $Angle = \frac{180 - 100}{2} = 40^{\circ}$ Bearing = 40^{\circ} $Angle = 20^{\circ}$ Bearing = 220^{\circ} $Area = \frac{1}{2}absinc$ $absinc$ $= \frac{1}{2}x15 \times 15 \times \sin 100$ $= 1111m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | $\frac{\mathcal{AC}}{\sin 50} = \frac{80}{\sin 80}$ | IM |
| $AK^2 = 80^2 + 50^2 - 2(80)(50)\cos 50$ $AK = 61.3 \text{ m}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{5.1.3}$ $x = 33.1^{\circ}$ $Angle = \frac{180 - 100}{2} = 40^{\circ}$ Bearing = 40^{\circ} $Angle = -\frac{120}{2}^{\circ}$ Bearing = 220^{\circ}         Bearing = 220^{\circ} $Area = \frac{1}{2}absinc$ $= \frac{1}{2}\times15 \times 15 \times \sin 100$ $= 111m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | AC=62.2 m                                           | N  |
| $AK^{2} = 80^{2} + 50^{2} - 2(80)(50)\cos 50$ $AK = 61.3 \text{ m}$ $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $x = 33.1^{\circ}$ $Angle = \frac{180 - 100}{2} = 40^{\circ}$ $Bearing = 40^{\circ}$ $Bearing = 40^{\circ}$ $Bearing = 40^{\circ}$ $Bearing = 220^{\circ}$ $Bearing = 111m^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17(b) |                                                     |    |
| AK = 61.3 m $\tan x = \frac{40}{61.3}$ $\tan x = \frac{40}{61.3}$ $x = 33.1^{\circ}$ $x = 33.1^{\circ}$ $Angle = \frac{180 - 100}{2} = 40^{\circ}$ Bearing = 40^{\circ} $Angle = 40^{\circ}$ Bearing = 40^{\circ} $Angle = 220^{\circ}$ Bearing = 220^{\circ} $Area = \frac{1}{2}absinc$ $= \frac{1}{2} \times 15 \times sin 100$ $= 111m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | $AK^{2} = 80^{2} + 50^{2} - 2(80)(50)\cos 50$       | IM |
| $\begin{aligned} \tan x &= \frac{40}{61.3} \\ x &= 33.1^{\circ} \\ & \pi = 33.1^{\circ} \\ & Angle &= \frac{180 - 100}{2} = 40^{\circ} \\ & Bearing &= 40^{\circ} \\ & Bearing &= 40^{\circ} \\ & Angle &= 40 + 180 \\ & Angle &= 40 + 180 \\ & aring &= 220^{\circ} \\ & Bearing &= 111m^{2} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | AK = 61.3 m                                         | ١٧ |
| $x = 33.1^{\circ}$ $Angle = \frac{180 - 100}{2} = 40^{\circ}$ Bearing = 40° $Angle = 40^{\circ}$ $Angle = 40 + 180$ $= 220^{\circ}$ Bearing = 220° $Area = \frac{1}{2}absinc$ $= \frac{1}{2}x 15 \times 15 \times sin 100$ $= 111m^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17(c) | $\tan x = \frac{40}{61.3}$                          | MI |
| $Angle = \frac{180 - 100}{2} = 40^{\circ}$<br>Bearing = 40°<br>Angle = 40 + 180<br>= 220°<br>Bearing = 220°<br>$Area = \frac{1}{2}absinc$<br>= $\frac{1}{2}x15 \times 15 \times sin 100$<br>= 111m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | x=33.1°                                             | ٩١ |
| Bearing = 40° $Angle = 40 + 180$ $a race = 220°$ Bearing = 220° $Area = \frac{1}{2}absinc$ $= \frac{1}{2} \times 15 \times 15 \times sin 100$ $= 111m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18(a) | $Angle = \frac{180 - 100}{2} = 40^{\circ}$          | IW |
| Angle = 40 + 180<br>= 220°<br>Bearing = 220°<br>Area = $\frac{1}{2}absinc$<br>= $\frac{1}{2}x15 \times 15 \times sin100$<br>= 111m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Bearing = 40°                                       | ٩I |
| $= 220^{\circ}$<br>Bearing = 220°<br>Area = $\frac{1}{2}absinc$<br>= $\frac{1}{2}x15 \times 15 \times sin 100$<br>= 111m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18(b) | Angle = 40 + 180                                    | IM |
| Area = $\frac{1}{2}absinc$<br>= $\frac{1}{2}x15x15xsin100$<br>= $111m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | se a  | = 220°<br>Bearing = 220°                            | ٩١ |
| : 15 × sin 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18(c) | Area = $\frac{1}{2}absinc$                          | IM |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | $=\frac{1}{2} \times 15 \times 15 \times \sin 100$  | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | = 11 1m <sup>2</sup>                                | AI |

S

|        | $10 \times 4.50 \text{ v} = 3.750$                                    |         |
|--------|-----------------------------------------------------------------------|---------|
|        | 50y - 16y = 3750 - 2220                                               | answer. |
|        | 34y = 1530                                                            |         |
|        | y = 45                                                                |         |
|        | 2x + 10(45) = 750                                                     |         |
|        | 2x = 750 - 450                                                        |         |
|        | <i>x</i> = 150                                                        |         |
| 12 (a) | Tree B.                                                               | BI      |
|        | The mean weight of pears from Tree B is lighter/lesser than from Tree | BI      |
|        | A. Or any similar explanation.                                        | a.      |
| 12(b)  | Tree A.                                                               | BI      |
|        | The SD of the pear from tree A is smaller/less spread than tree B.    |         |
|        | Or any similar explanation                                            | BI      |
| 13(a)  | 13                                                                    | BI      |
| 13(b)  | 2n+3                                                                  | BI      |
| 13(c)  | No                                                                    | BI      |
|        | 120 is even number while total number of diamonds would be odd        | BI      |
|        | number.                                                               |         |
| 14(a)  | A(-1,0)                                                               | B1 each |
|        | B(2,0)                                                                |         |
|        | C(02)                                                                 |         |
| 14(b)  | x = 1/2                                                               | BI      |
| 15(a)  | 2/11                                                                  | BI      |
| 15(b)  | x+4 75                                                                | IW      |
|        | $\frac{11+x}{100}$                                                    | 2       |
|        | 100x + 400 = 825 + 75x                                                |         |
|        | 25x = 425                                                             |         |
|        | x = 17                                                                | AI      |
| 16(a)  | Tangent to a circle form right angle                                  | BI      |
| 16(b)  | x = 180 -90-70 = 20°                                                  | BI      |

21

Canberra Secondary School Secondary Four Normal Academic Preliminary Examination 2 (2016) Mathematics Paper 1

Canberra Secondary School Preliminary Examination 2 (2016)

Secondary Four Normal Academic Mathematics Paper 1

| BI       | BI            | B1                                                | BI                      | No mark                                             | given if | OII | workings/ | explainati | on given | BI                                    | IW       | AI         | IM                               | AI   | MI                       | AI  | IW                                                                      | IL I               | IW                           |                 | AI    | BI    |
|----------|---------------|---------------------------------------------------|-------------------------|-----------------------------------------------------|----------|-----|-----------|------------|----------|---------------------------------------|----------|------------|----------------------------------|------|--------------------------|-----|-------------------------------------------------------------------------|--------------------|------------------------------|-----------------|-------|-------|
| 54()()HS | 15° (isos. Δ) | $\angle SPO = 75^{\circ}$ (angle in same segment) | Yes, they are parallel. | $\angle PQO = \angle OSR = 15^{\circ}$ (alt. angle) |          |     |           | 4          |          | <b>AABE</b> is similar to <b>AACD</b> |          | x = 3.2 cm | $\frac{y}{y+3.6} = \frac{1}{10}$ | y=24 | ZBAC = (180' - 162') + 2 | =90 | Exterior angle = 180° - 162° = 18°<br>Number of Sides = 360° + 18° = 20 | 6(3x+4) > 10(2x-1) | $ 8x + 24\rangle > 20x - 10$ | 34 > 2 <i>x</i> | 17>x. | x=13  |
| (в)(1)   | (i)(q)61      | 19(b)(ii)                                         | 19(c)                   |                                                     |          |     |           |            |          |                                       | 20(b)(i) |            | 20(b)(ii)                        |      | 21(a)                    |     | 21(b)                                                                   | 22(a)              |                              |                 |       | 22(b) |

Centerra Secondary School Secondary Four Normal Academic Preliminary Examination 2 (2016) Mathematics Paper 1

85



| Name : | Index no: | Class: | Calculator Model: |
|--------|-----------|--------|-------------------|
|        |           |        |                   |

## **DEYI SECONDARY SCHOOL**

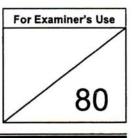


## Preliminary Examination 2016 Secondary Four Normal Academic

## MATHEMATICS

Paper 1

Candidates answer on the Question Paper.


## READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

Answer all questions. The number of marks is given in brackets [ ] at the end of each question or part question.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. The total number of marks for this paper is **80**.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer correct to **3 significant figures**. Give answers in degrees to **1 decimal place**. For  $\pi$ , use either your calculator value or 3.142.



4045/01

12 August 2016 1040 – 1240h 2 hours

This document consists of 18 printed pages including the cover page. [Turn over

bestfreepapers.com

## Mathematical Formulae

**Compound Interest** 

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 

Volume of a sphere =  $\frac{4}{3}\pi r^3$ 

Area of triangle ABC =  $\frac{L}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

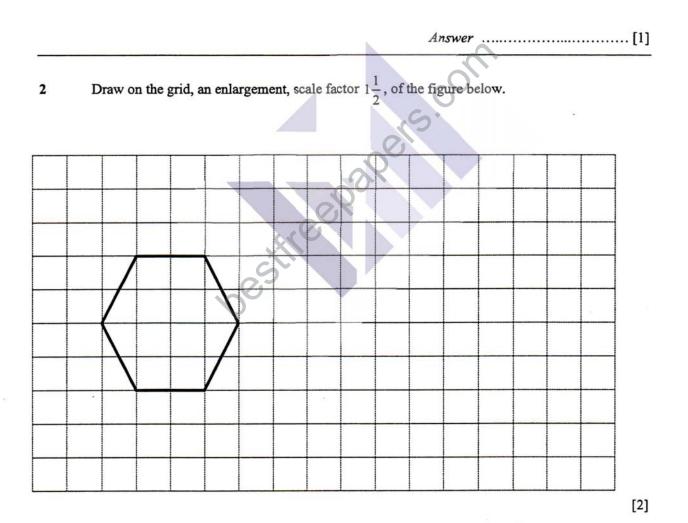
Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

 $a^2 = b^2 + c^2 - 2bc \cos A$ 

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$


Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

## Answer all the questions.

1 (a) Find 
$$\frac{320.5 \times 0.98}{0.321}$$
.

Write down all the figures on your calculator display.

|     | Answer                                                     | <br>[1] | l |
|-----|------------------------------------------------------------|---------|---|
| (b) | Write your answer to (a) correct to 6 significant figures. |         |   |



(a) Calculate 
$$\frac{1.5+\pi}{\sqrt{6}\times9.82}$$
, giving your answer to 4 decimal places.

- (b) The ethnic composition of resident population in Singapore is shown in the table below.

| Ethnic Composition | of resident | population |
|--------------------|-------------|------------|
|--------------------|-------------|------------|

| Percentage % |
|--------------|
| 74.4         |
| 13.3         |
| 9.1          |
| 3.2          |
|              |

Express the ratio of Chinese to the resident population in its lowest terms.

4 Solve (a)  $-\frac{p}{5} \le 2$ ,

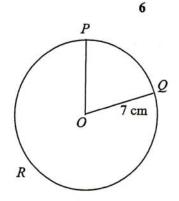
**(b)** -5(3-7x)=0.

bestfreep**aper**s.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

#### Pancake Recipe

130 g all-purpose flour, (spooned and levelled)
30 g sugar
10 g baking powder
2.5 g teaspoon salt
130 ml milk
30 g unsalted butter, melted
1 large egg
14 ml vegetable oil

Makes 15 pancakes


Given that 1 block of butter = 150 g, calculate how many blocks of butter does Martha need to buy to make 85 pancakes?

Answer

6 Max rides to school on his bicycle at an average speed of 45 km/h.

Express his speed in metres per second.

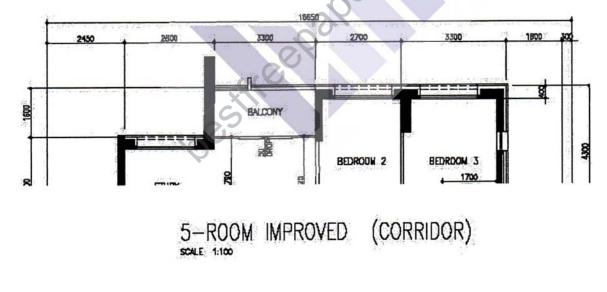
Answer .....m/s [2]



A circle, centre O, has radius 7 cm. P, R and Q are points on the circumference such that reflex angle  $POQ = 295^{\circ}$ .

Taking  $\pi = \frac{22}{7}$ , find the area of the minor sector *POQ*.

(a) Factorise completely 9pq-27pr.


**(b)** Simplify  $\frac{k^3h^2 - k^3}{k^2 - k^2h^2}$ .

91 bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

- 9 There are 3 blue blouses, 4 red blouses, 5 green blouses, 3 pairs of black pants and 2 pairs of grey pants in a wardrobe. Winnie randomly picks a blouse first followed by a pair of pants. Find the probability that she picks
  - (a) a red blouse,

(b) a green blouse and a pair of grey pants.

- 10 The diagram shows part of a floor plan of a 5-room house.
  - (a) Given that the figures on the map show the actual dimensions in millimetres, find the length of the balcony on the plan in centimetre.



(b) If the pot of a plant measures 20.2 cm in diameter, how many pots of plants can be planted along the length of the balcony?

#### [Turn over

(a) Given that  $2^m = 16^8$ , find m.

(b) Given that 
$$3^{4n} \times 9^{-n} = \frac{1}{729}$$
, find *n*.

Answer n =..... [2]

12 (a) Find the lowest common multiple of 14 and 35.

(b) The square root of p is  $2^2 \times 5^3$ . Find p as the product of its prime factors.

Simplify

(a) 4x - (2x + 7),

(b)  $\frac{2}{x+3} - \frac{1}{x^2-9}$ .

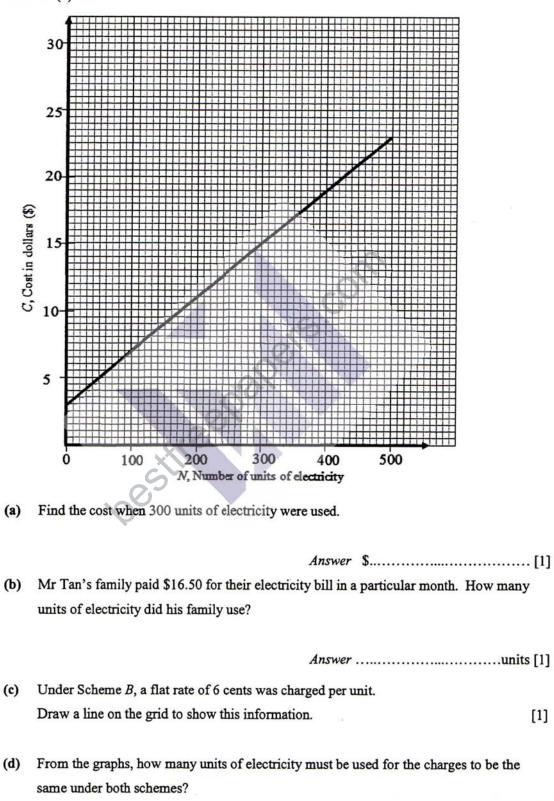
- 14 Given that the exterior angle of a polygon is  $x^{\circ}$  and the interior angle is  $3x^{\circ} + 64.8^{\circ}$ ,

9

(a) find the value of x.

(b) Marie stated that the polygon is indeed a regular polygon.

Is she correct?


Show your working.

Answer

### [Turn over

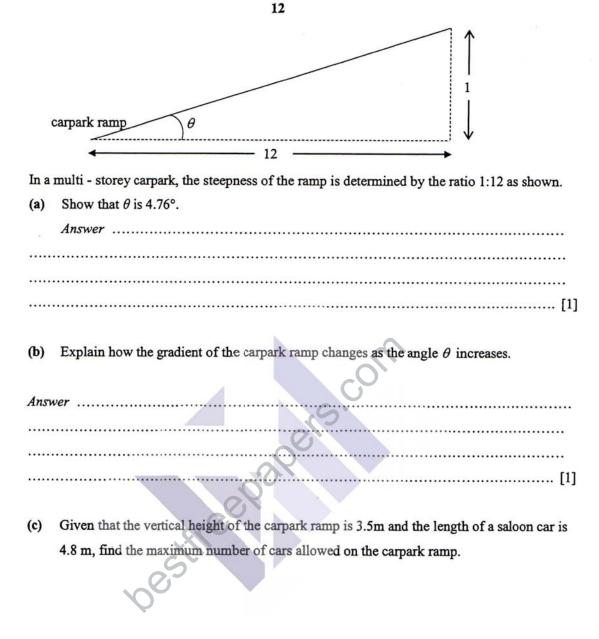
### The graph below shows the electricity charges in a city under Scheme A.





Answer .....units [1]

[1]


# bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

16 (a) By completing the square, express  $x^2 - 12x - 5$  in the form  $(x-t)^2 - r$ .

(b) Hence solve  $x^2 - 12x - 5 = 0$ .

|    |     | Answer $x = \dots $ [2]                                                      |
|----|-----|------------------------------------------------------------------------------|
| 17 | (a) | SALE<br>20% discount off<br>cost price                                       |
|    | Ab  | icycle was sold at \$240 in the sale.                                        |
|    | Hov | v much must it be sold in order to make a profit of 15% on the cost price?   |
|    |     | Answer \$ [2]                                                                |
|    | (b) | After two weeks, the percentage discount offered was changed.                |
|    | .,  | Gabriel paid \$285 for the same model of bicycle with a cost price of \$380. |
|    |     | What was the new percentage discount?                                        |
|    |     |                                                                              |
|    |     | Answer% [2]                                                                  |
|    |     | [Turn over                                                                   |



bestfreepapers.com

19 Using only ruler, compass and protractor, construct

| a parallelogram PQRS such that $PQ = 10$ cm, $QR = 7.5$ cm, $\angle PQR = 70^{\circ}$ , | [1]                                                                                                                                          |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| the perpendicular bisector of $QR$ ,                                                    | [1]                                                                                                                                          |
| the bisector of angle QPS.                                                              | [1]                                                                                                                                          |
| se two lines intersect at the point X.                                                  |                                                                                                                                              |
| Mark clearly the point X.                                                               | [1]                                                                                                                                          |
| Measure the length of $QX$ .                                                            |                                                                                                                                              |
|                                                                                         | the perpendicular bisector of $QR$ ,<br>the bisector of angle $QPS$ .<br>se two lines intersect at the point X.<br>Mark clearly the point X. |

Answer (a), (b), (c) and (d)

Answer (e) QX = .... cm [1]

[Turn over

bestfreepapers.com

20 The following survey was conducted for N adults to find out if they watch the English Premier League (EPL) soccer matches or the National Basketball Association (NBA) matches.

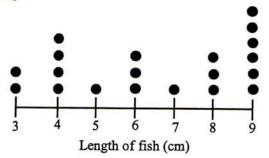
| Do you  | watch the matches?    |  |
|---------|-----------------------|--|
| You can | tick more than 1 box. |  |
|         | I watch EPL match.    |  |
|         | I watch NBA match.    |  |
|         | I watch both.         |  |
|         | I watch neither.      |  |

A total of M ticks were recorded.

The incomplete pictogram shows the results.

| Watch EPL matches         |       |
|---------------------------|-------|
| Watch NBA matches         |       |
| Watch EPL and NBA matches | RECO  |
| Watch neither             |       |
| represents 4              | ticks |

Number of ticks from N adults

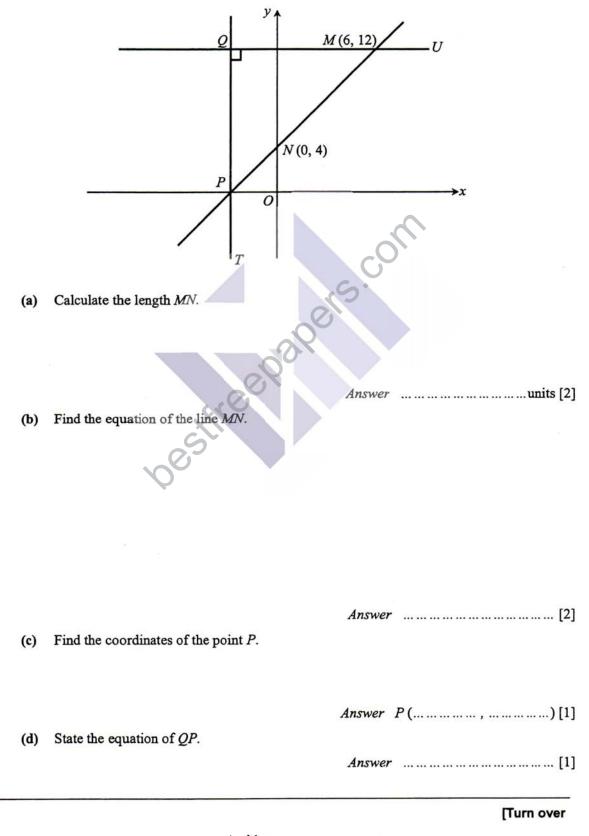

5% of the N adults watch neither the English Premier League (EPL) soccer matches nor the National Basketball Association (NBA) matches.

The number of ticks for 'neither' is 3.75% of the M ticks.

(a) Find the value of M and N.

|     | Answer $M = \dots$                              | [1] |
|-----|-------------------------------------------------|-----|
|     | N=                                              | [1] |
| (b) | b) Complete the pictogram on page 14.           | [1] |
| (c) | c) Hence, deduce the number of adults who watch |     |
|     | (i) EPL matches only,                           |     |
|     | OT S                                            |     |
|     | 0219                                            |     |
|     | Answer                                          | [1] |
|     | (ii) NBA matches only.                          |     |
|     | 10 <sup>65</sup>                                |     |
|     |                                                 |     |

[Turn over




Find

- (a) the modal length of the fish,
- Answer the median length of the fish, (b) Answer .....cm [1] the mean length of the fish. (c)

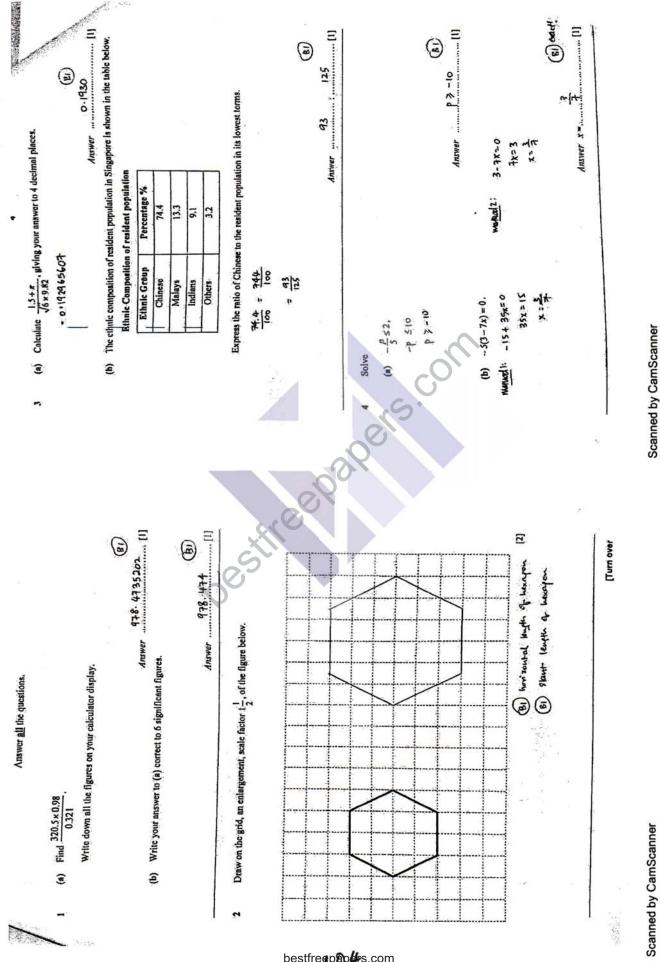
|      | Answer                                                                  |
|------|-------------------------------------------------------------------------|
| (d)  | Explain why the mode is not a good measure of the average in this case. |
| Answ | ver                                                                     |
|      |                                                                         |
|      | [1]                                                                     |

22 The diagram below shows a sketch of a straight line passing through the points M(6, 12), N(0, 4) and P, which lies on the x-axis. The lines QU and QT intersect at Q and  $\angle MQP = 90^{\circ}$ .

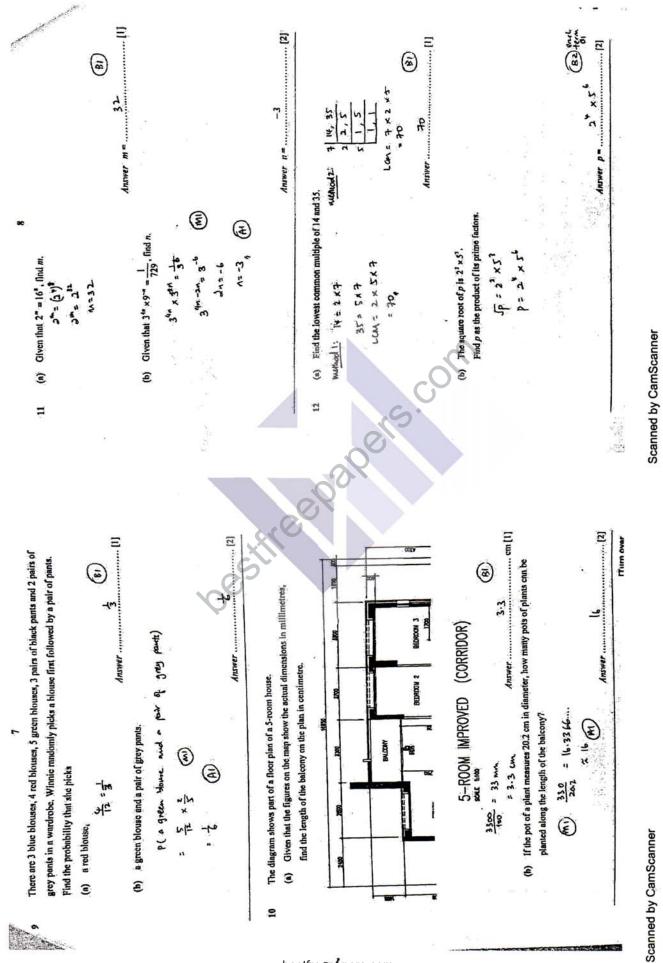


23 (a) Solve the equation  $4x - \frac{3x+7}{6} = 7$ .

- (b) A painter can finish painting a house in 20 hours. If he works for 14 hours at the normal rate of pay and 6 hours at the overtime rate, he will be paid \$115. However, if he works for 18 hours at the normal rate and 2 hours at the overtime rate, his earnings will be \$105.
  - (i) Write down two equations to represent the above information.

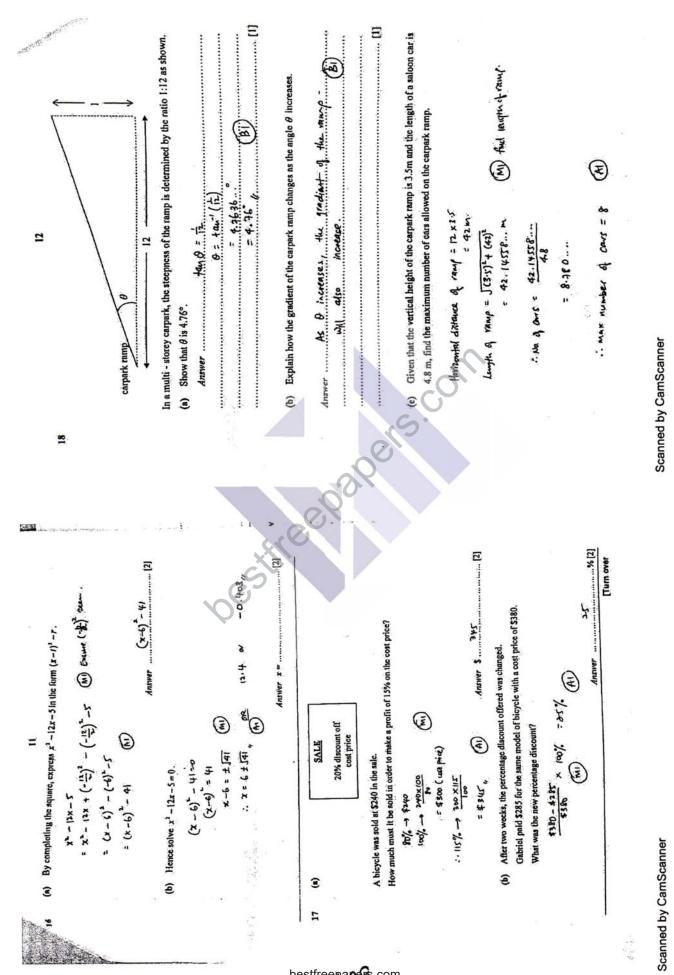

stre

|        |      |      | <b>F</b> 1 |   |
|--------|------|------|------------|---|
| Answer | <br> | <br> | <br>[J     | 1 |


- By solving these two simultaneous equations, find his normal and overtime rates of pay.

| Answer | \$ <i>x</i> = | \$    |
|--------|---------------|-------|
|        | \$y =         | \$[3] |

### END OF PAPER



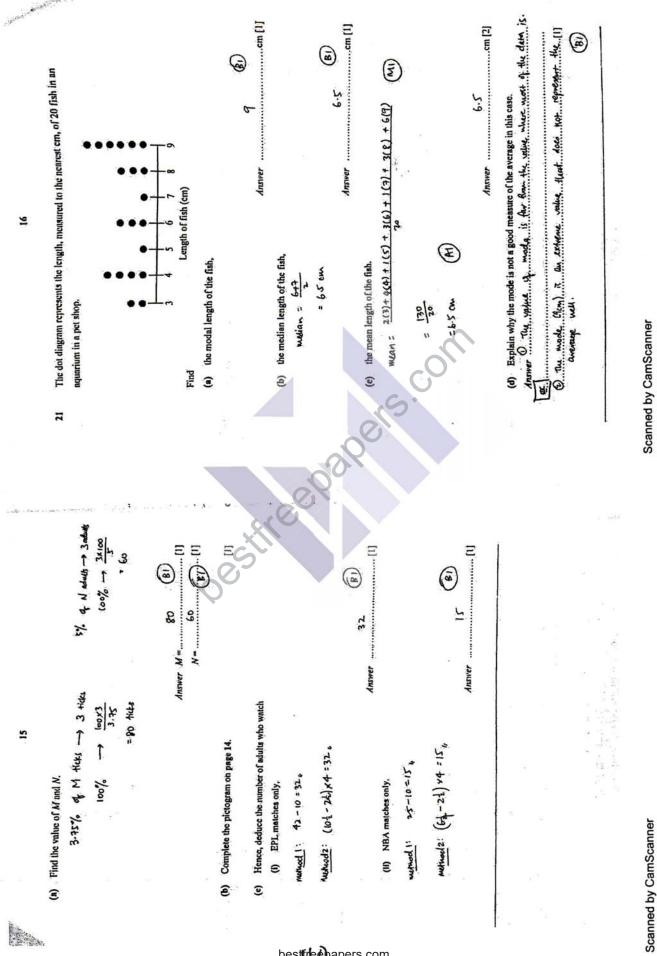

| A circle, centre $C_1$ has radius $T$ cent. $P_1$ , $R$ and $Q$ are points on the circumfreence such that<br>A circle, centre $C_1$ has radius $T$ cent. $P_1$ , $R$ and $Q$ are points on the circumfreence such that<br>reflex rangle $P (Q = 295$ c.<br>Taking $x = \frac{22}{7}$ . find the arrise of the militor sector $P (Q_2)$<br>Taking $x = \frac{22}{7}$ . find the arrise of the militor sector $P (Q_2)$<br>there $P_1$ where $P (Q_2) = \frac{4T^2}{167} \times \pi(\pi)$<br>$\therefore$ Thus $P_1$ where $P (Q_2) = \frac{4T^2}{167} \times \pi(\pi)$<br>$\therefore$ Thus $P_2$ where $P (Q_2) = \frac{4T^2}{167} \times \pi(\pi)$<br>$\therefore$ Thus $P_2$ where $P (Q_2) = \frac{4T^2}{167} \times \pi(\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٤     | Scanned by CamScanner |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| Parente Rectine       130 g all-purpose flour, (shooned and levelled)         130 g all-purpose flour, (shooned and levelled)       130 g all-purpose flour, (shooned and levelled)         130 g all-purpose flour, (shooned and levelled)       130 g unsaled         140 g availed butter, melled       14 ml vegetablo oil         150 g unsaled butter, melled       14 ml vegetablo oil         16 ml milk       14 ml vegetablo oil         17 m vegetablo oil       17 ml vegetablo oil         18 makes 13 pancakes       190 mile 65 pancakes         19 make 13 pancakes       190 mile 65 pancakes         19 make 13 pancakes       190 mile 65 pancakes         19 make 13 back of butter does Marthineed to the theoret to theoret to the theoret to theoret to theoret to | Anote | Scanned by CamScanner |

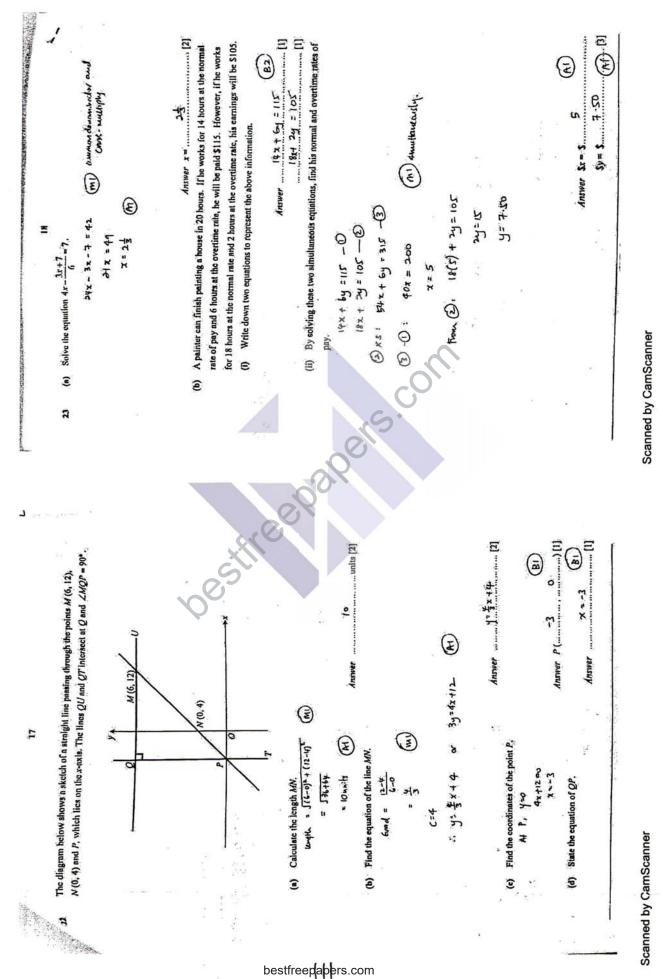


(Accept 335-340) (Accept 195 to 155) Answer 3. 15 (1) [1] stim.... Ξ [[] shint ..... (b) Mr Tan's family paid \$16.50 for their electricity bill in a particular month. How many From the graphs, how many units of electricity must be used for the charges to be the ٢ 0.06 × 500 = \$30 ß (18) The graph below shows the electricity charges in a city under Scheme  $\mathcal{A}$ . \$00 Answer ..... • (c) Under Scheme B, a flat rate of  $\delta$  cents was charged per unit, 200 300 400 N, Number of units of electricity (a) Find the cost when 300 units of electricity were used. Draw a line on the grid to show this information. 2 units of electricity did his family use? same under both schemes? 10 Answer (c) 20 ģ C, Cost in dollars (5) Ð 15 3 ... minie & incorrect . (11) which is not an integer, 2 E nutuod2: Sun of un ter n(3x°+ 64,2°) [2] ..... [Turn over (12)×180 = 151.2° x 28.8° ~ = 360° 3 . Given that the exterior angle of a polygon is  $x^{\circ}$  and the interior angle is  $3x^{\circ}+64.8^{\circ}$ 28.8 (E-X)(E+X) t-ke 1. + 32 + 64. 8 = 180 (adj. 41 on ~ 54. 1m) Answer x = ..... Marie stated that the polygon is indeed a regular polygon. Answer (H) " ... . ... \* ++ - - +++X+-3) + (m) Automic X. 2. 2. 4. 1×" = 115.2" Kine 12.5 is not an integer, (A) 1 E where is incorrect. weredt: bach and to 29.5" Show your working. No. A side = 360. (a) find the value of z. 1.21 1 1-(1-3)-1 Is she correct? (F-XX 1+X) (b)  $\frac{2}{x+3} - \frac{1}{x^3-9}$ (--- xc (a) 4x - (2x + 7), E-xc-x4 = Scanned by CamScanner Answer F-xc = Simplify e 14 11 (Dia) 335 S.

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore! Scanned by CamScanner




The following survey was conducted for Nadults to find out if they watch the English Premier 5% of the N adults watch neither the English Premicr League (EPL) soocer matches nor the League (EPL) soccer matches or the National Basketball Association (NBA) matches. Number of ticks from N adults The number of ticks for 'neither' is 3.75% of the M ticks. I watch NBA match. I watch EPL thatch. You can tick more than 1 box. National Basketball Association (NBA) matches. 4 Do you watch the matches? I watch neither. The incomplete pictogram shows the results, I watch both. A total of M ticks were recorded. 2 A [1] up ..... [Turn over EEE Ξ 6 (a) mentage of construction must be seen at R and S. -> (b) 9.9 (a) a parallelogram PQRS such that PQ = 10 cm, QR = 7.5 cm,  $ZPQR = 70^{\circ}$ , Answer (e) QX = ..... 3 \* 4.0 Using only ruler, compass and protractor, construct E \$ の場合で These two lines intersect at the point X. the perpendicular bisector of QR, ES 10 cm the bisector of angle QPS. Measure the length of QX. (d) Mark clearly the point X. Answer (a), (b), (c) and (d) 4.2 mm 2 3 1 () 3 1.1


bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

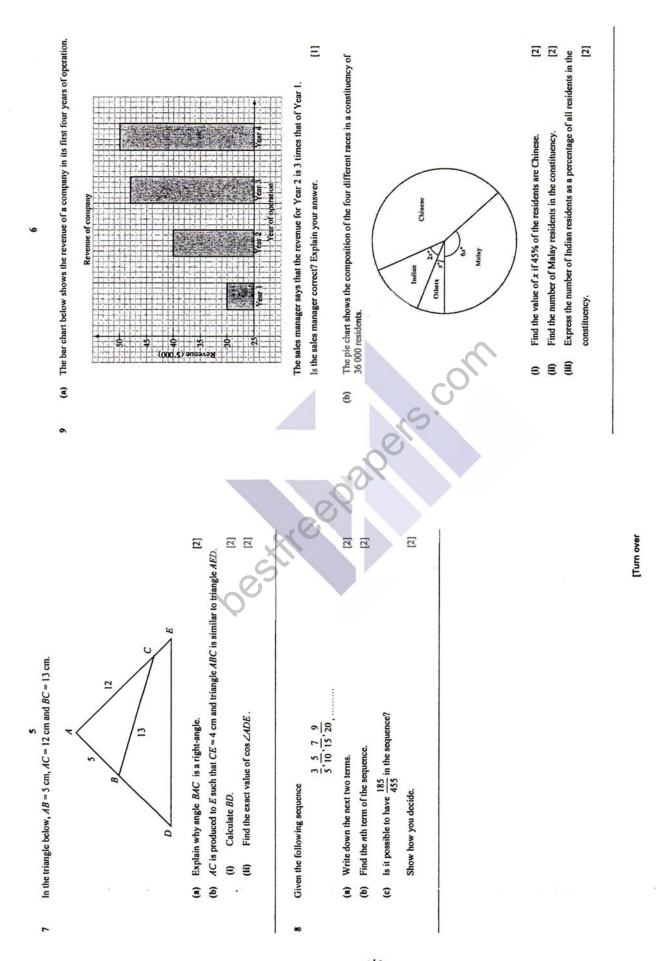
| Wateh EPL matches,           |       |   |
|------------------------------|-------|---|
| Watch NBA matches            |       |   |
| Watch EPL and NBA<br>matches |       |   |
| Watch neither                | e     | 2 |
| C representits 4 ticks       | ticks |   |

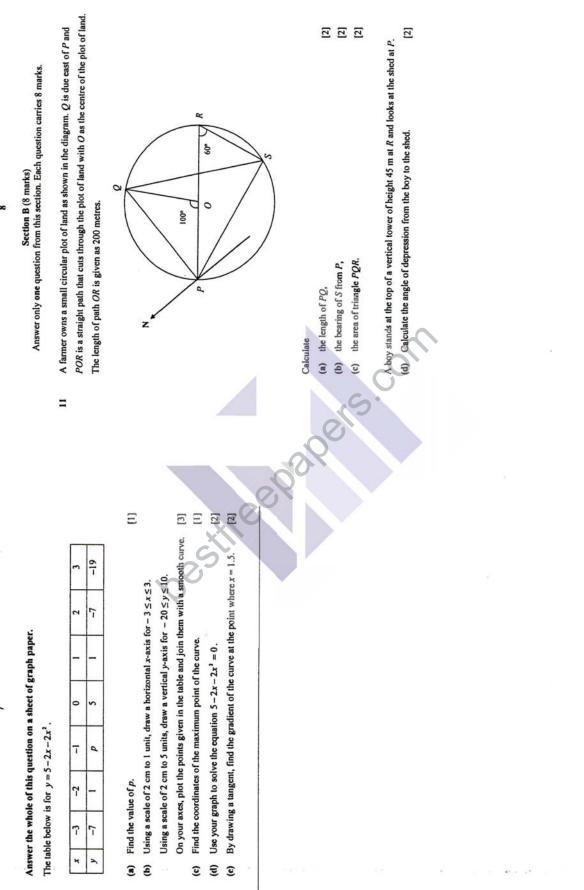
Scanned by CamScanner

Scanned by CamScanner





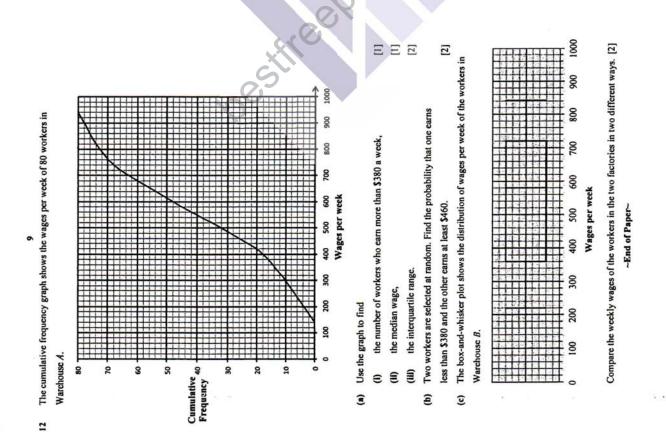

Sector area  $=\frac{1}{2}r^{2}\theta$ , where  $\theta$  is in radians Arc length =  $r\theta$ , where  $\theta$  is in radians  $\left(\frac{\Sigma_{f_{x}}}{\Sigma_{f}}\right)^{2}$ Curved surface area of a cone =  $\pi r/$ Area of triangle ABC =  $\frac{1}{2}ab\sin C$ Surface area of a sphere =  $4\pi r^2$ Total amount =  $P\left(1 + \frac{r}{100}\right)^n$ Volume of a sphere =  $\frac{4}{3}\pi r^{3}$ Volume of a cone =  $\frac{1}{3}\pi r^2 h$ Mathematical Formulae  $a^2 = b^2 + c^2 - 2bc \cos A$  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Standard deviation =  $\sqrt{\frac{\Sigma_f \kappa^2}{\Sigma_f}}$  $Mean = \frac{\sum fx}{\sum f}$ Compound Interest Trigonometry Mensuration Statistics 16 August 2016 0800 - 1000h 2 hours 4045/02 The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer correct to **3 significant figures**. Give answers in degrees to **1 decimal place**. For  $\pi$ , use either your calculator value or 3.142. At the end of the examination, arrange all your answer scripts in order of the questions answered and **Calculator Model:** [Turn over The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 60. This document consists of 9 printed pages including the cover page. Secondary Four Normal Academic DEYI SECONDARY SCHOOL Preliminary Examination 2016 If working is needed for any question it must be shown with the answer Omission of essential working will result in loss of marks. Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. Class: Index no: Additional Materials: 5 sheets of writing paper 1 graph paper READ THESE INSTRUCTIONS FIRST fasten them securely together. Answer one question. Section A Answer all questions. MATHEMATICS Name : Section B Paper 2


|    | Section A (52 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 The    | The exchange rate between Singapore dollars (5) and Euros (E) is $SSI = E0.65$ .                            | apore dollars (\$) and Eu   | rros (E) is S\$1= E0.65.    |               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|---------------|
|    | Answer an une questions in this section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lesl     | Leslie won a lucky draw prize of S\$25 000.                                                                 | FS\$25 000.                 |                             |               |
| -  | Without the use of calculator, evaluate $4.37 \times 10^4 - 0.125 \times 10^5$ , giving vour answer in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heu      | He used some of the money to pay for a trip to France that cost £2800.                                      | ay for a trip to France th  | lat cost €2800.             |               |
|    | statidard form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (a)      | Calculate how many dollars Leslie had left after paying for the trip.                                       | 's Leslie had left after pa | aying for the trip.         |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | Give your answers to the nearest cents.                                                                     | carest cents.               |                             | [2]           |
| l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (q)      | If Leslie invested the lucky draw prize of \$\$25 000 at 2.25% compounded half yearly                       | / draw prize of S\$25 00    | 0 at 2.25% compounded h     | alf ycarly    |
| 2  | On the number line below. the fractions are could distance anart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | for 3 years, calculate the interest earned after 3 years.                                                   | iterest carned after 3 yea  | JIS.                        |               |
| Ċ. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | Give your answers to the nearest cents.                                                                     | carest cents.               |                             | [3]           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                             |                             |                             |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                             |                             |                             |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 It was | It was announced on the 6 <sup>th</sup> of June 2016 that Underwater World Singapore will be closing after  | ic 2016 that Underwater     | World Singapore will be     | closing after |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | June 26. | 25 years and that the ticket prices had been lowered to its 1991 opening price from June 7 till<br>June 26. | had been lowered to its     | 1991 opening price from J   | June 7 till   |
|    | Find the fractions k, h and m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The cl   | The chart below shows the admission fees:                                                                   | sion fees:                  |                             |               |
| ,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | Adult                                                                                                       | Child                       | Child                       |               |
| n  | Simplify and express use romowing in positive index form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                             | (3 - 12 years old)          | (below 3 years old)         |               |
|    | (a) $\frac{36a^2}{9a^4}$ , [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | S\$9.00                                                                                                     | S\$5.00                     | Free                        |               |
|    | (h) h <sup>2</sup> <sup>-2</sup> × (h <sup>-2</sup> -1) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                             |                             |                             |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mrs A    | Mrs Aniston set a budget of S\$150. She planned to invite some of her adult friends and 8 primary           | 0. She planned to invite    | some of her adult friends   | and 8 primary |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | schoo    | school children on a day trip, together with her twin boys of 4 years old and one 8-month-old               | ther with her twin boys     | of 4 years old and one 8-n  | nonth-old     |
| 4  | p is directly proportional to the source of $a$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | baby {   | baby girl to the Underwater World Singapore.                                                                | l Singapore.                |                             |               |
|    | the company of the second se | (a)      | If x and y represent the number of adults and children going to the Underwater World                        | nber of adults and child    | ren going to the Underwat   | ter World     |
|    | It is given that $p = 16$ when $q = \frac{1}{4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Singapore, write down an expression for the total cost of the admission fees.                               | expression for the total    | cost of the admission fees. | Ξ             |
|    | (a) Find the formula connecting p and q. [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (q)      | What is the maximum number of adults that Mrs Aniston can invite to                                         | ber of adults that Mrs /    | Aniston can invite to       |               |
|    | (b) Calculate the value of $p$ when $q = 3$ . [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19       | come along?                                                                                                 |                             |                             | [6]           |
|    | (c) Calculate the values of $q$ when $p = 25$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c)      | II MIS Aniston increased her budget by \$380 to invite some senior citizens,                                | er budget by SA80 to in     | vile some senior citizens,  |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | how many senior citizens can she invite?                                                                    | an she invite?              |                             | [2]           |
| I  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                             |                             |                             |               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                             |                             |                             |               |

[Turn over

4

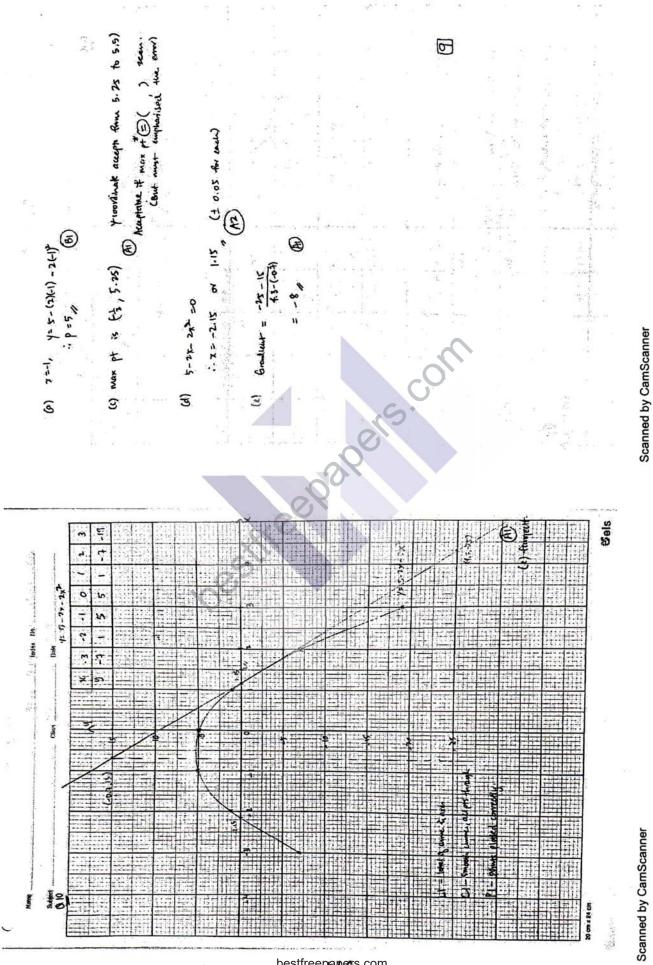
3

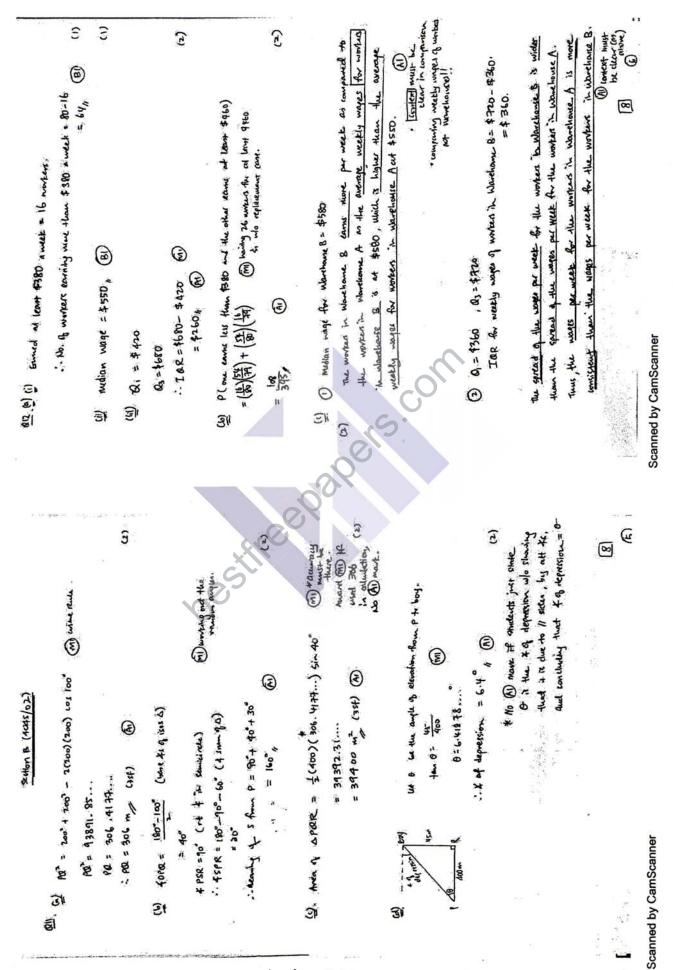





2

[Turn over


2






1 (2) 3 ଚି ଜ୍ର (7) 5  $\odot$ 3 . Mis Anistran can invite another 20-11=9 souid citizens, Zuterst carried = 5\$ 26735.67889 - 5\$ 2000 (m) keynery mit E 3 = cf 20692.31, Enconest centil ... Max no of adults to Invite = 11-1 = 5\$ 1735.68 " (moment cents). gx = \$100 + \$80 CHONDER \$80) (M) Rate - 1 = 20 Amount 1614= 5\$ 25 000 - 0\$ \$307.692308 QE(a) Total amount = \$ (9x + 5(4-1)) (B) E = 54 (735. L+ 2865 E Total Number of adults  $Ant = 5 \pm 25200 \left( 1 + \frac{1.15}{100} \right)^{1}$ 3 = 5\$ 10012. 30769 = 54 4307.692308 011 = (1-11) + x6 + 24 26735. 67869 = No. of adult = 11 9x = 100 x 2 11-0815 = 26 3 E 2600 = 280 S¢1=€0.45 £ 0.65 = 541 Scanned by CamScanner E E IE ĝi ગં (1) 2 017 X 10 2 - 0.125 X 10 2 Θ Marking Bairne 3 I - annar E 1 R いいちょう (2) (2) 637× 104 - 01/15 × 105 F 9 \* 01× 4'= (5) 82 Tys wilgh 12 = 2F = 0.312 . XIO \*\* + + 1 (AZ) -1 marter 4 \* 21.8 = JOILS 4NA PRELIM EXAMI PAPER 2. (4045) (c) P= 25. עון הוויים מייה חער (SI) tat @ an = ann rue キャジョリン 4=4 1 3 3 4. 37 ×10 4 - 0.125 × 10 5 × 104 E 3 \*\* P\*C × (1"C\* = 4.37 × 10 4 - . 1.25 4 4 3 -|\$ ,1 3 (1) + 2304 , (1) 360-3 = 3.12 × 10 Scanned by CamScanner 1 1=1, P= 257 (3)2 キキ \* 2-5 Pall , 1=4 (F) 6, C ه." " (キ)ヨ = 1 "passag" Mar is K= WL 2 = 1 : **P** : 3i 10 3 3 5 51

13 ŝ (20)r (14) E (2) 3 three of \$30000. This the menager is incompt. er% x 340" = 2x" + x" + " (7) "/z.z. 10 Ú 3 (2) 3 use is not in the requ because 1 Wincrease as a CRI)+1 = 163 ter is he the sequence, 3 W"TI=x 3 360 × 100% Per denomination of 415, milleodin 198° = 92' × - 22 1 13 1 1+ 11 = W O. G. No. the super number 3 mentets on the bor event is the Russine and did not grant from D. -8 (111) No. of Tuber Recident = 2(22) x 16000 = 4400 (111) = 4400 (111) F (81) • 30. 1, (B) carb tom ci - m Richmart 4 A) W conclusion ( 1) Nor & water Restart = 642) x 36 000 - 11100 - (H) W 12.2% 13 not in the square. Th = 2n+1 (1) munerant (b)11) Representing Univor: 25 x300=163 S. Percentage = 4400 × 100% lear 1 → \$ 30000 \$40000 it wot Year 2 -> \$40000 (H) "TC= 2... = 12 = 7. 925 = 910 + 455 Shee wis not an integer ; 185 - 11-1 115 - 11-1 x = 22° Scanned by CamScanner · 254 = 431 For =u <u> 영</u>. (A) 북. thus ar 30 BI 3. 3 AABC is a right-angled mangle and 6 3 2 2 A there are the the .: 8D = 33.4 cm, or 335 cm, m 3 m hining DE By converse of pythogoan' Tum, 1 E Shue AB" + AC" = 25+144 FBAC = 90 " WE THE T WE AND THE W 48" + AC" = 13" E DE = ((3++12)- + (1++1) 191= 5+80 - 1244 241 580 = 192 : 45 \$ ADE = 33.4+5 580= 167 " 第 4 150 = 41.6 cm .: 65 (ADE = 13 オオーニ = 169 AC\* + 12\* BC= 13 22 = Ma's S 2/2 Scanned by CamScanner ای 18 G () ন্থ্ৰ 1811







East Spring Secondary School Towards Excellence and Success

| Name :                              |                                                             | (             | )             |
|-------------------------------------|-------------------------------------------------------------|---------------|---------------|
| Class :                             |                                                             |               |               |
|                                     | Preliminary Examination 2016<br>Secondary 4 Normal Academic |               |               |
| <b>Mathematics</b><br>Paper 1       |                                                             | 404           | 5/01          |
| 18 August 2016<br>Thursday          |                                                             | 2 ł<br>- 0745 | nours<br>0945 |
| <u>Additional materials:</u><br>nil | n                                                           |               |               |

## READ THESE INSTRUCTIONS FIRST

Write your Name and Index Number on all the work you hand in.

Write in dark blue or black pen. You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions in this booklet.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in term of  $\pi$ .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is **80**.



This question paper consists of 16 printed pages including the cover page.

## bestfreepapers.com



## Mathematical Formulae

**Compound Interest** 

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^{r}$$

Mensuration

Curve surface area of a cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ Volume of a sphere =  $\frac{4}{3}\pi r^3$ Area of triangle ABC =  $\frac{1}{2}ab\sin C$ Arc length =  $r\theta$ , where  $\theta$  is in radians

Area of sector = 
$$\frac{1}{2}r^2\theta$$
 where  $\theta$  is in radians

h

 $\sin B$ 

 $b^2 + c^2 - 2bc\cos A$ 

sinC

 $\sin A$ 

Trigonometry

Statistics

Mean = 
$$\frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

2016 Prelim 4NA Paper 1

Towards Excellence and Success

page 2/16



## Answer ALL questions.

1. Arrange the following numbers in ascending order.

$$\pi, -\frac{1}{4}, \sqrt{3}, 0.2^2, 5$$

- Ans: \_\_\_\_\_ [1] 2. Evaluate a)  $\frac{7.5 - (3.2 + 4)}{3 \times 10^{-3}}$ b)  $\frac{64 + \sqrt[3]{0.125}}{4}$ Ans: \_\_\_\_\_ [1] Ans: \_\_\_\_\_ [1]
- 3. By writing each number correct to 1 significant figure, estimate the value of

 $\frac{16.25 \times 0.48}{2.054}$ 

You must show your working.

|                         | Ans:                                                                 | [2]                       |
|-------------------------|----------------------------------------------------------------------|---------------------------|
|                         |                                                                      |                           |
|                         |                                                                      |                           |
| 2016 Prelim 4NA Paper 1 | Towards Excellence and Success                                       | page 3/16                 |
| - The BEST website t    | bestfreepapers.com<br>o download FREE exam papers, notes and other r | materials from Singaporel |



4. Express

- 12.5% as a fraction in its lowest terms. a)
- Ans: [1] b)  $\frac{1}{4}$  as a decimal. Ans: [1] 5. Filbert folded some paper cranes and placed them into 3 bags. The ratio of the number of paper cranes in Bag A, B and C is 8:3:2 respectively. The number of paper cranes in Bag C is 20. What fraction of the paper cranes are in Bag B? a) [1] Ans: b) Calculate the total number paper cranes folded.

Ans: [2]

2016 Prelim 4NA Paper 1

Towards Excellence and Success

page 4/16

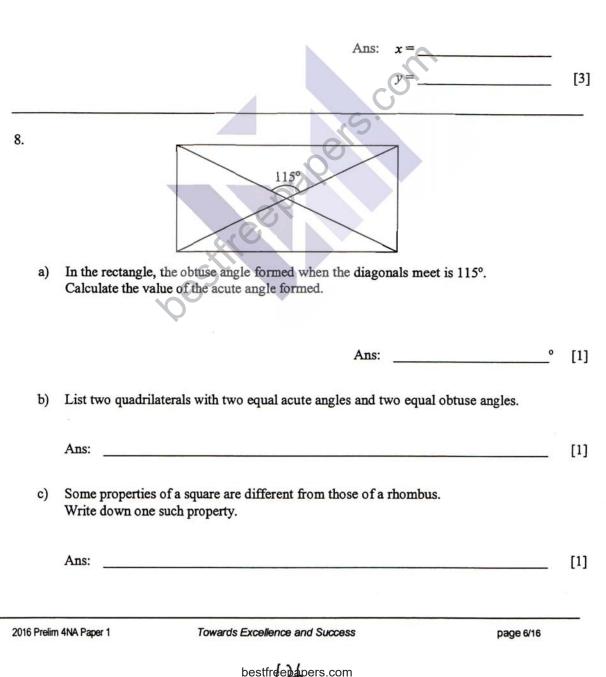
6. a) Express 168 as a product of its prime factors.

- Ans: \_\_\_\_\_ [1] b) Given that 72 = 2<sup>3</sup> × 3<sup>2</sup>, find the lowest common multiple of 72 and 168.
- c) Write down the smallest positive integer, n, such that 72n, is a perfect cube.

Ans: \_\_\_\_\_ [1]

2016 Prelim 4NA Paper 1

Towards Excellence and Success


page 5/16

bestfreepapers.com



7. Solve these simultaneous equations

$$7x - 2y = 2$$
$$3x + 4y = 30$$





East Spring Secondary School Mathematics Department Do It Right. Always

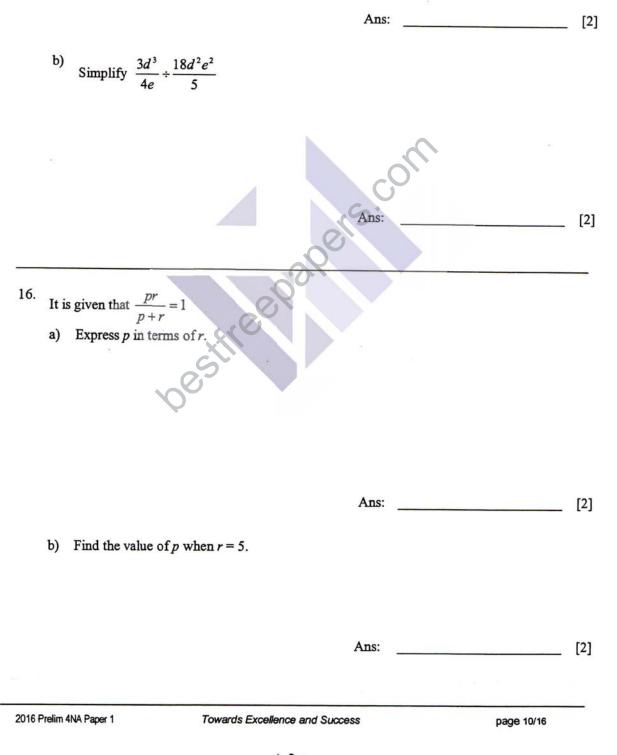
- 9. Factorise each of the following completely.
  - a) 5a(2b-c)-(2b-c)

|                                                                                                                     | Ans:                                              |                                | [1] |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------|-----|
| b) $8a^2 - 2b^2$                                                                                                    |                                                   |                                |     |
|                                                                                                                     |                                                   |                                |     |
|                                                                                                                     |                                                   |                                |     |
|                                                                                                                     | Алз:                                              |                                | [2] |
| 10 In the diagram below, triangle i                                                                                 | POV is similar to triangle PS                     | 0                              |     |
| 10. In the diagram below, triangle $A$<br>Given that $PQ = 4 \text{ cm}, PX = 5 \text{ cm}$<br>a) the length of RS, | Q<br>4<br>5<br>4<br>40°<br>S                      |                                |     |
|                                                                                                                     |                                                   |                                |     |
|                                                                                                                     | Ans:                                              | cm                             | [2] |
| b) $\angle PQX$                                                                                                     |                                                   |                                |     |
|                                                                                                                     | Ans:                                              | o                              | [1] |
| 2016 Prelim 4NA Paper 1 Towa                                                                                        | rds Excellence and Success                        | page 7/16                      | _   |
| - The BEST website to download                                                                                      | bestfreepapers.com<br>FREE exam papers, notes and | other materials from Singapore | !   |



11. The first four terms of a sequence are 2, 8, 14 and 20.

a) Write down in terms of n, the nth term of this sequence.


|        |         |             | Ans:                                                                                                                                                            | [1]       |
|--------|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|        | b)      | Write do    | own the 78 <sup>th</sup> term.                                                                                                                                  |           |
|        | c)      | Which to    | erm is 164 in the sequence?                                                                                                                                     | [1]       |
|        |         |             | Ans:                                                                                                                                                            | [1]       |
| 12.    | and     | l placed in | etters of the word 'POSSIBLE' is written on a card. The cards a<br>to a box. A card is then drawn at random from the box. Find the<br>the card drawn is<br>Ans: |           |
|        | b)      | a conson    | ant                                                                                                                                                             |           |
|        | c)      | a 'T'       | Ans:                                                                                                                                                            | [1]       |
|        |         |             | Ans:                                                                                                                                                            | [1]       |
| 2016 P | relim 4 | 4NA Paper 1 | Towards Excellence and Success                                                                                                                                  | page 8/16 |



- 13. a) Given that  $5^x = 25^{x-3}$ , find the value of x.
- Ans: [2] b) Simplify  $\sqrt{121y^4} \times y$ . [2] Ans: 14. a) By completing the square,  $x^2 + 7x - 2$  can be expressed in the form  $(x + p)^2 + q$ . Find p and q. [2] Ans: p =q =b) Hence, solve  $x^2 + 7x - 2 = 0$ . Give your answers correct to two decimal places. Ans: [2] 2016 Prelim 4NA Paper 1 Towards Excellence and Success page 9/16



15. a) Expand and simplify  $(x-3)(2x^2-5x+1)$ .





- 17. A map is drawn using a scale of 2 cm to represent 1 km. Calculate
  - a) the scale of the map in the form of 1:n.

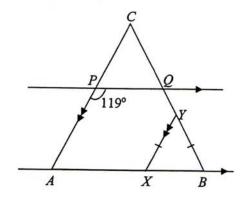
Ans: \_\_\_\_\_ [1]

b) the actual distance, in kilometres, represented by a line, 15 cm long on the map.

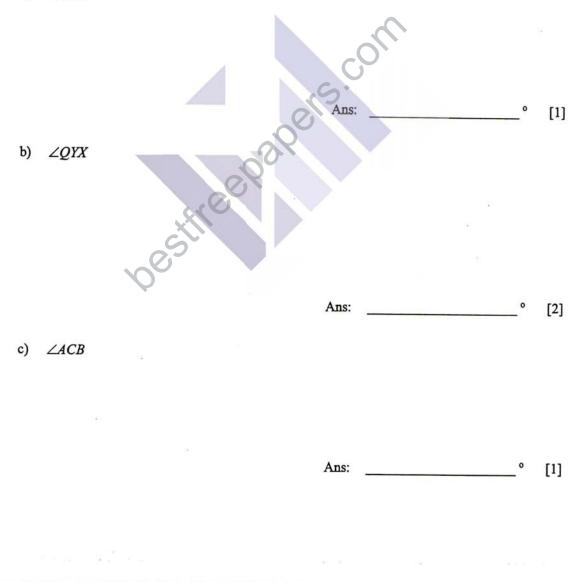
c) the area on the map, in square centimetres, which represents an actual area of  $6 \text{ km}^2$ .

Ans:

Ans: \_\_\_\_\_ cm<sup>2</sup> [2]


page 11/16

km


[1]



18. In the diagram, AB and PQ are straight lines. PQ is parallel to AB and AP is parallel to XY. Given that XY = BY and  $\angle APQ = 119^\circ$ , calculate







2016 Prelim 4NA Paper 1

page 12/16



19. a) The exterior angle of a regular polygon is 24°. How many sides does it have?

> Ans: [1]

> > [3]

b) In a pentagon, two of the interior angles are 100° and 104° while the three other interior angles are equal. Find one of these equal angles.

20. Joseph wants to save \$50 000 in a bank for 5 years. The bank offers him two investment plans.

Plan A pays 4.5% simple interest per year. Plan B pays 4.2% compound interest per year.

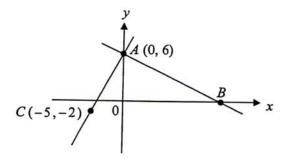
Ans:

a) Calculate how much money Joseph will have at the end of 5 years if he selects Plan A.

Ans: \$ [2]

b) Show with working, which plan should he choose such that he will benefit more?

Ans: [3]


2016 Prelim 4NA Paper 1

Towards Excellence and Success

page 13/16



21. The diagram shows the straight lines AB and AC. The line AB has a gradient of  $-\frac{2}{3}$  and crosses the x-axis at point B.



- Write down the equation of the straight line AB. a)
- Ans: [1] Find the coordinates of B. b)

Ans: [2]

Calculate the length of AC. c) Give your answer correct to 2 decimal places.

| 2016 Preli | im 4NA Paper 1              | Towards Excellence and       | 1 Success | page 14/16 |
|------------|-----------------------------|------------------------------|-----------|------------|
|            | <ul> <li>April 2</li> </ul> | $(-1,1) \in \{0,1,\dots,n\}$ |           |            |
|            |                             |                              | Ans:      | [2]        |

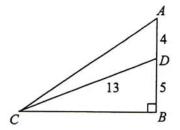


22. The stem and leaf diagram below shows the marks obtained by students in a class.

| Girl | s |   |   |   | Boys |
|------|---|---|---|---|------|
|      |   | 8 | 0 | 6 | 16   |
| 7    | 5 | 3 | 2 | 7 | 0003 |
| 8    | 6 | 1 | 1 | 8 | 0003 |
|      | 4 | 1 | 0 | 9 | 2    |

Key Girls: 0|6 represent 60 Boys: 6|1 represents 61

a) Find the total number of students in the class.


| b) | Find the median marks of the girls. | [1] |
|----|-------------------------------------|-----|
| c) | Ans: marks                          | [1] |
|    | Ans: marks                          | [1] |

d) What is the percentage of students who scored more than 85 marks?

|                         | Ans:                                                                   | %                       | [2] |
|-------------------------|------------------------------------------------------------------------|-------------------------|-----|
|                         |                                                                        |                         |     |
| 2016 Prelim 4NA Paper 1 | Towards Excellence and Success                                         | page 15/16              |     |
| - The BEST website      | bestfreebabers.com<br>to download FREE exam papers, notes and other ma | aterials from Singapore | e!  |



23. In the right-angled triangle ABC, D is a point on the side AB.



Given that AD = 4 cm, BD = 5 cm and CD = 13 cm.

a) Show that BC = 12 cm.

[1]

b) Write  $\cos \angle BCD$  as a fraction. Ans: [1] Find  $\angle ACB$ . c) Ans: 0 [2] d) Calculate the area of triangle ACD. Ans: [2] ~ End of Paper ~ 2016 Prelim 4NA Paper 1 Towards Excellence and Success page 16/16 bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

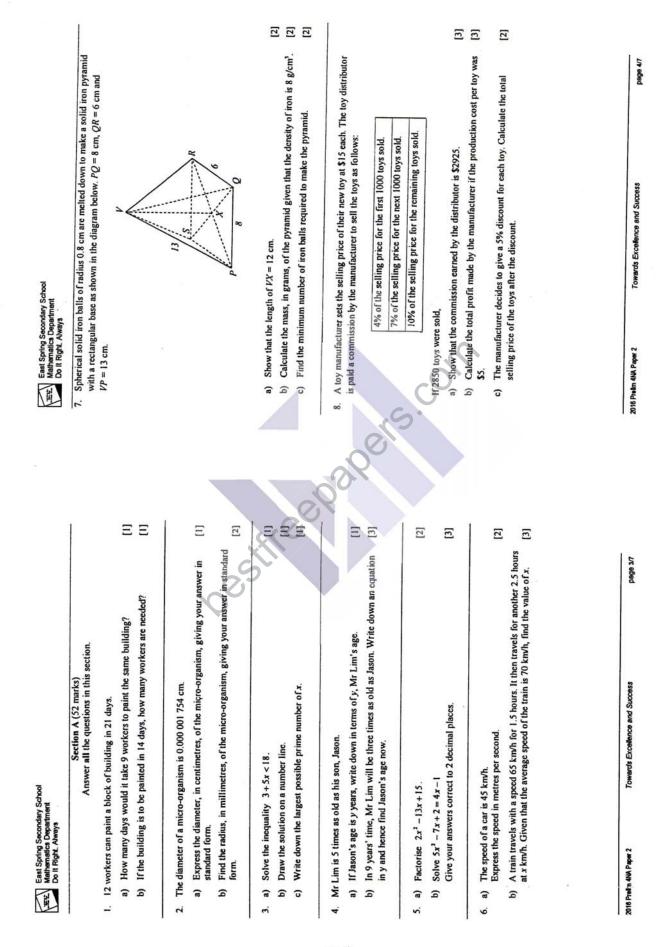
| 8b  | Rhombus, Parallelogram                                                                                                                          | 81 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8c  | Square has 4 right angles and rhombus does not.<br>Or the sides of a square are perpendicular to one another,<br>unlike the sides of a rhombus. | И  |
| 9a  | (2b-c)(5a-1)                                                                                                                                    | 81 |
| 96  | $8a^2 - 2b^2 = 2(4a^2 - b^2)$                                                                                                                   | MI |
|     | =2(2a-b)(2a+b)                                                                                                                                  | VI |
| 10a | $\frac{RS}{PO} = \frac{RX}{PX}$                                                                                                                 |    |
|     | <u>RS</u> = 7.5                                                                                                                                 |    |
|     | 4 S                                                                                                                                             |    |
|     | $RS = \frac{1.3}{5} \times 4$                                                                                                                   | Ш  |
|     | = 6 cm                                                                                                                                          | Ч  |
| 10b | $\angle PQX = 40^{\circ}$ (alt angle)                                                                                                           | 81 |
| 11a | 2+6(n-1)=6n-4                                                                                                                                   | BI |
| 116 | $78^{\rm th}  {\rm term} = 6(78) - 4 = 464$                                                                                                     | BI |
| 11c | 6 <i>n</i> -4=164                                                                                                                               |    |
| 1   | $n = \frac{164+4}{2} = 28$                                                                                                                      |    |
|     | 0                                                                                                                                               | VI |
| 12a | $\frac{2}{8} = \frac{1}{4}$                                                                                                                     | BI |
| 12b | 2                                                                                                                                               | 81 |
| C   | 8                                                                                                                                               |    |
| 120 |                                                                                                                                                 | 81 |
| 13a | 5 <sup>1</sup> ≠ 25 <sup>1-1</sup><br>cr _ celt-1                                                                                               | MI |
|     | x=2x-6                                                                                                                                          |    |
|     | x=6                                                                                                                                             | AI |
| 13b | $\sqrt{121y^4} \times y = 11y^2 \times y$                                                                                                       | IM |
|     | = 11 <i>y</i> <sup>3</sup>                                                                                                                      | ы  |
|     |                                                                                                                                                 |    |
|     |                                                                                                                                                 |    |

| _  | $-\frac{1}{4}, 0.2^{2}, \sqrt{3}, \pi, 5$                                              | 81                        |
|----|----------------------------------------------------------------------------------------|---------------------------|
| 2a | 100                                                                                    | 81                        |
| 2b | 32                                                                                     | 81                        |
|    | $\frac{16.25 \times 0.48}{20 \times 0.54} = \frac{20 \times 0.5}{2}$                   | MI                        |
|    | = 5                                                                                    | AI                        |
| 4a | -100                                                                                   | 81                        |
| 4b | 0.25                                                                                   | BI                        |
| Sa | $\frac{3}{8+3+2} = \frac{3}{13}$                                                       | BI                        |
| 56 | $2 \text{ units} \rightarrow 20 \text{ cranes}$<br>13 units $\rightarrow 20 \times 13$ | D IM                      |
|    | = 130 crancs                                                                           | VI                        |
| 6a | 2 168<br>2 84<br>3 21<br>7 7<br>1                                                      |                           |
|    | $168 = 2^{3} \times 3 \times 7$                                                        | BI                        |
| 66 | $LCM = 2^3 \times 3^2 \times 7 = 504$                                                  | BI                        |
| 90 | и=3                                                                                    | 81                        |
| -  |                                                                                        | M1 (either elimination or |
|    | 3x + 4y = 30 (2)                                                                       | substitution)             |
|    | 4x-4y=4(3)                                                                             |                           |
|    | (2) + (3)<br>17x = 34                                                                  |                           |
|    | x=2                                                                                    |                           |
|    | Sub $x = 2$ in (1)<br>7(2) - 2 $y = 2$                                                 | 7                         |
|    | y = 6                                                                                  | AI                        |
| 8a | Acute angle = 180°-115° = 65°                                                          | 81                        |

2

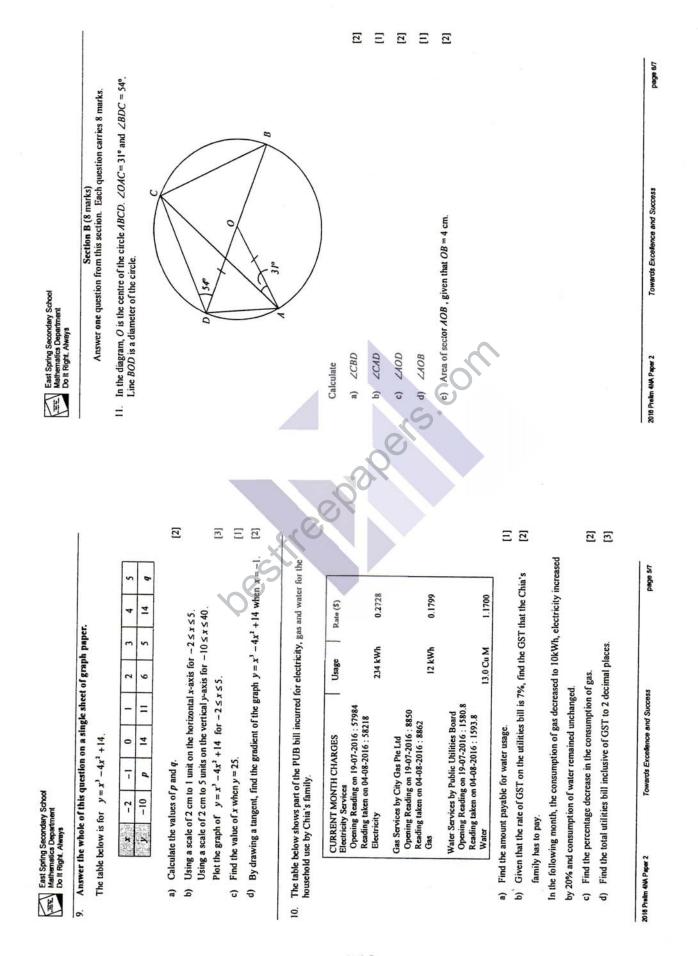
0.

| $x^{2} + 7x - 2$ $= x^{3} + 7x + \left(\frac{7}{2}\right)^{2} - \left(\frac{7}{2}\right)^{2} - 2$ $= \left(x + \frac{7}{2}\right)^{2} - \frac{49}{4} - 2$ $= \left(x + \frac{7}{2}\right)^{2} - \frac{49}{4} - 2$ $= \left(x + \frac{7}{2}\right)^{2} - \frac{49}{4} - 2$ $x^{2} + 7x - 2 = 0$ $(x + \frac{7}{2})^{2} - \frac{57}{4} = 0$ $(x + \frac{7}{2})^{2} - \frac{57}{4} = 0$ $x^{2} + 7x - 2 = 0$ $(x + \frac{7}{2})^{2} - \frac{57}{4} = 0$ $x^{2} + 7x - 2 = 0$ $(x + \frac{7}{2})^{2} - \frac{57}{4} = 0$ $x^{2} + 7x - 2 = 0$ $(x + \frac{7}{2})^{2} - \frac{57}{4} = 0$ $(x + \frac{7}{2})^{2} - \frac{57}{4} = 0$ $(x + \frac{7}{2})^{2} - \frac{57}{4} = 0$ $x^{2} + 7x - 5x^{3} + x - 6x^{2} + 15x - 3$ $= 2x^{3} - 11x^{3} + 16x - 3$ $= 2x^{3} - 11x^{3} + 16x - 3$ $= \frac{34^{3}}{4e} + \frac{84^{3}}{5} = \frac{34^{3}}{4e} \times \frac{5}{84^{6}} = \frac{54}{84}$ $p = \frac{r}{r-1}$ $p = \frac{r}{r-1}$ | 73                                                                                                                                                                                                                                                             | 0005tll<br>R                                                                                                                                                                       | MI                                                                       | MI                                                                                                     | MI IA                                                                                 | IM<br>AI                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^{3} + 7x - 2$<br>= $x^{3} + 7x + \left(\frac{7}{2}\right)^{3} - \left(\frac{7}{2}\right)^{3} - 2$<br>= $\left(x + \frac{7}{2}\right)^{3} - \frac{49}{4} - 2$<br>= $\left(x + \frac{7}{2}\right)^{3} - \frac{57}{4}$<br>$p = \frac{7}{2}, q = -\frac{57}{4}$ | $x^{2} + 7x - 2 = 0$ $\left(x + \frac{7}{2}\right)^{2} - \frac{57}{4} = 0$ $x = \pm \sqrt{\frac{57}{4} - \frac{7}{2}}$ $x \approx 0.275 \text{ or } x \approx -7.27 \text{ (3sf)}$ | $(x-3)(2x^2-5x+1)$<br>= $2x^3-5x^2+x-6x^2+15x-3$<br>= $2x^3-11x^2+16x-3$ | $\frac{3d^3}{4e} + \frac{18d^2e^3}{5} = \frac{3d^3}{4e} \times \frac{5}{8d^2e^3}$ $= \frac{5d}{24e^3}$ | $\frac{pr}{p+r} = 1$<br>pr = p + r<br>pr - p = r<br>p(r-1) = r<br>$p = \frac{r}{r-1}$ | $p = \frac{r}{r-1}$ $p = \frac{s}{s-1}$ $= \frac{s}{4}$ |


| IM                                     |        |                  |                   | A1 (ecf 2 if (a) is wrong) | IM                                    | V            | BI                            | BI          | BI         | MI                                                                                 |                                  | AI    | AI                                       | 8                                 | ĨW                               | И                                                    | WI                                      | AI                  |
|----------------------------------------|--------|------------------|-------------------|----------------------------|---------------------------------------|--------------|-------------------------------|-------------|------------|------------------------------------------------------------------------------------|----------------------------------|-------|------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------------------|-----------------------------------------|---------------------|
| When $y = 0$ ,<br>$0 = -\frac{2}{x+6}$ | 3 + 10 | $\frac{2}{3}x=6$ | $x=6+\frac{2}{3}$ | <i>x</i> = 9               | Length = $\sqrt{(-5-0)^2 + (-2-6)^2}$ | = 9.43 (2dp) | Total = 13 + 12 = 25 students | Median = 81 | Modal = 70 | Girls : 5 students Boys : 1 student<br>No. of students who scored more than 85 = 6 | $\% = \frac{6}{25} \times 100\%$ | = 24% | BC = $\sqrt{13^2 - 5^2}$ = 12 cm [shown] | $\cos \angle BCD = \frac{12}{13}$ | $\tan \angle ACB = \frac{9}{12}$ | $\angle ACB = \tan^{-1} \frac{9}{12} = 36.9^{\circ}$ | Area = $\frac{1}{2} \times 4 \times 12$ | $= 24 \text{ cm}^2$ |
| 017                                    |        |                  |                   |                            | 21c                                   |              | 22a                           | 22b         | 22c        | 22d                                                                                |                                  |       | 23a                                      | 23b                               | 23c                              |                                                      | 23d                                     |                     |

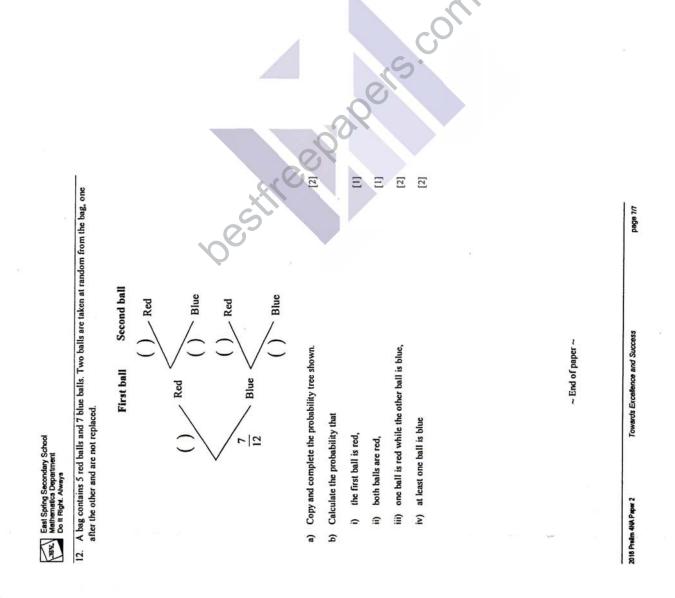
bestfreepapers.com
 The BEST website to download FREE exam papers, notes and other materials from Singapore!

apersion


| East Spring Secondary School                                                                                                                                                                                                                                                                                                                | East Spring Secondary School              | lary School<br>tmant                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Towards Excellence and Success                                                                                                                                                                                                                                                                                                              |                                           | Mathematical Formulae                                                                                                    |  |
| Class:                                                                                                                                                                                                                                                                                                                                      | Compound Interest                         |                                                                                                                          |  |
| Preliminary Examination 2016<br>Secondary 4 Normal Academic                                                                                                                                                                                                                                                                                 |                                           | Total amount = $P\left(1 + \frac{r}{100}\right)$                                                                         |  |
| Mathematics<br>Paper 2                                                                                                                                                                                                                                                                                                                      | Mensuration<br>4045/02                    | Curve surface area of a cone = $\pi r/$<br>Surface area of a sphere = $4\pi^2$                                           |  |
| 15 August 2016<br>Monday                                                                                                                                                                                                                                                                                                                    | 2 hours<br>0745 - 0945                    | Volume of a cone = $\frac{1}{3}\pi r^{2}h$<br>Volume of a conterne = $\frac{1}{3}\pi r^{3}$                              |  |
| Additional materials:<br>4 Writing papers<br>1 Graph paper                                                                                                                                                                                                                                                                                  | Sti                                       | Area of triangle ABC = $\frac{3}{2}absinC$<br>Are length = $r\theta$ , where $\theta$ is in radians                      |  |
| INSTRUCTIONS TO CANDIDATES                                                                                                                                                                                                                                                                                                                  | 0                                         | Area of sector $=\frac{1}{2}r^2\theta$ where $\theta$ is in radians                                                      |  |
| Write your Name and Index Number on all the work you hand in.<br>Write in dark blue or black pen.<br>You may use a pencil for any diagrams or graphs.<br>Do not use staples, paper clips, glue or correction fluid.                                                                                                                         | Trigonometry                              |                                                                                                                          |  |
| Section A<br>Answer all questions.                                                                                                                                                                                                                                                                                                          |                                           | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$                                                                 |  |
| Section B<br>Answer 1 out of 2 questions                                                                                                                                                                                                                                                                                                    | 5                                         | a =a +c -zoccosy                                                                                                         |  |
| The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 60.                                                                                                                                                                                                  | art question.                             | Mean = $\sum_{i} f_{i}$                                                                                                  |  |
| If working is needed for any question, it must be shown with the answer.<br>Omission of essential working will result in loss of marks.                                                                                                                                                                                                     |                                           | Standard deviation = $\left[ \sum_{i} \frac{f_{i}^{2}}{f_{i}} - \left( \sum_{i} \frac{f_{i}}{f_{i}} \right)^{2} \right]$ |  |
| You are expected to use an electronic calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For $\pi$ , use either your calculator value or 3-142. | l expressions. If the act, give the lace. | (12) 121                                                                                                                 |  |
| At the end of the examination, fasten all your work securely together.                                                                                                                                                                                                                                                                      | 09                                        |                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                          |  |
| This question paper consists of Z printed pages including the cover page.                                                                                                                                                                                                                                                                   | OVER page.                                | Towards Excellence and Success                                                                                           |  |

bestfreepape.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!




141 bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!



bestfreepers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!



- The BEST website to download FREE exam papers, notes and other materials from Singapore!

| × ·                                                                                                                      | W 17                                      | IM                                     | VI                       | IW                                                          | VI                   | IW                                                                           |                                                  | VI                    |                   | M2                                                                                                                                                         |                                     | V | IW                             | AI                                     | IM                                                           | VI          | A2        | Scale → B1<br>Plot → B1 | AI AI          | IM                       | VI<br>VI                                                         |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------|-------------------------------------------------------------|----------------------|------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---|--------------------------------|----------------------------------------|--------------------------------------------------------------|-------------|-----------|-------------------------|----------------|--------------------------|------------------------------------------------------------------|
| $\frac{(02 \times 1.5) + 2.5 \times 1}{1.5 + 2.5} = 70$<br>$\frac{97.5 + 2.5 \times 1}{4} = 70$<br>$\frac{4}{1825} = 20$ | x = 1000000000000000000000000000000000000 | $PX = \sqrt{4^2 + 3^2} = 5 \text{ cm}$ | $VX = \sqrt{13^2 - S^2}$ | Volume = $\frac{1}{3}$ x (8 x 6) x 12 = 192 cm <sup>3</sup> | Mass = 192×8 = 1535g | Vol of a ball = $\frac{4}{3} \times \pi \times 0.8^3 = 2.14466 \text{ cm}^3$ | No .of iron balls = $\frac{192}{2.14466}$ = 89.5 | Min number = 89 balls | Commission carned | $= \left(\frac{4}{100} \times 15 \times 1000\right) + \left(\frac{7}{100} \times 15 \times 1000\right) + \left(\frac{10}{100} \times 15 \times 850\right)$ | = 600+1050+1275<br>= \$2925 [shown] |   | Profit per toy = 15 - 5 = \$10 | Final profit = $28500 - 2925 = $25575$ | $Total selling price = \frac{95}{100} \times 15 \times 2850$ | = \$4061250 | p=9, q=39 | See attached            | x = 4.55 ± 0.1 | Drawing of gradient line | From graph, gradient = $\frac{19.5 - 5}{2.5 - 5} = 11.2 \pm 1.2$ |

0100

| Ia       12 workers $\Rightarrow 21$ days         9       9         1b       21 days $\Rightarrow 12$ workers         2a       1.754 × 10 <sup>-4</sup> cm         2a       1.754 × 10 <sup>-4</sup> cm         2b       Radius = $\frac{0.00001754}{2} \times 10^{-4}$ mm         3a $3+5x < 18$ $3x < 3$ $3 + 5x < 18$ $3a < 3 + 5x < 18$ $3 + 5x < 18$ $3a < 3 + 5x < 18$ $3 + 5x < 18$ $3a < 3 + 5x < 18$ $3 + 5x < 18$ $5x < 15$ $5x < 15$ $5x < 15$ $3 + 5x < 18$ $5x < 3$ $2 - 3 + 4$ $3a < 5x < 15$ $3 + 5x < 18$ $5x < 3$ $2 - 3 + 27$ $5x < 15$ $3 + 5x < 18$ $5x < 15$ $3 + 27$ $5x < 15$ $3 + 27$ $5x + 2 - 13x + 15 = (2x - 3)(x - 5)$ $3 + 27$ $5x ^2 - 7x + 2 = 4x - 1$ $5x ^2 - 7x + 2 = 4x - 1$ $5x ^2 - 7x + 2 = 4x - 1$ $5x ^2 - 7x + 2 = 4x - 1$ $5x ^2 - 7x + 2 = 4x - 1$ $5x ^2 - 7x + 2 = 4x - 1$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

bestfreepapers com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

| P(both balls are red) = $\frac{5}{12} \times \frac{4}{11} = \frac{5}{33}$                                                                           | AI |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 12biii P (one ball is red, the other is blue) = $\left[ \frac{5}{12} \times \frac{7}{11} \right] + \left( \frac{7}{12} \times \frac{5}{11} \right)$ | WI |
|                                                                                                                                                     | A1 |
| 12biv P(at least one ball is blue) = $1 - P(both balls arc red)$<br>= $1 - \frac{5}{33}$                                                            | IM |
| = 28<br>33                                                                                                                                          | IV |

| AI                                 | MI                                                                                                                         | IM                                                                          |                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                 | MI<br>AI                                                                                                                                                                | A2 (Minus one mark<br>for I error)                                                                                                                                                                                                                                                         | B1                         |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Amount = $13 \times 1.17 = 515.21$ | $Total = (234 \times 0.2728) + (12 \times 0.1799) + 15.21$<br>= 81.204<br>GST = $\frac{7}{100} \times 81.204 = $5.68(2dp)$ | Decrease = $12 - 10 = 2$ kWh<br>Percentage = $\frac{2}{2} > 10002 - 16$ 702 | retectuage = $\frac{12}{12} \times 100\%$ = $10.7\%$<br>Electricity = $1.2 \times 234 \times 0.2728$ = $576.602$<br>Total bill = $76.602 + (10 \times 0.1799) + 15.21 = 93.611$ | With US1 = 93.011×1.07 = 31.00.10 (24p)<br>∠BCD = 90° (angle in semicircle)<br>∠CBD = 180 - 90 - 54 = 36° (angle sum of triangle)<br>∠CAD = ∠CBD = 36° (angles in same segment) | ZAOD = 180 - 2(36 + 31)<br>= 46° (angles in isosceles triangle) | $\angle AOB = 180 - 46 = 134^{\circ} \text{ (angles on a straight line)}$<br>Area of sector = $\frac{134}{360} \times \pi \times 4^{2}$<br>= 18.7 cm <sup>2</sup> (3sf) | First ball Second ball<br>First ball Second ball $\left(\frac{5}{12}\right)$ Red $\left(\frac{4}{11}\right)$ Red $\left(\frac{4}{11}\right)$ Blue $\left(\frac{3}{11}\right)$ Blue $\left(\frac{5}{11}\right)$ Blue $\left(\frac{5}{11}\right)$ Blue Blue $\left(\frac{6}{11}\right)$ Blue | Different hall in such - 5 |
| 10a)                               | 901                                                                                                                        | 100                                                                         | P01                                                                                                                                                                             | al di                                                                                                                                                                           | llc                                                             | lle                                                                                                                                                                     | 12a                                                                                                                                                                                                                                                                                        | 12bi                       |

- Main

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

)

# FAIRFIELD METHODIST SCHOOL (SECONDARY)

PRELIMINARY EXAMINATION 2016 SECONDARY 4 NORMAL (ACADEMIC)

# MATHEMATICS SYLLABUS A

4045/01

Paper 1

Date: 27 July 2016

Duration: 2 hours

Candidates answer on the Question Paper.

## READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions. The number of marks is given in brackets [ ] at the end of each question or part question.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. The total of the marks for this paper is 80.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For  $\pi$ , use either your calculator value or 3.142.

| For Examiner | 's Use |
|--------------|--------|
| Paper 1      | / 80   |

Setter: Mrs Jessica Chak

This question paper consists of <u>18</u> printed pages including the cover page.

#### Mathematical Formulae

Compound interest

$$Total amount = P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi r l$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Area of a triangle  $ABC = \frac{1}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

$$a^2 = b^2 + c^2 - 2bc\cos A$$

**Statistics** 

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

|   |              | Answer all the questions.                                                                                                                                                     |
|---|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | The t<br>(a) | emperature in a freezer is -23 °C. The temperature outside the freezer is 31 °C.<br>Find the difference between these two temperatures.                                       |
|   | (b)          | Answer (a)°C [1]<br>Find the mean of the two temperatures.                                                                                                                    |
|   |              | Ańswer (b)°C [1]                                                                                                                                                              |
| - |              |                                                                                                                                                                               |
| 2 |              | istance from a ship to a lighthouse is 267 400 000 cm.<br>Write 267 400 000 in standard form.                                                                                 |
|   | (a)          | Answer (a)                                                                                                                                                                    |
|   | (b)          | The speed of sound is 340.29 m/s.<br>Calculate the time taken, in seconds, for the ship's horn to be heard at the lighthouse, after it's sounded.                             |
|   |              |                                                                                                                                                                               |
|   |              |                                                                                                                                                                               |
|   |              | ana a 10                                                                                                                                                                      |
|   |              | Answer (b) s [2]                                                                                                                                                              |
|   |              | N(A) Preliminary Examination 2016       3         Paper 1       bestfreepapers.com         ST website to download FREE exam papers, notes and other materials from Singapore! |

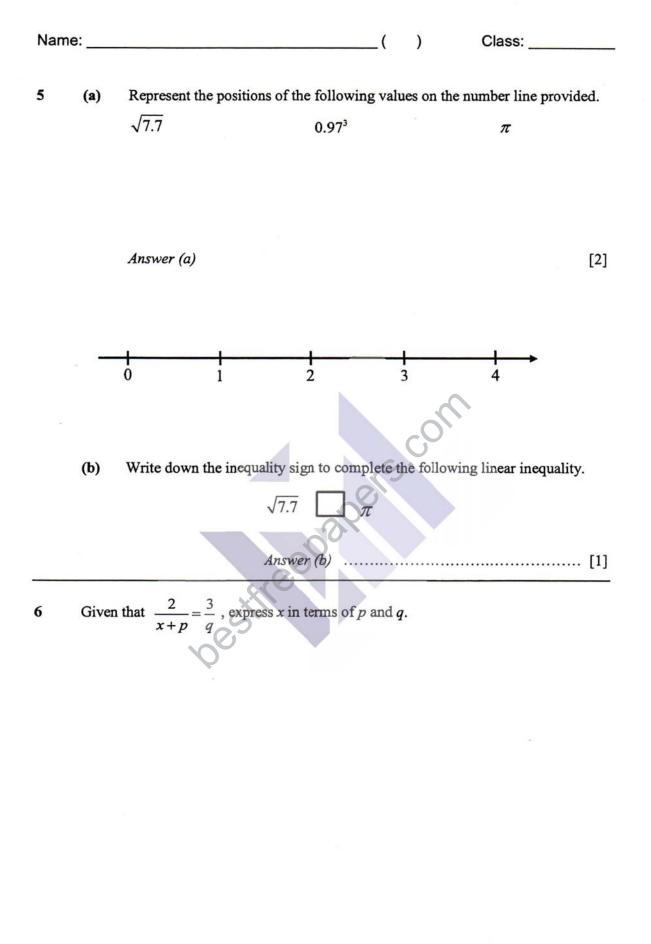
Name: \_\_\_\_\_ ( )

Class: \_\_\_\_\_

| N | 21 | n  | 0  | ٠ |
|---|----|----|----|---|
| N | aı | 11 | С, |   |

3 At a game's booth, you are asked to guess a mystery number based on the following three clues.

Clue One: This number is between the 201 and 250.


Clue Two: When you divide this number by 7, you will get a remainder of 4.

Clue Three: When you divide this number by 12, you will have no remainder. What is the number?

- 4 A farmer has 0.7 hectares of land to grow tomatoes, potatoes and cabbages. He allocated half of his land to grow potatoes, one-third of the other half to grow cabbages and the remainder land to grow tomatoes.
  - (a) Express the land for growing tomatoes as a fraction of the total land of the farmer.

(b) Given that 1 hectare = 10 000m<sup>2</sup>, how much land was allocated to grow tomatoes. Express your answer in m<sup>2</sup>.

Answer (b)..... m<sup>2</sup> [2]



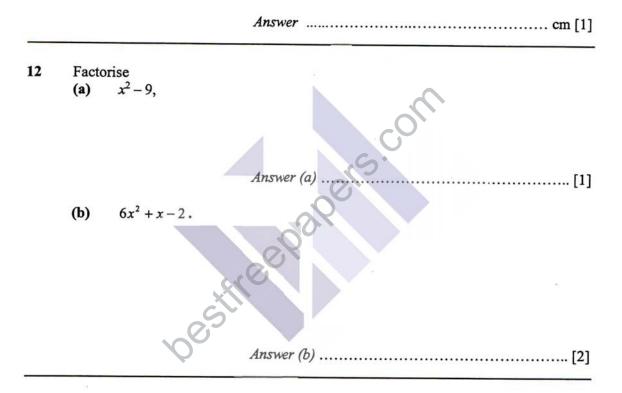
Name:

Class:

- 7 A map is drawn to a scale of 1 : 20 000.
  - (a) On the map, the perimeter of a soccer field is represented by a length of 185 cm.

Calculate the actual perimeter of the soccer field, giving your answer in kilometres.

8 Write  $\frac{4}{x-3} - \frac{1}{x^2 - 6x + 9}$  as a fraction in its simplest form.


| Name | ə:           | ( ) Class:                                                 |
|------|--------------|------------------------------------------------------------|
| 9    | Giver<br>(a) | that $x=3$ , $y=-2$ and $z=5$ , find the value of $2x+y$ , |
|      | <b>()</b>    | Answer (a)[1]                                              |
|      | (b)          | x <sup>3</sup> z,                                          |
|      | (c)          | Answer (b)                                                 |
|      |              | bestreeper                                                 |
|      |              | Answer (c)                                                 |

10 Adrian is n years old now and Beth is 37 years younger than Adrian.
Find an expression, in its simplest form, for the sum of their ages in five years' time.

Answer ..... years old [2]

| Name: |   |
|-------|---|
|       | - |

A photograph is 10 cm wide and 14 cm high. An enlargement of the photograph has a height of 35 cm.Calculate the width of the enlarged photograph.

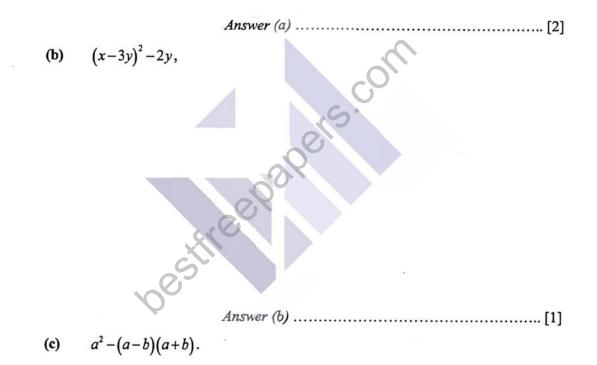


13 List the two pairs of coordinates, (x, y), for which x and y are positive integers, such that 4x + 3y = 29.

Answer (......) and (......) [2]

| Nam | ne: | ( ) Class:                                                  |
|-----|-----|-------------------------------------------------------------|
| 14  | (a) | Given that $7^{h} = 7^{-3} \times 7^{11}$ , find <i>h</i> . |
|     | (b) | Answer (a) $h =$                                            |
|     | (c) | Answer (b) $p =$                                            |

Name:


Class:

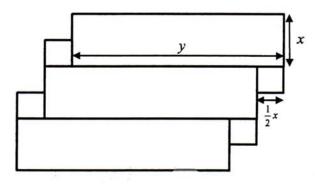
)

(

15 Simplify

(a) 
$$\frac{ab}{c^2} \times \frac{4c}{6a^2b}$$
,




Answer (c) ......[2]

)

(

16 The diagram is made up of rectangles and squares. The sides of each rectangle are of length x metres and y metres. The sides of each square are of length  $\frac{1}{2}x$  metres.

Name:

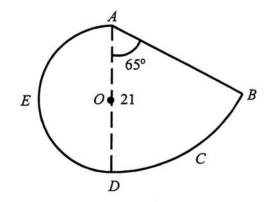


Simplifying each answer as far as possible, find an expression, in terms of x and y, for

(a) the perimeter of the diagram,
(b) the area of the diagram.

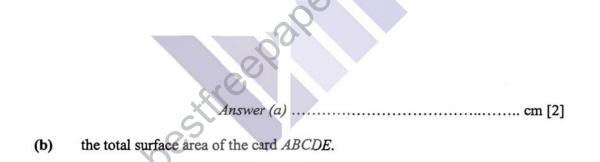
 FMS(S) Sec 4 N(A) Preliminary Examination 2016
 11

 Mathematics Paper 1
 bestfreepapers com


 - The BEST website to download FREE exam papers, notes and other materials from Singapore!

| Nam | ie:  | ( ) Class:                                                                                                                  |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------|
| 17  | (a)  | Written as a product of its prime factors, $198 = 2 \times 3^2 \times 11$ .<br>Write 660 as a product of its prime factors. |
|     |      |                                                                                                                             |
|     |      |                                                                                                                             |
|     |      |                                                                                                                             |
|     |      |                                                                                                                             |
|     |      | Answer (a)[1]                                                                                                               |
|     | (b)  | (i) Find the highest common factor for 198 and 660.                                                                         |
|     |      |                                                                                                                             |
|     |      |                                                                                                                             |
|     |      |                                                                                                                             |
|     |      | CO'                                                                                                                         |
|     |      | Answer (b)(i)                                                                                                               |
|     |      | (ii) Find the smallest positive integer, $n$ , such that $198n$ is a perfect cube.                                          |
|     |      |                                                                                                                             |
|     |      | C C                                                                                                                         |
|     |      |                                                                                                                             |
|     |      | Answer (b)(ii) $n =$                                                                                                        |
|     |      |                                                                                                                             |
| 8   | On a | ny given day, the probability that I will miss the train is $\frac{1}{2}$ .                                                 |
|     | Find | the probability that                                                                                                        |
|     | (a)  | I will miss the train on two particular consecutive days,                                                                   |
|     |      |                                                                                                                             |
|     |      |                                                                                                                             |
|     |      | Answer (a)[2]                                                                                                               |
|     | (b)  | I will miss the train on just one of the two particular consecutive days.                                                   |
|     |      |                                                                                                                             |
|     |      |                                                                                                                             |
|     |      |                                                                                                                             |

)

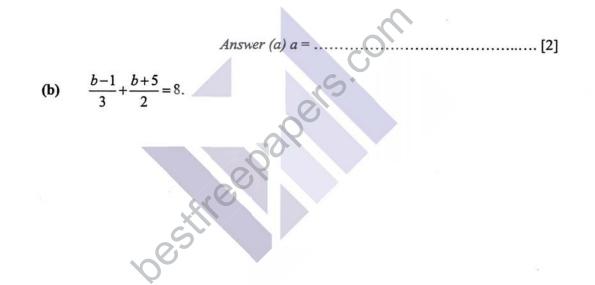

(

19 The diagram shows a card made up of a sector ABCD and a semicircle ADE. The circular arc BCD has centre A and radius 21 cm. Angle  $BAD = 65^{\circ}$ . The semicircle DEA has centre O.



### Calculate

(a) the length of the arc BCD,

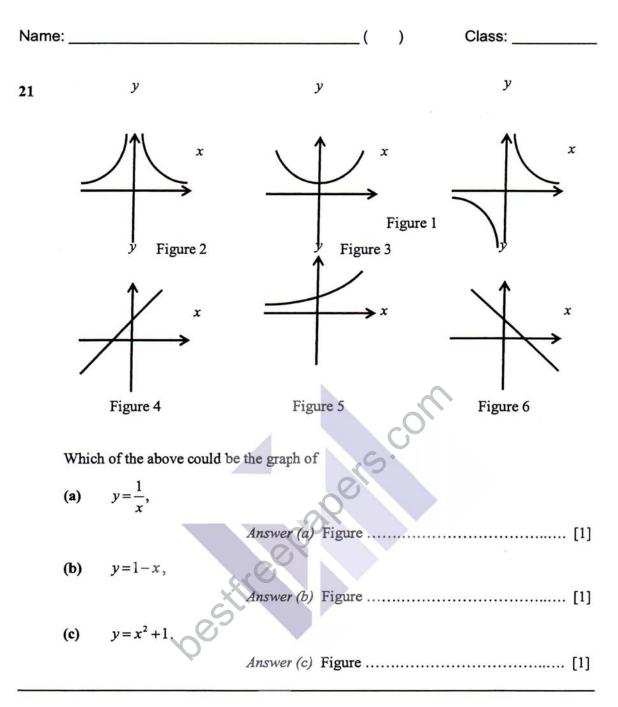



Name:

)

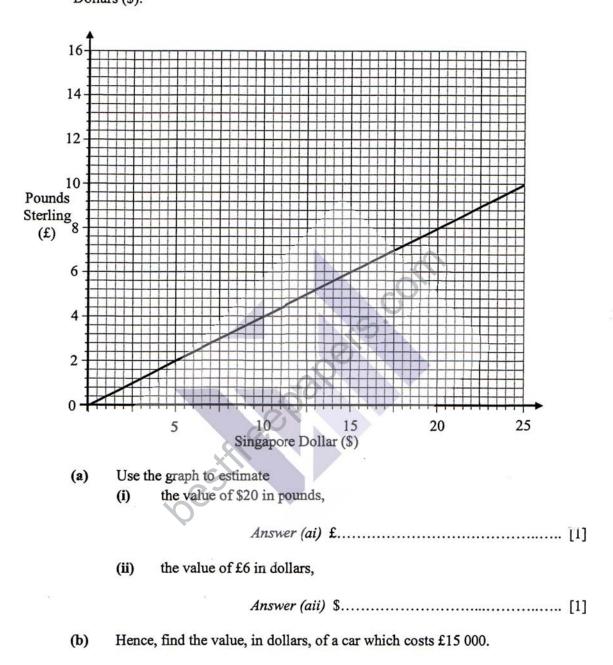
Class:

- 20 Solve
  - (a)  $\frac{3}{a} = \frac{5}{a-2}$ ,




 FMS(S) Sec 4 N(A) Preliminary Examination 2016
 14

 Mathematics Paper 1
 bestfreepapers.com

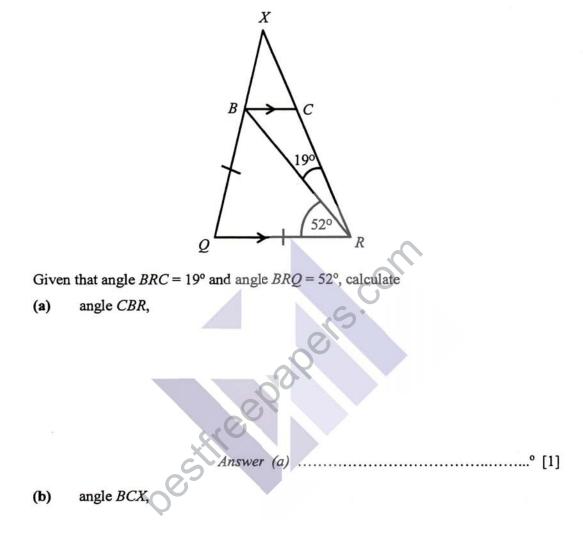

 - The BEST website to download FREE exam papers, notes and other materials from Singapore!

Answer (b) b = ......[3]



22 List the integer values of x for which 7x > 65 and  $25 - 2x \ge 1$ .

| Name: | me: |
|-------|-----|
|-------|-----|




| Answer (b) | \$ | [1] |
|------------|----|-----|
|------------|----|-----|

 (c) During the 2016 economic downturn, it was given that £1 = \$1.80. Use the same gird above, draw the conversion graph between Singapore Dollars and the new Pounds Sterling.

| Name: | ( | ) | Class: |
|-------|---|---|--------|
|       |   |   |        |

24 In the diagram, the lines BC and QR are parallel. The lines QB and RC, when produced, meet at X. The triangle BQR is isosceles with QB = QR.



Answer (b) .....° [1]

(c) angle BXC.

| Answer (c)° [2]<br>25 In the diagram, B is the point (0, 16) and C is the point (0, 6).<br>The sloping line through B and the horizontal line through C meet at the point A.<br>y | Nar | me:() Class:                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------|
| y                                                                                                                                                                                 | 25  | In the diagram, $B$ is the point (0, 16) and $C$ is the point (0, 6). |
|                                                                                                                                                                                   |     | y                                                                     |

x

(b) Given that the gradient of the line AB is 2, find the equation of the line AB.

(0,6)

C

(c) Calculate the coordinates of the point A.

Write down the equation of the line AC.

(a)

Answer (c) (.....) [2]

(d) Calculate the area of the triangle ABC.

Answer (d) ..... units<sup>2</sup> [2]

Name: \_\_\_\_\_(

|       | ~ End                                                 | of Pape              | r ~                                   |
|-------|-------------------------------------------------------|----------------------|---------------------------------------|
| 1a    | 54                                                    | 19a                  | 23.8 (3sf)                            |
| 1b    | 4                                                     | 19b                  | 423 (3sf)                             |
| 2a    | $2.674 \times 10^{8}$ cm                              | 20a                  | <i>a</i> = -3                         |
| 2b    | Time Taken = $7.86 \times 10^3$ (3sf)                 | 20b                  | <i>b</i> = 7                          |
| 3     | 228                                                   | 21a                  | Figure 3                              |
|       | 1                                                     | 21b                  | Figure 6                              |
| 4a    | 3                                                     | 21c                  | Figure 2                              |
| 4b    | $2333\frac{1}{3}$ or 2330 (3sf)                       | 22                   | $\therefore x = 10, 11, 12$           |
| 5a    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 23ai<br>23aii<br>23b | £8<br>\$15<br>\$37500                 |
| 5b    | $\sqrt{7.7} < \pi$                                    |                      | 161                                   |
| 6     | $x = \frac{2q - 3p}{3}  \text{or}  \frac{2q}{3} - p$  |                      |                                       |
| 7a    | 37 km                                                 |                      | 10                                    |
| 7b    | 160 cm <sup>2</sup>                                   |                      | Pounds<br>Sterrings                   |
| 8     | $\frac{4x-13}{(x-3)^2}$                               | 23c                  | S. A                                  |
| 9a    | 4                                                     |                      |                                       |
| 9b    | 135                                                   |                      |                                       |
| 9c    | -15                                                   | KO)                  | 5 10 15 20 25<br>Singapore Dollar (3) |
| 10    | 2n-27                                                 | R C                  |                                       |
| 11    | 25                                                    | 24a                  | 52°                                   |
| 12a   | (x-3)(x+3)                                            | 24b                  | 71°                                   |
| 12b   | (3x+2)(2x-1)                                          | 24c                  | 33°                                   |
| 13    | (2,7) and $(5,3)$                                     | 25a                  | y = 6                                 |
| 14a   | 8                                                     | 25b                  | y = 2x + 16                           |
| 14b   | $p = 4\frac{2}{3}$ or $\frac{14}{3}$                  | 25c                  | (-5,6)                                |
| 14c   | <i>t</i> = 9                                          | 25d                  | 25                                    |
| 15a   | $\frac{2}{3ac}$                                       |                      |                                       |
|       |                                                       |                      |                                       |
| 15b   | $x^2 - 6xy + 9y^2 - 2y$                               |                      |                                       |
| 15c   | $b^2$                                                 |                      |                                       |
| 16a   | 8x + 2y                                               |                      |                                       |
| 16b   | $3xy + x^2$                                           |                      |                                       |
| 17a   | $660 = 2^2 \times 3 \times 5 \times 11$               |                      |                                       |
| 17bi  | HCF = 66                                              |                      |                                       |
| 17bii | 1452                                                  |                      |                                       |
| 18a   | $\frac{1}{9}$                                         |                      |                                       |
| 18b   | $\frac{4}{9}$                                         |                      |                                       |
|       |                                                       |                      | 10                                    |

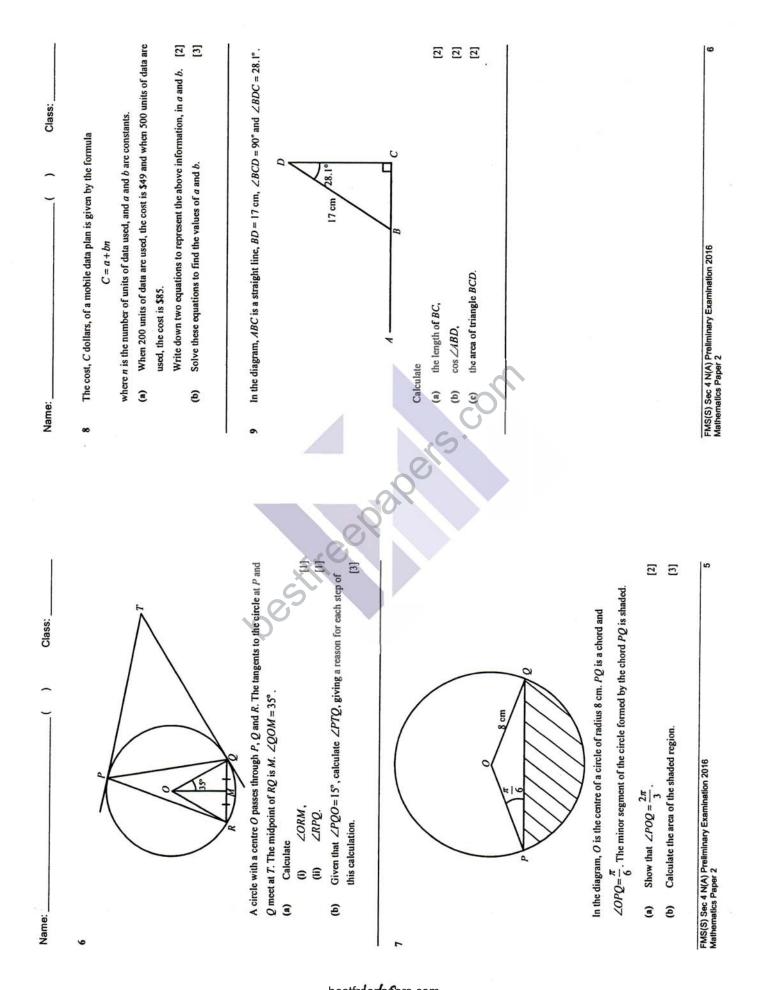
19

 FMS(S) Sec 4 N(A) Preliminary Examination 2016

 Mathematics Paper 1
 bestfreepapers.com

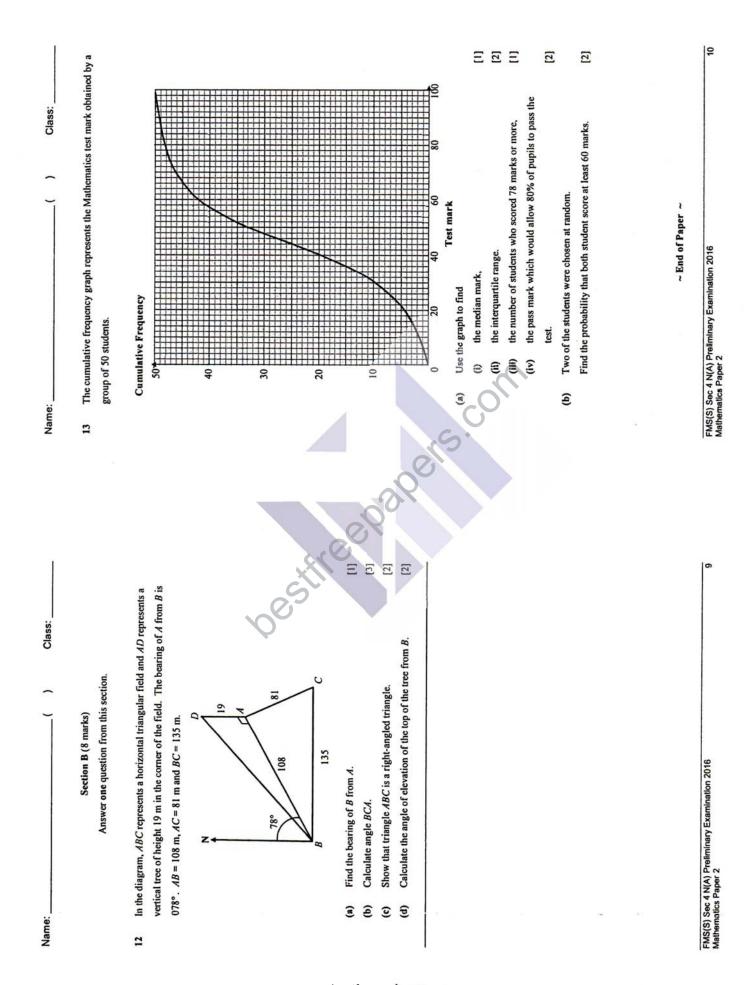
 - The BEST website to download FREE exam papers, notes and other materials from Singapore!

|   |      |   | ,  | Class: |  |
|---|------|---|----|--------|--|
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   | 20   |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
| 3 |      |   |    |        |  |
|   |      |   | A. |        |  |
| ÷ |      |   | 01 |        |  |
|   |      | 5 | ~  |        |  |
| 5 |      | e |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   | A CO |   |    |        |  |
| ŝ | SLI  |   |    |        |  |
|   | pest |   |    |        |  |
|   | Ť    |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      |   |    |        |  |
|   |      | 2 |    |        |  |
|   |      |   |    |        |  |


| Name:( ) | Mathematical Formulae<br>Compound interest<br>Total amount = $P\left(1 + \frac{r}{100}\right)^{*}$      | Mensuration<br>Curved surface area of a cone = <i>m</i> <sup>1</sup> | Surface area of a sphere = $4m^2$<br>Volume of a cone = $\frac{1}{2}m^2h$ | Area of a triangle $ABC = \frac{4}{2}absin C$                                                                                                                                                                                                                            | Arc length = $r\theta$ , where $\theta$ is in radians<br>Sector area = $\frac{1}{2}r^2\theta$ , where $\theta$ is in radians                                                                                                                                                                                  | Trigonometry<br>$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Statistics<br>Statistics                                                                                                                                                                                                                                         | $Mean = \frac{\sum f_x}{\sum f}$ | Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx^3}{\sum f}\right)^2}$ |                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| CLASS:   | FAIRFIELD METHODIST SCHOOL (SECONDARY)<br>PRELIMINARY EXAMINATION 2016<br>SECONDARY 4 NORMAL (ACADEMIC) | 4045/02                                                              | Duration: 2 hours                                                         | READ THESE INSTRUCTIONS FIRST<br>Write your name, class and index number on all the work you hand In.<br>Write in dark blue or black pen.<br>You may use a pendi for any diagrams or graphs.<br>Do not use staples, paper clips, highlighters, glue or correction fluid. | Answer all questions.<br>The number of marks is given in brackets [ ] at the end of each question or part question.<br>If working is needed for any question it must be shown with the answer.<br>Omission of essential working will result in loss of marks.<br>The total of the marks for this paper is 60. | You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For $\pi$ , use either your calculator value or 3.142. | Paper 2 / 60                     |                                                                                                  | Setter: Mrs Jessica Chak<br>This question paper consists of <u>10</u> printed pages including the cover page. |
| -        | FAIRFIELD METHODIST SCHOOL<br>PRELIMINARY EXAMINATION 2016<br>SECONDARY 4 NORMAL (ACADEMIC)             |                                                                      |                                                                           | READ THESE INSTRUCTIONS FIRST<br>Write your name, class and index number on all the w<br>Write in dark blue or black pen.<br>You may use a pencil for any diagrams or graphs.<br>Do not use staples, paper clips, highlighters, glue or c                                | Answer all questions.<br>The number of marks is given in brackets [ ] at the end o<br>If working is needed for any question it must be shown wi<br>Omission of essential working will result in loss of marks.<br>The total of the marks for this paper is 60.                                                | You are expected to use a scientific calculator to evaluate the degree of accuracy is not specified in the questified answer to three significant figures. Give answers in For $\pi$ , use either your calculator value or 3.142.                                                                                                         | <u> </u>                         |                                                                                                  | inted pa                                                                                                      |

101

FMS(S) Sec 4 N(A) Preliminary Examination 2016 Mathematics Paper 2


| 4                                                                                                                             |                                                                | n 2016                     | FMS(S) Sec 4 N(A) Preliminary Examination 2016<br>Mathematics Paper 2                  | 4 N(A) Prelimir<br>s Paper 2      | FMS(S) Sec<br>Mathematics | C .                                                                      | FMS(S) Sec 4 N(A) Preliminary Examination 2016<br>Mathematics Paper 2                 |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------|-----------------------------------|---------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                                                                               |                                                                | ŝ                          |                                                                                        |                                   |                           |                                                                          |                                                                                       |
|                                                                                                                               |                                                                |                            |                                                                                        |                                   |                           | t mark. [2]                                                              | Calculate her new Mathematics test mark.                                              |
|                                                                                                                               |                                                                |                            |                                                                                        |                                   |                           | 80% in her test mark.                                                    | test. She made an improvement of 80% in her test mark.                                |
|                                                                                                                               |                                                                |                            |                                                                                        |                                   |                           | Charmaine was disappointed with her Mathematics test mark and retook the | (b) Charmaine was disappointed with h                                                 |
|                                                                                                                               |                                                                |                            |                                                                                        |                                   |                           | est. [2]                                                                 | (a) Calculate her mark in the Science test.                                           |
|                                                                                                                               |                                                                |                            |                                                                                        |                                   |                           |                                                                          | the three tests are 210.                                                              |
|                                                                                                                               |                                                                |                            |                                                                                        |                                   |                           | : 3 : 5 respectively. Her total mark for all                             | marks in the three tests were in the ratio 6:3:5 respectively. Her total mark for all |
| [2]                                                                                                                           |                                                                | answer.                    | Explain your a                                                                         | SIUDIUS                           |                           | Mathematics test and a Science test. Her                                 | 3 Charmaine took 3 tests, an English test, a Mathematics test and a Science test. Her |
| asure would be the most                                                                                                       | il tenuency me                                                 | windi calua                | ro anaryse ure resurts, winch<br>suitable? Explain vour answer                         | suitable?                         |                           |                                                                          |                                                                                       |
| To analyse the results, which central tendency measure would be the most                                                      | I tendency me                                                  | which centra               | se the results.                                                                        | To analy                          |                           |                                                                          |                                                                                       |
| 9 12                                                                                                                          | 13                                                             | 9                          | Number of<br>Children                                                                  | Ch Nun                            | 5                         | [c]                                                                      | באףופונו הינט איט אוונט.                                                              |
| 303 304                                                                                                                       | 302                                                            | 301                        | Favourite Channel                                                                      | Favouri                           | C                         |                                                                          | Fundain with clear workings                                                           |
|                                                                                                                               |                                                                | Ì                          |                                                                                        |                                   |                           | if his total exneediture was \$65057                                     | Which discount ulan should David choose if his total exaenditure was \$6593           |
|                                                                                                                               | ole below.                                                     | corded in a tab            | their responses were recorded in a table below.                                        | their resp                        |                           | % off the remaining expenditure.                                         | Discount Type B: \$200 off followed by 8% off the remaining expenditure.              |
| A number of 40 children were asked what was their favourite TV channel and                                                    | what was their                                                 | an were asked              | r of 40 childre                                                                        | A numbe                           | (q)                       | diture                                                                   | Discount Type A: 12% off the total expenditure                                        |
| [8]                                                                                                                           |                                                                |                            |                                                                                        | day.                              |                           | unt for customers to choose from.                                        | 2 A new credit card offered 2 types of discount for customers to choose from.         |
| Calculate an estimate for the mean number of millimetres of rain collected each                                               | mber of millime                                                | or the mean nu             | an estimate fo                                                                         | Calculate                         |                           | 0                                                                        |                                                                                       |
| 8 5                                                                                                                           | 12 10                                                          | 15                         | 10                                                                                     | Days                              |                           |                                                                          |                                                                                       |
| 8 8 5 x < 10 10 5 x < 12                                                                                                      | 4 < x < 6 6 < x < 8                                            | 25x<4 45                   | $0 \le x < 2$ 2                                                                        | Rain (mm height)                  | Rain                      | E                                                                        | Find the value of <i>ED</i> .                                                         |
| millimetres of rain collected each day. The results are given in the table below.                                             | . The results ar                                               | ected each day             | es of rain colle                                                                       | millimetr                         | ۲                         | .05                                                                      |                                                                                       |
| During a period of 60 days, a weather station recorded the number of                                                          | cather station                                                 | 0 days, a w                | period of 6                                                                            | During a                          | 5 (a)                     |                                                                          | c C                                                                                   |
|                                                                                                                               |                                                                |                            |                                                                                        |                                   |                           | JE .                                                                     | B                                                                                     |
| journey. [2]                                                                                                                  | the average speed taken by the tour bus for the whole journey. | by the tour bus            | e speed taken h                                                                        | the average                       | (q)                       |                                                                          | 8                                                                                     |
| [2]                                                                                                                           |                                                                | nute.                      | correct to the nearest minute.                                                         | correct to t                      |                           |                                                                          | <                                                                                     |
| the time taken for the tour bus to reach Yong Peng, in hours and minutes,                                                     | Yong Peng, in                                                  | ir bus to reach            | ken for the tou                                                                        |                                   | (a)                       |                                                                          | V                                                                                     |
| resting for 15 minutes, the four bus continued on the remaining journey of 155 km,<br>which took 1 hour 30 minutes. Calculate | on the remainin                                                | ous continued<br>Calculate | resting for 15 minutes, the four bus contin<br>which took 1 hour 30 minutes. Calculate | ring for LJ min<br>ch took I hour | whi                       | $\tilde{c} = 8$ cm and $BE$ is parallel to $CD$ .                        | In the diagram, $AB = 6$ cm, $BC = 4$ cm, $AE = 8$ cm and $BE$ is parallel            |
| speed of 90 km/h to Yong Peng, a town 145 km away where it made a rest stop. After                                            | m away where                                                   | a town 145 k               | to Yong Peng,                                                                          | ed of 90 km/h                     | spe                       | questions.                                                               | Answer all the questions.                                                             |
| A tour bus left Singapore for Malacca at 09 45. The tour bus travelled at an average                                          | 5. The tour bus                                                | alacca at 09 45            | igapore for Ma                                                                         | our bus left Sir                  | 4 At                      | ? marks)                                                                 | Section A (52 marks)                                                                  |
| Class:                                                                                                                        | -                                                              |                            |                                                                                        |                                   |                           |                                                                          |                                                                                       |
| Class:                                                                                                                        | ( )                                                            |                            |                                                                                        |                                   | Name:                     | ( ) Class:                                                               | Name:                                                                                 |

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!



| Name:  | e:( ) Class:                                                                                   | Name:                     |                                                                                                |                     |           | Class:     |             |
|--------|------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------|---------------------|-----------|------------|-------------|
| 10     | Here is some information about a fire extinguisher.                                            | 11 An                     | Answer the whole of this question on a sheet of graph paper.                                   | sheet of graph      | paper.    |            |             |
|        |                                                                                                | rt.                       | This table of values is for $y = 3x^2 - x^3$ .                                                 |                     |           |            |             |
|        | Fire Extinguisher Tank                                                                         |                           | x -2 -1 0                                                                                      | -                   | 2         | 3          | 4           |
|        | Mass: I.2 Kg                                                                                   |                           | y 20 4 0                                                                                       | 2                   | a         | 0          | -16         |
|        |                                                                                                | (a)                       | Calculate the value of <i>a</i> .                                                              |                     |           |            | Ξ           |
|        | Tank can be filled with XYZ Powder to a maximum                                                | (9)                       | Draw the graph of $y = 3x^2 - x^3$ for $-2 \le x \le 4$ .                                      | or -25x54.          |           |            | [3]         |
|        | of 40% of its total volume.                                                                    |                           | Use a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 5 units on useries | unit on the x-ax    | kis and 2 | cm to repr | csent       |
|        | e                                                                                              | 9                         |                                                                                                | of x when $y = 3$ . |           |            | Ξ           |
|        | In this question, the fire extinguisher tank can be modelled as a cylinder with a cone on top. | (d) (d)                   |                                                                                                | dient of the curr   | ve at the | point whe  | re x = 0.5. |
|        | <                                                                                              |                           |                                                                                                |                     |           |            | [2]         |
|        |                                                                                                | 200                       |                                                                                                |                     |           | 1 .        |             |
|        |                                                                                                | 200                       |                                                                                                |                     |           |            |             |
|        |                                                                                                | 5                         |                                                                                                |                     |           |            |             |
|        | (a) Given that the volume of the empty fire extinguisher is 2312.466 cm <sup>3</sup> ,         |                           |                                                                                                |                     |           |            |             |
|        | (b)                                                                                            | E                         | ~                                                                                              |                     |           |            |             |
|        | <ul> <li>Useful Information</li> <li>Density of XYZ Powder: 1250 kg/m<sup>3</sup></li> </ul>   |                           |                                                                                                |                     |           |            |             |
|        | The fire extinguisher tank is filled with the maximum amount of XYZ powder                     | vder                      |                                                                                                |                     |           |            |             |
|        | and the rest with pressurized gas.                                                             |                           |                                                                                                |                     |           |            |             |
|        |                                                                                                | [4]                       |                                                                                                |                     |           |            |             |
|        | (c) State one assumption made in part (b).                                                     | Ξ                         |                                                                                                |                     |           |            |             |
|        |                                                                                                | I                         |                                                                                                |                     |           |            |             |
| EMS(S  | ) Sac 4 N(A) Preliminary Examination 2016                                                      | -                         |                                                                                                |                     |           |            |             |
| Mather | Mathematics Paper 2                                                                            | rms(s) sec<br>Mathematics | FMS(S) Sec 4 N(A) Preliminary Examination 2016<br>Mathematics Paper 2                          |                     |           |            | 8           |

bestfreepapers com - The BEST website to download FREE exam papers, notes and other materials from Singapore!



| 13aiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .60<br>A.40<br>Ose<br>S9.3<br>89.3<br>89.3<br>rates<br>izod gas | $ED = 5{3} \text{ or } 5.33$ $Expenditure after 7 Discount = 58803.$ Expenditure after 7 Discount = 5888.3 Expenditure after 7 Discount = 5888.3 Expenditure after 7 Discount = 5888.3 Expenditure after 7 Expenditure after 8 Expenditor 8 Expenditor 9 Expenditor 8 Expenditor 9 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 2 2 33 33 34 44 44 44 44 44 44 44 44 44 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 136                                                             | a=4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                               | Mass of the press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ssurized gas 13aiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                               | 2.36 kg (3sf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13                                                              | 0.002312466 m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.002312466 m <sup>3</sup> 13ai<br>2.36 kg (3sf) 13aii<br>Mass of the pressurized gas 13aiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                              | 60 cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 60 cm <sup>2</sup> 12d           0.002312466 m <sup>3</sup> 13ai           2.36 kg (3sf)         13aii           Mass of the pressurized gas         13aii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 | -17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -17         17           60 cm <sup>2</sup> 12d           0.002312466 m <sup>3</sup> 13ai           2.36 kg (3sf)         13aii           Mass of the presentized gas         13aii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                              | BC = 8.01<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $BC = 8.01$ 12c $-\frac{8}{17}$ 12c $60 \text{ cm}^2$ 12d $0.002312466 \text{ m}^3$ 13ai $2.36 \text{ kg } (3sf)$ 13aii           Aass of the pressurized gas         13aii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                                               | b=0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $BC = 8.01$ $12c$ $-\frac{8}{17}$ $12c$ $60 \text{ cm}^2$ $12d$ $0.002312466 \text{ m}^3$ $13aii$ $2.36 \text{ kg} (3sf)$ $13aii$ Mass of the presentized gas $13aii$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | a = 25,<br>b = 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a = 25,<br>$b = 0.12$ $b = 0.12$ $BC = 8.01$ $12c$ $-\frac{8}{17}$ $12c$ $60 \text{ cm}^2$ $12d$ $2.36 \text{ kg (3sf)}$ $13ai$ $2.36 \text{ kg (3sf)}$ $13ai$ Mass of the pressurized gas $13aii$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                              | 85 = a + 500b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $85 = a + 500b$ 120 $a = 25$ , $b = 0.12$ $b = 0.12$ $12c$ $BC = 8.01$ $12c$ $-\frac{8}{17}$ $12c$ $60 \text{ cm}^2$ $12d$ $0.002312466 \text{ m}^3$ $13ai$ $2.36 \text{ kg (3sf)}$ $13ai$ Mass of the pressurized gas $13aii$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 49 = a + 200b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $49 = a + 200b$ $12b$ $85 = a + 500b$ $12b$ $85 = a + 500b$ $12b$ $a = 25$ , $12b$ $a = 25$ , $12b$ $BC = 8.01$ $12c$ $BC = 8.01$ $12c$ $60 \text{ cm}^2$ $12d$ $0.002312466 \text{ m}^3$ $13ai$ $2.36 \text{ kg } (3sf)$ $13aii$ Mass of the presentized gas $13aii$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                              | 39.3 cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $39.3 \text{ cm}^2$ $12a$ $49 = a + 200b$ $12b$ $85 = a + 500b$ $12b$ $85 = a + 500b$ $12b$ $8 = 25$ , $12b$ $a = 25$ , $12b$ $a = 25$ , $12b$ $bC = 8.01$ $12c$ $BC = 8.01$ $12c$ $-17$ $12c$ $60 \text{ cm}^2$ $12d$ $2.36 \text{ kg } (3sf)$ $13ai$ Mass of the presentized gas $13aii$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                                                               | $\angle POQ = \frac{2\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{\angle POQ}{3} = \frac{2\pi}{3}$ 11d 11d 12a 139.3 cm <sup>2</sup> 12a 12a 12a 12a 12b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | $\angle PTQ = 30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\angle PTQ = 30^{\circ}$ $\angle PTQ = 30^{\circ}$ $\angle POQ = \frac{2\pi}{3}$ 11d $39.3 \text{ cm}^3$ 12a $39.3 \text{ cm}^3$ 12a $39.3 \text{ cm}^3$ 12a $49 = a + 200b$ 12b $49 = a + 200b$ 12b $a = 25$ ,       12b $a = 25$ ,       12b $a = 25$ ,       12c $b = 0.12$ 12c $BC = 8.01$ 12c $-\frac{8}{17}$ 12d $0.002312466 \text{ m}^3$ 13ai $2.36 \text{ kg } (3sf)$ 13aii         Mass of the presentized gas       13aii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                                                               | 35°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $35^{\circ}$ $11^{\circ}$ $\angle PTQ = 30^{\circ}$ $11^{\circ}$ $\angle PQQ = \frac{2\pi}{3}$ $11^{\circ}$ $\angle POQ = \frac{2\pi}{3}$ $11^{\circ}$ $39.3 \text{ cm}^{2}$ $12^{\circ}$ $85 = a + 500b$ $12^{\circ}$ $86 = 0.12$ $12^{\circ}$ $BC = 8.01$ $12^{\circ}$ $60 \text{ cm}^{2}$ $12^{\circ}$ $2.36 \text{ kg } (35f)$ $13^{\circ}$ $2.36 \text{ kg } (35f)$ $13^{\circ}$ $Mass of the presentrized gas 13^{\circ}$ $13^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 55°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 55°         55°         11c $35°$ 11c $35°$ 11c $\angle PTQ = 30°$ 11c         11c         11c $\angle POQ = \frac{2\pi}{3}$ 11d         12a         12a $39.3 \text{ cm}^3$ 12a         12a         12a $39.3 \text{ cm}^3$ 12a         12b         12b $85 = a + 500b$ 12b         12b         12c $a = 25$ ,<br>$b = 0.12$ 12c         12c         12c $BC = 8.01$ 12c         12c         12c $0.002312466 \text{ m}^3$ 13ai         2.36 kg (3sf)         13aii           Mass of the pressurized gas         13aii         13aii         13aii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lidren's<br>nion                                                | is based on the ch.<br>preferences / opin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| is based on the children's       preferences / opinion $35^{\circ}$ $11c$ $35^{\circ}$ $11c$ $2PTQ = 30^{\circ}$ $11c$ $2PTQ = 30^{\circ}$ $11c$ $2PTQ = 30^{\circ}$ $11c$ $29.3 \text{ cm}^2$ $12a$ $49 = a + 200b$ $12b$ $85 = a + 500b$ $12b$ $85 = a + 500b$ $12b$ $85 = a + 500b$ $12b$ $85 = a + 200b$ $12b$ $85 = a + 200b$ $12b$ $85 = a + 300b$ $12c$ $9 = 0.12$ $12c$ $8c = 8.01$ $12c$ $60 \text{ cm}^2$ $12d$ $0.0002312466 \text{ m}^1$ $13ai$ $2.36 \text{ kg } (3sf)$ $13aii$ Mass of the presentrized gas $13aii$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s average                                                       | Mode because this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mode because this average<br>is based on the children's55°11c57°11c57°11c $2PQE = 30°$ 11d $2PQE = 30°$ 12a $2PQE = 3$ 12a $39.3 \text{ cm}^3$ 12a $49 = a + 200b$ 12b $85 = a + 500b$ 12b $85 = a + 500b$ 12b $8C = 8.01$ 12c $17$ 12c $BC = 8.01$ 12c $17$ 12c $60 \text{ cm}^3$ 13ai $2.36 \text{ kg (3sf)}$ 13aiiMass of the presentized gas13aii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | Mean = 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mean = 5.2         Mean = 5.2           Mode because this average<br>is based on the children's<br>55°         IIc $55°$ 11c $55°$ 12a $39.3 \text{ cm}^2$ 12a $49 = a + 200b$ 12b $85 = a + 500b$ 12b $86 = 0.12$ 12c $86 = 0.12$ 12c $176$ 12c $86 = 0.12$ 12c $176$ 12c $126$ 12c $126$ 12c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| km/hMean = 5.2Mede because this averageis based on the children'sis based on the children's55° $55°$ $55°$ $27Q = 30°$ $11c$ $2PQQ = \frac{2\pi}{3}$ $2PQQ = \frac{2\pi}{3}$ $11d$ $29.3 \text{ cm}^2$ $12a$ $49 = a + 200b$ $12a$ $49 = a + 200b$ $85 = a + 500b$ $12a$ $49 = a + 200b$ $12a$ $49 = a + 200b$ $12a$ $49 = a + 200b$ $12a$ $60 \text{ cm}^2$ $17$ $2.36 \text{ kg (3sf)}$ $2.36 \text{ kg (3sf)}$ Mass of the presentized gas 13aiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 | $89\frac{31}{121}$ km/h or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 89 $\frac{31}{121}$ km/h         or         89.3 $\frac{121}{121}$ km/h         or         89.3 $\frac{121}{122}$ Mean = 5.2         Mode because this average is based on the children's preferences / opinion $\frac{11}{55^{\circ}}$ $\frac{11}{11c}$ $\frac{11}{25^{\circ}}$ $\frac{11}{11c}$ $\frac{11}{25^{\circ}}$ $\frac{11}{11c}$ $\frac{11}{25^{\circ}}$ $\frac{11}{23}$ $\frac{11}{23}$ $\frac{11}{23}$ $\frac{11}{23}$ $\frac{11}{23}$ $\frac{11}{23}$ $\frac{11}{23}$ $\frac{11}{23}$ $\frac{12}{23}$ | es                                                              | I hour 37 minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 hour 37 minutes $89\frac{31}{121}$ km/h         or $89.3$ km/h         km/h         or $89.3$ km/h         mode 89.3         km/h           km/h         more 89.3         km/h           km/h         more 89.3         km/h           km/h         more 89.3         km/h           km/h         more 80.2         more 10.2           Mode because this average         is based on the children's         into $55^{\circ}$ $27^{\circ}$ 11c $25^{\circ}$ $35^{\circ}$ $30^{\circ}$ $11c$ $27^{\circ}$ 11c $25^{\circ}$ $30^{\circ}$ $21^{\circ}$ 11c $35^{\circ}$ $27^{\circ}OQ = \frac{2\pi}{3}$ 11d $12a$ $39.3  cm^2$ 12d $39.3  cm^2$ $31.2$ $12a$ $38.5  a + 500b$ 12d $85 = a + 200b$ $12b$ $85  a + 200b$ 12d $12c$ $85 = a + 200b$ $12^{\circ}$ $12^{\circ}$ $12^{\circ}$ $12^{\circ}$ $85 = a + 200b$ $12^{\circ}$ $12^{\circ}$ $12^{\circ}$ $12^{\circ}$ $85 $                                                                                                                                                                                                                                                                                                                                    |                                                                 | 81 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ام                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 81 marks         81 marks           1 hour 37 minutes         89 $\frac{31}{121}$ km/h           km/h         N           Mean = 5.2         Mode because this average           mode because this average         121           Mode because this average         110 $25^{\circ}$ 110 $27^{\circ}$ 110 $25^{\circ}$ 110 $25^{\circ}$ 110 $25^{\circ}$ 123 $35^{\circ}$ 124 $49 = a + 200b$ 12b $85 = a + 500b$ 12b $85 = a + 200b$ 12b $85 = a + 300b$ 12c $85 = a + 300b$ 12b $85 = a + 300b$ 12b $85 = a + 300b$ 12b $85 = a + 300b$ 12c $85 = a + 300b$ 12c $85 = a + 300b$ 12c $85 = a + 300b$ 12b $86 = 0.12$ 12c $86 = 0.12$ 12c $85 = 0.12$ 12c $90 = 0.12$ 12a $90 = 0.12$ 13ai <t< td=""><td>=</td><td>75 marks</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =                                                               | 75 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 75 marks         11b           75 marks         11b           81 marks         11bour 37 minutes           80 $\frac{31}{121}$ km/h         or 89.3           km/h         or 89.3           km/h         or 89.3           km/h         or 89.3           Mode because this average         121           Mode because this average         11c           25°         11c           35°         11c           35°         11c           27PQ = $30^{\circ}$ 11d           35°         12a           39.3 cm <sup>2</sup> 12a           49 = a + 200b         12b           85 = a + 500b         12b           a = 25,         a = 25,           b = 0.12         12c           8C = 8.01         12c           176         12a           39.3 cm <sup>2</sup> 12a           49 = a + 200b         12b           a = 25,         a = 25,           b = 0.12         12c           8C = 8.01         12c           30.0002312466 m <sup>1</sup> 13ai           2.36 kg (3sf)         13ai           3aii         13aii                                                                                                                                                                                             |                                                                 | Type A discount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Type A discount.       11b         75 marks       11b         1 hour 37 minutes       11b         8 9 $\frac{31}{121}$ km/h       or 89.3         8 $\frac{31}{121}$ km/h       10         8 $\frac{31}{121}$ km/h       10         9 $\frac{31}{121}$ km/h       11 $\frac{11}{55^{\circ}}$ 11c $\frac{25^{\circ}}{35^{\circ}}$ 11c $\frac{277}{2900}$ 12a $\frac{39.3 \text{ cm}^2}{35^{\circ}}$ 12a $\frac{49}{5}$ 45 $\frac{49}{5}$ 12a $\frac{49}{5}$ 12a $\frac{45}{500b}$ 12b $\frac{45}{5}$ 12a $\frac{45}{5}$ 12a $\frac{45}{500b}$ 12b $\frac{60 \text{ cm}^2}{17}$ 12c $\frac{17}{10}$ 12c $\frac{17}{13}$ 12a $\frac{17}{13}$ 13aii $\frac{13aii}{2ai}$ 13aii                                                                                                                                                                                                                                                                                                                                                                                                | oose                                                            | David should ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| David should choose         David should choose           Type A discount.         11b           Type A discount.         11b           I hour 37 minutes         11b           I hour 37 minutes         11b           B1 marks         11b           I hour 37 minutes         11b           B3 marks         11b           B4 marks         11b           B9 121 km/h         89.3           km/h         Node because this average           based on the children's         11c           55°         11c $55°$ 11c $55°$ 11c $55°$ 11c $55°$ 12a           39.3 cm <sup>2</sup> 12a $39.3 cm2$ 12a $49 = a + 200b$ 12b $85 = a + 500b$ 12b $85 = a + 500b$ 12c $85 = a + 500b$ 12c $85 = a + 300b$ 12c $10$ 00002312466 m <sup>1</sup> $176$                                                                                                                                                                                                                                                                                                                                                                                                     | 3.40                                                            | Discount = \$588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Discount = \$5883.40         Discount = \$5883.40           David should choose         Type A discount.           75 marks         11b           81 marks         11b           89 $\frac{31}{121}$ km/h         or 89.3           89 $\frac{31}{121}$ km/h         11c           Mean = 5.2         11c           55°         30°           35°         11c           25°         11c           25°         30°           39.3 cm <sup>2</sup> 12a           39.3 cm <sup>2</sup> 12a           39.3 cm <sup>2</sup> 12a           39.3 cm <sup>2</sup> 12b           85 a + 200b         12b           85 a + 200b         12c           49 = 0.12         12c           17         12d           85 a 4 500b         12d           10.002312466 m <sup>1</sup> 13aii           2.36 kg (3sf)         13aii                                                                                                                                                                                         | a type b                                                        | Expenditure arte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Discount = \$5883.40         Discount = \$5883.40           Type A discount.         11b           75 marks         11b           17ype A discount.         11b           17ype A discount.         11b           18 Il marks         11b           19 J1 km/h         0r           89 J1         km/h           Mean = 5.2         Mode because this average           is based on the children's         11c           25°         11c           35°         11c           35°         11c           27PQ = $30^{\circ}$ 11d           35°         12a           49 = a + 200b         12b           8C = 8.01         12c           8C = 8.01         12c           8C = 8.01         12c           17         12a           17 <td>r Tyne B</td> <td>Exnenditure afte</td> <td></td>                                                                                                                                                       | r Tyne B                                                        | Exnenditure afte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Expenditure after Type B         Discount = \$5883.40         Discount = \$5883.40         Type A discount.         Type A discount.         Tyme A discount.         1 hour 37 minutes         89         11 hour 31 minutes         Mode because this average         hean = 5.2         Mode because this average         1 hour 37         So         Mode because this average         35°         1 lic $ZPOQ = \frac{2\pi}{3}$ 1 lic $ZPOQ = 330°$ 39.3 cm <sup>2</sup> 1 lic $Z = 4500b$ 85 = a + 500b         86 cm <sup>2</sup> 12a         30.12466 m <sup>1</sup> 12a         12a         13aii         30.0002312466 m <sup>1</sup> 13aii         Mass of the p                                                                                                                                                                                                                                                                                         | 3.60                                                            | Discount = \$580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Expenditure atter type AExpenditure atter type BDiscount = \$5803.60Expenditure after type BDiscount = \$583.40David should chooseType A discount.Type A discount.1 hour 37 minutes8 $\frac{31}{121}$ km/hNode because this averageis based on the children's35°11c $27PQ = 30°$ 11c $26°$ 11d $26°$ 11d $25°$ 11d $26°$ 11d $270Q = 2\pi$ $36°$ 11d $25°$ $26°$ $21°$ $21°$ $21°$ $21°$ $21°$ $21°$ $21°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31°$ $31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r Iype A                                                        | $ED = 5\frac{1}{3}$ or 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | Type A<br>7 Type B<br>400 B<br>89.3<br>89.3<br>89.3<br>100 A<br>100 A<br>1 | Type A<br>.400 B<br>.400 B |

FMS(S) Sec 4 N(A) Preliminary Examination 2016 Mathematics Paper 2

=

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

| CENT ATTO   |
|-------------|
| - THEFT     |
|             |
|             |
|             |
|             |
|             |
| FITE N.C.S. |

# Geylang Methodist School (Secondary) Preliminary Examination 2016

| Candidate<br>Name                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                                                                                                                                            |                                                  |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|
| Class                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    | In                                                                                                                                                                         | dex Number                                       |                         |
| MATHEMATIC                                                                                                                                                                                                                                                                               | s                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                  | 4045/01                 |
| Paper 1                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                                                                                            | Sec 4 Norma                                      | al (Academic)           |
| Candidates answ                                                                                                                                                                                                                                                                          | er on the Question I                                                                                                                                                                                                                                               | Paper.                                                                                                                                                                     | on                                               | 2 hours                 |
| Setter: Mr Wo                                                                                                                                                                                                                                                                            | ong Han Ming                                                                                                                                                                                                                                                       | .5                                                                                                                                                                         | 2                                                | August 2016             |
| READ THESE INS                                                                                                                                                                                                                                                                           | TRUCTIONS FIRST                                                                                                                                                                                                                                                    | DO!                                                                                                                                                                        |                                                  |                         |
| Write in dark blue or<br>You may use a penc<br>Do not use staples, p<br>Answer <b>all</b> questions<br>If working is needed<br>Omission of essentia<br>Calculators should be<br>If the degree of accur<br>3 significant figures.<br>For $\pi$ , use either your<br>At the end of the exa | il for any diagram or gra<br>paper clips, highlighters,<br>for any question, it must<br>a working will result in th<br>e used where appropriat<br>racy is not specified in th<br>Give answers in degree<br>r calculator value or 3.14<br>mination, fasten all your | ph.<br>glue or correction fluid.<br>t be shown with the ans<br>te loss of marks.<br>te.<br>he question, and if the a<br>s to one decimal place.<br>42, unless the question | wer.<br>answer is not exact<br>requires the answ | ver in terms of $\pi$ . |
| The number of marks                                                                                                                                                                                                                                                                      | s is given in brackets [ ]<br>marks for this paper is 8                                                                                                                                                                                                            | at the end of each que                                                                                                                                                     | stion or part quest                              | ion.<br>iner's Use      |
|                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                            |                                                  | 80                      |

This document consists of 17 printed pages including the cover page and 1 blank page.

[Turn over

#### Mathematical Formulae

Compound interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved Surface Area of a cone =  $\pi r l$ 

Surface Area of a sphere =  $4\pi r^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ Volume of a sphere =  $\frac{4}{3}\pi r^3$ 

Area of triangle 
$$ABC = \frac{1}{2}ab\sin\theta$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

b

 $\frac{a}{\sin A} = \frac{1}{\sin B} = \frac{1}{\sin C}$  $a^{2} = b^{2} + c^{2} - 2bc \cos A$ 

a

Trigonometry

**Statistics** 

Mean = 
$$\frac{\sum fx}{\sum f}$$
  
Standard deviation =  $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$ 

#### [Turn over 2

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

#### Answer all the questions.

- 1 Arrange the following numbers in descending order.
  - $0.3, -0.3, 0.3^{\circ}, 0.3$ 
    - Answer [1]
- 2 (a) In a class, 64% of the students are boys. Write the ratio of the number of girls to the total number of students in the class in its simplest form.

(b)  $25\frac{5}{7}\%$  of the cars produced in a factory are white. Given that the number of white cars the factory produces is 36, find the total number of cars that the factory produces.

Answer

(a)

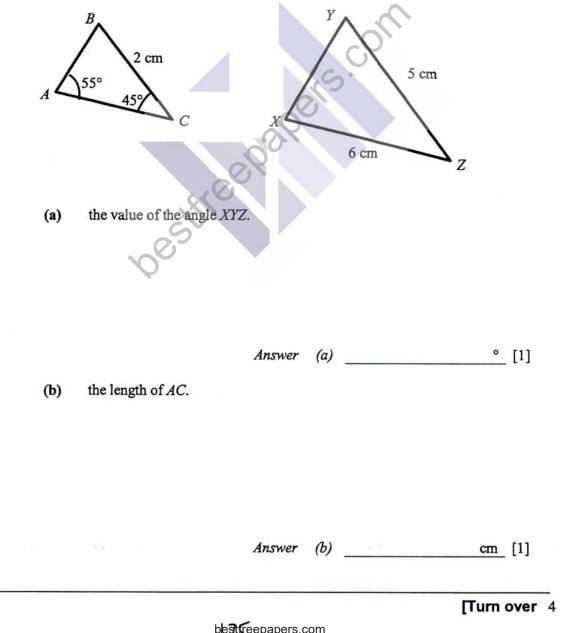
Answer (b) \_\_\_\_\_ [1]

3 By writing each number correct to 1 significant figure, estimate the value of  $\frac{331.27 + 48.216}{9.03 - 1.73}$ .

You must show your working.

Answer

[2]


[1]

#### [Turn over 3

bestfreepayers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore! 4 Simplify  $\frac{5^3 \times 5^7}{5^{15}}$ , expressing your answer as a single power of 5.

Answer \_\_\_\_\_ [2]

## 5 Given that triangle ABC is similar to triangle XYZ in the diagram below, find



- The BEST website to download FREE exam papers, notes and other materials from Singapore!

6 (a) Express 5292 as the product of its prime factors.

> Answer (a) [1]

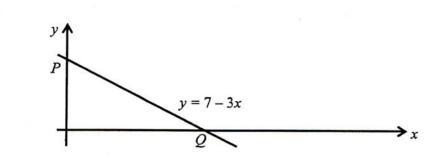
> > [1]

5

Find the lowest common multiple of 5292 and  $2 \times 3^4 \times 5 \times 7^2$ , giving your (b) answer as the product of its prime factors.

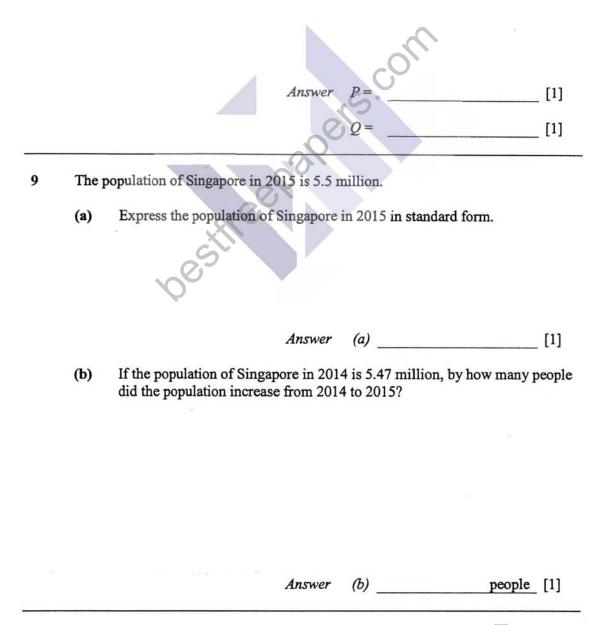
A bag contains red, blue and yellow marbles. 7

> If a marble is drawn at random, the probability of drawing a red marble is r(a) and the probability of drawing a blue marble is b. Write an expression in terms of r and/or b, for the probability of drawing a yellow marble.


Answer

(b)

Answer (a) P(yellow) =[1]


(b) Justin claims that the value of r is 0.35 and the value of b is 0.74. Explain why Justin cannot be correct.

|            | <br>[Turn over |
|------------|----------------|
|            | [1]            |
|            |                |
|            |                |
| Answer (b) |                |



8

The line y = 7 - 3x is shown in the diagram and intersects the y and x axes at P and Q respectively. Find the coordinates of P and Q.



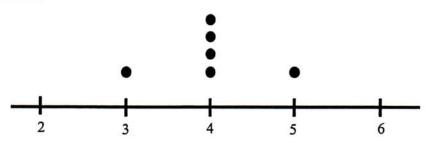
### [Turn over 6

10 Given the diagram, express c in terms of a and b. a° bo c° Answer [2] 11 Solve the simultaneous equations. -2y = --9 3x -4v= 4 est

| Answer | <i>x</i> = |           |     |
|--------|------------|-----------|-----|
|        | <i>y</i> = | \$1<br>10 | [3] |

### [Turn over 7

12 A class has 40 students and 1 teacher. By letting S represent the number of (a) students and letting T represent the number of teachers, form an equation in S and T.


(a) \_\_\_\_\_ [1] Answer **(b)** Make k the subject of the formula. 2x + 3k = 3x - yAnswer (b) [2] Four angles in an octagon are in the ratio 1:2:3:4. The remaining angles are 65°

13 each. Find the value of the largest angle of the octagon.

° [3]

Answer

14 (a) A symmetrical dot diagram is used to represent a set of 6 data values as shown.



This set of data has mean = median = mode = 4.

Draw an asymmetrical (non-symmetrical) dot diagram below with 6 data values using the number line below, such that the mean, median and mode are the same as the previous diagram.

Answer (a)

(b) State the appropriate sign (<, =, >) in the statement below.

Answer (b)

The standard deviation of the symmetrical diagram is \_\_\_\_\_\_ [1]

15 Find the equation of the straight line passing through the points (1, -13) and (-1, -5).

| Answer |      |      |
|--------|------|------|
|        | <br> | <br> |

### [3]

6

[2]

### [Turn over 9

(a) Solve  $4^{x+1} = 2^{6x} \div 2^{3x-3}$ .

|    |     | Answer (a) $x =$ [2]                                                                                          |
|----|-----|---------------------------------------------------------------------------------------------------------------|
|    | (b) | Simplify $(5^{5x+7})^0 \times 3^{2x+1} \div 3^{2x-2}$ .                                                       |
|    |     |                                                                                                               |
|    |     | com                                                                                                           |
|    |     | Answer (b) [2]                                                                                                |
| 17 |     | ap is drawn to a scale of $1 : n$ . A straight road of 4 km is represented by 5 cm e map.                     |
|    | (a) | Find the value of <i>n</i> .                                                                                  |
|    |     | Answer (a) $\underline{n} = $ [2]                                                                             |
|    | (b) | A pond is represented by 3 cm <sup>2</sup> on the map. Find the actual area of the pond in square kilometers. |

| Answer | <i>(b)</i> | km <sup>2</sup> | [2] |
|--------|------------|-----------------|-----|
|        |            |                 |     |

bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

16

18 Expand and simplify, 5(x-3)-2x(5-3x), (a) [2] Answer (a)2(2x-3)(4-x). **(b)** Answer 📿 (b) [2] Jenny bought a dress for \$92. She then sold it to Mary for \$115. Express 19 (a) the profit Jenny made as a percentage of what she paid for it. % [2] Answer (a) Mary then sells it to Nellie at a loss of 10% of what she herself paid for it. (b) How much did Nellie pay for the dress?

### [Turn over 11

[2]

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

Answer

(b) **\$** 

- 20 Factorise completely,
  - (a) 27x 9y,
  - **(b)**  $x^2 4y^2$ ,
  - (c)  $2x^2 5x 3$ .


| Answer | (a) | [1] |
|--------|-----|-----|
|        | (b) | [1] |

(c) \_\_\_\_\_ [2]

21 Given that 
$$x = -1$$
,  $y = 2$  and  $z = 3$ , find the value of  
(a)  $3x^2 + y - z$ .

(b) 
$$\frac{4x}{y+z}$$
,  
(c)  $\frac{x-y^2}{z}$ .





(c) [2]

### [Turn over 13

22 Solve the following equations.

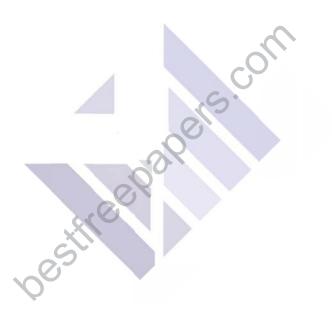
(a) 
$$(2x+1)(x-5) = 0$$
,

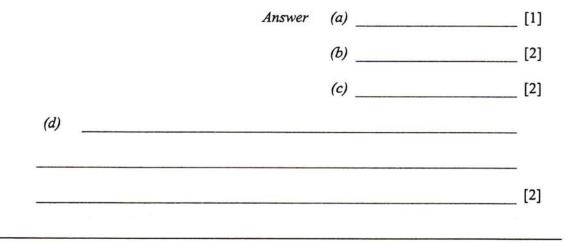
**(b)** 
$$2x - (x+3) = 4x$$
,

(c) 
$$\frac{3}{3x+1} = 2$$
.

| Answer | (a) | <u>x =</u> | [1] |
|--------|-----|------------|-----|
|        | (Ь) | <i>x</i> = | [2] |

(c) 
$$x =$$
 [2]


### [Turn over 14


bestfreepapers.com

23 The first four terms of a number sequence is

2, -1, -4, -7.

- (a) Write the next two terms of the sequence.
- (b) Find an expression in terms of n for the nth term of the sequence.
- (c) Find the  $250^{\text{th}}$  term.
- (d) Showing your reasoning clearly, deduce if -229 can be a term in the sequence.





### [Turn over 15

24 (a) m varies inversely as  $\sqrt{n}$ . Given that m = 9 when n = 16, find the value of m when n = 25.

(a) \_\_\_\_\_ Answer [2]

(b) p is directly proportional to  $q^3$ . If q is increased by 50%, find the percentage increase of p.

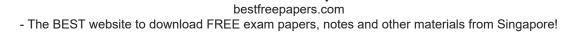
| bestfreepapers.com                                                       | [Turn over          | 16 |
|--------------------------------------------------------------------------|---------------------|----|
| bestreepapers.com                                                        |                     |    |
| - The BEST website to download FREE exam papers, notes and other materia | als from Singapore! |    |

Answer

(b) \_\_\_\_\_

[3]

# 25 For this question, all construction lines must be shown. Zero marks will be awarded if construction lines are not shown.


| (a) | In the space below, where PQ has been drawn, construct a triangle |
|-----|-------------------------------------------------------------------|
|     | PQR where $QR = 6.5$ cm and $PR = 8.5$ cm.                        |

|     |                                             | [2] |
|-----|---------------------------------------------|-----|
|     | Using a pair of compasses only,             |     |
| (b) | construct the perpendicular bisector of PQ. | [1] |
| (c) | construct the angle bisector of angle PQR.  | [1] |



### **END OF PAPER**

### **BLANK PAGE**



189

[Turn over 18

GMS(S)/EMath/P1/Prelim/2016/4NA

| 3x-2y=-9  eqn 1 $4y=4-x  eqn 2$ From eqn 2 $x=4-4y$ Sub into eqn 1 $3(4-4y)-2y=-9$ $12-12y-2y=-9$ $-14y=-21$ $3(4-4y)-2y=-9$ $-14y=-21$ $3x=-2$ $y=1.5$ $y=1.5$ $y=1.5$ $y=2.7$ $y=3x=-y$ $3x=3x-y$ Sum of the 4 angles in the ratio $3x=3x-y$ Sum of the 4 angles in the ratio $3x=3x-y$ $y=2x+3k=3x-y$ $y=2x+3k=3x-3x$ $y=2x+3k=3x-3x$ $y=2x+3k=3x-3x$ $y=2x+3x=3x$ $y=2x+$ |     |   | MI for either correct substitution or | climination method |                               |            | Al for correct x  | BI (Accept any equivalent countion) |                  | M1 for knowing to move 3k to the<br>RHS | AI                | MI                                  |                                  |                          |                 | MI           |               | 14                            |                                    | dian is 4<br>clow)                                                                      |    | • •    | - e   | 81           | MI for finding correct gradient                         | M1 for finding correct v intercent        | what and from the firm of the |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---------------------------------------|--------------------|-------------------------------|------------|-------------------|-------------------------------------|------------------|-----------------------------------------|-------------------|-------------------------------------|----------------------------------|--------------------------|-----------------|--------------|---------------|-------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|----|--------|-------|--------------|---------------------------------------------------------|-------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1 | 9 | From eqn 2<br>x = 4 - 4y              | Sub into eqn 1     | 3(4-4y)-2y=-9<br>12-12y-2y=-9 | -14y = -21 | y = 1.5<br>r = -7 | S = 40T                             | 2x + 3k = 3x - y | $x_2 - y - x_c - x_c$                   | $k = \frac{3}{3}$ | Sum of angles in an octagon = 1080° | Sum of the 4 angles in the ratio | = 1060 - 4(03)<br>= 820° | 10 units = 820° | 1 unit = 82° | Largest angle | = 4  units<br>$= 328^{\circ}$ | BI for ensuring that the mode is 4 | B1 for ensuring that the mean and median is 4 (Accept mirror image of the answer below) | •• | ·<br>· | 2 3 4 | smaller than | Grad of line<br>= $\frac{-13 - (-5)}{1 - (-1)}$<br>= -4 | Sub (1, -13) into $y = -4x + c$<br>c = -9 |                               |

GMS(S)/EMath/P1/Prelim/2016/4NA

Answers

| BI                   | B1 | BI  |                 |           |          | MI  |              |   | AI (Zero marks awarded for not | showing working) |                                 | 5               | IW             | A1 (Do not award this mark for $\frac{1}{65}$ | or 3125) 3- | 81 | BI  | BI                          | BI                                               | 81                        | 71                                                                                                                                                                              | OR | ч                                                                                                                                   | BI for P<br>BI for Q                            | BI      | BI    | MI for indicating correct knowledge<br>of alternate/corresponding/interior<br>angles on the diagram |  |
|----------------------|----|-----|-----------------|-----------|----------|-----|--------------|---|--------------------------------|------------------|---------------------------------|-----------------|----------------|-----------------------------------------------|-------------|----|-----|-----------------------------|--------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|-------|-----------------------------------------------------------------------------------------------------|--|
| 0.3°, 0.3, 0.3, -0.3 |    | 140 | 331.27 + 48.216 | 9.03-1.73 | 300 + 50 | 9-2 | = <u>350</u> | 7 | = 50                           |                  | S <sup>3</sup> × S <sup>7</sup> | S <sup>15</sup> | $= 5^{3+7-15}$ | = 5 <sup>-3</sup>                             |             | 80 | 2.4 | $2^2 \times 3^3 \times 7^2$ | 2 <sup>2</sup> ×3 <sup>4</sup> ×5×7 <sup>2</sup> | 1 - b - r (or equivalent) | Any statement that indicates the student knows that the sum of probabilities cannot exceed 1 and the sum of the probabilities for Justin's sum of the ready 1.09 for 2 colours. | OR | Since P(yellow) = $1 - b - r$ , subbing<br>in the values of b and r will give<br>P(yellow) a negative value which is<br>impossible. | $P = (0, 7) ; Q = \left(2\frac{1}{3}, 0\right)$ | 5.5×10* | 30000 | c = p - a                                                                                           |  |
| .                    | 2a | 2b  | 3               |           |          |     |              |   |                                |                  | 4                               |                 |                |                                               |             | 51 | Sii | 6i                          | 6ii                                              | 71                        | 711                                                                                                                                                                             |    | _                                                                                                                                   | 8                                               | 9i      | 9ii   | 10                                                                                                  |  |

[Turn over 20

19

GMS(S)/EMath/P1/Prelim/2016/4NA

GMS(S)/EMath/P1/Prelim/2016/4NA

M1 for changing to base 2 correctly M1 for changing to base 3 OR knowing that an exponent of 0 will always equal to 1. MI for expanding 1 time correctly AI A1, A1 for each correct bracket ٩I MI MIN MI MI WIN ٩I BI BI BI  $\begin{array}{l} 4^{x+1} = 2^{6x} + 2^{3x-3} \\ 2^{2(x+1)} = 2^{6x} + 2^{3x-3} \\ 2x + 2 = 6x - (3x - 3) \end{array}$ 1 cm : 0.8 km 1 cm : 0.64 km 3 cm<sup>2</sup> : 1.92 km<sup>2</sup> 5(x-3)-2x(5-3x)  $= 5x - 15 - 10x + 6x^{2}$ Amount Nellic paid = \$115 × 90% = \$103.50 (53++7)" × 32++1 + 9+-1  $= 2(11x - 2x^2 - 12)$  $= 1 \times 3^{2s+1} + 3^{2s-2}$  $= 3^{2s+1-(2s-2)}$ 5 cm : 400 000 cm 1 cm : 80 000 cm Profit = \$23 Percentage profit = (x+2y)(x-2y) $= 22x - 4x^2 - 24$  $= -5x - 15 + 6x^{2}$ =(2x+1)(x-3)2(2x-3)(4-x) $= 3(-1)^2 + 2 - 3$ 2x + 2 = 3x + 3 $=\frac{23}{92} \times 100\%$  $2x^{2} - 5x - 3$  $3x^2 + y - z$ = 9(3x - y) $n = 80\ 000$ 27x - 9y $x^{2} - 4y^{2}$ = 25% x=-1 = 33 = 27 = 2 21a 171 18b 20c 16 18a 1911 20b 16i 17 20a 19

[Turn over 21

[Turn over 22

bestfreepapers.com

| i                        |                           |                             |                |                                    |                      |                                                     |                                                             | 0                | 20                                    | e e                          | C.           | coll |
|--------------------------|---------------------------|-----------------------------|----------------|------------------------------------|----------------------|-----------------------------------------------------|-------------------------------------------------------------|------------------|---------------------------------------|------------------------------|--------------|------|
|                          |                           | MI for finding k            | И              | MI for making k the subject        |                      | MI for correct equation after q is increased by 50% |                                                             |                  |                                       | AI                           |              |      |
| $m = \frac{k}{\sqrt{n}}$ | $9 = \frac{k}{\sqrt{16}}$ | $k = 36$ $m = \frac{36}{5}$ | <i>m</i> = 7.2 | $p = kq^{3}$ $k = \frac{p}{q^{3}}$ | When a becomes 1.5q. | $P_{mer}$ $= k(1.5q)^{3}$                           | $= \left(\frac{p}{q^3}\right) \left(\frac{27}{8}q^3\right)$ | $=\frac{27}{8}p$ | Percentage change $\frac{27}{8}p - p$ | $= \frac{1}{p} \times 100\%$ | Construction |      |
| 24a                      |                           |                             |                | 24b                                |                      |                                                     |                                                             |                  |                                       |                              | 25           |      |

[Turn over 23





# Geylang Methodist School (Secondary) Preliminary Examination 2016

| Du<br>Du<br>For hand<br>for fluid<br>for that c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a c                                                                       | 4045 / 02<br>(Academic)<br>2 hours<br>3 August 2016                                             | Compound interest<br>Mensuration |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------|
| Omission of essential working will result in loss of marks.<br><b>SECTION A</b><br>Answer ALL questions (52 marks)<br><b>SECTION B</b><br>Answer ALL questions (52 marks)<br><b>SECTION B</b><br>Answer ALL questions (52 marks)<br><b>SECTION B</b><br>Answer ALL questions (52 marks)<br><b>INFORMATION FOR CANDIDATES</b><br>INFORMATION FOR CANDIDATES<br>The number of marks is given in 1 at the end of each question or part question.<br>The total number of marks for this paper is <u>60 marks</u> .<br>The total number of marks for this paper is <u>60 marks</u> .<br>You are advised not to spend too much time on any one question.<br>The total number of accuracy is not specified in the question, and if the answer is not exact, give the answer correct to three significant figures. Give answers in degrees to one decimal place.<br>For $\pi$ , use either the calculator value or 3.142.<br>At the end of the examination, fasten all your work securely together.<br>For Examiner's Use | art question.<br>plicit numerical<br>wer is not exact.<br>Pone dectimal p | stion.<br>numerical expressions.<br>not exact, give the<br>decimal place.<br>For Examiner's Use | Trigonometry                     |

Sector area  $=\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

 $a^2 = b^2 + c^2 - 2bc\cos A$ 

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Area of triangle  $ABC = \frac{1}{2}ab\sin C$ 

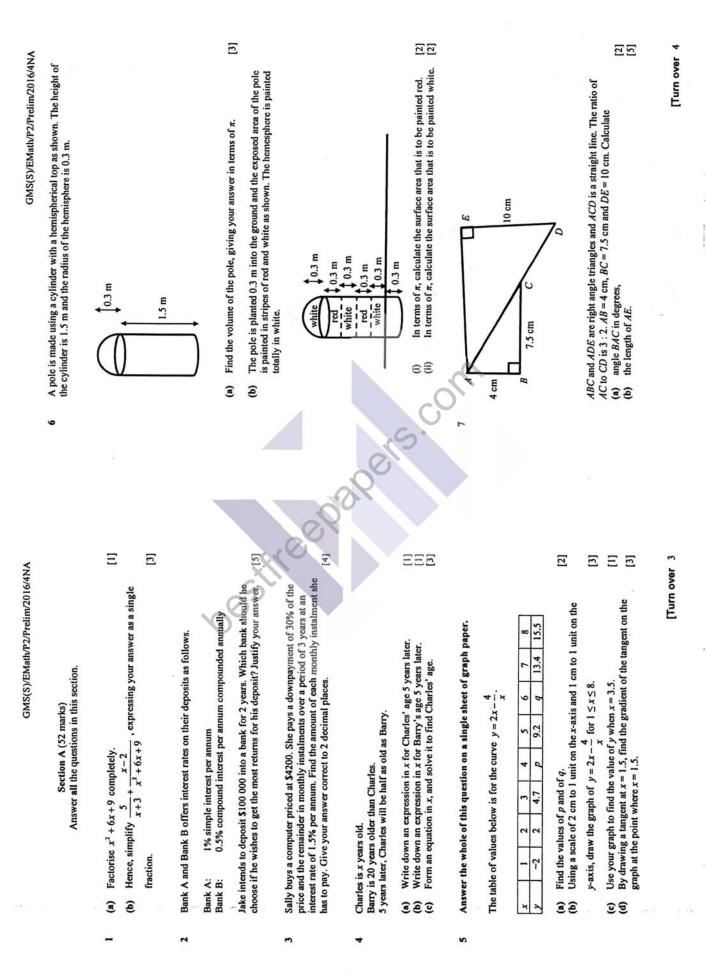
Curved Surface Area of a cone = m'

Total amount =  $P\left(1 + \frac{r}{100}\right)^{a}$ 

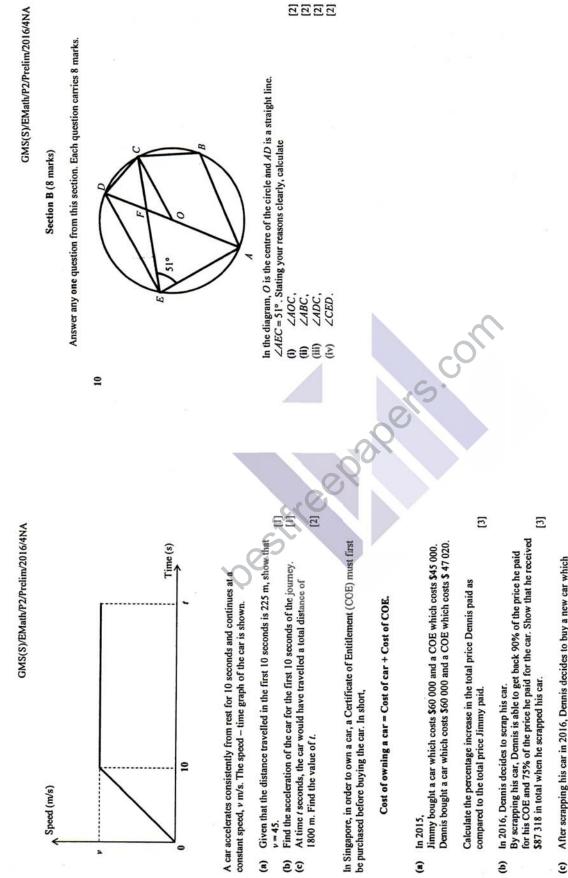
Mathematical Formulae

Surface Area of a sphere =  $4m^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 


Volume of a sphere =  $\frac{4}{2}m$ 

Standard deviation =  $\sqrt{\frac{\sum fx^2}{\sum f}} - \left(\frac{\sum fx}{\sum f}\right)$ 


60

This document consists of 7 printed pages including the cover page and 1 blank page.

 $Mean = \frac{\sum f_x}{\sum f}$ 



bestfreepa**bers**44om



After scrapping his car in 2016, Dennis decides to buy a new car which costs \$65 000. He kept the amount he received from scrapping his car. He also has additional savings of \$20 000 to purchase the new car. What is the maximum price the COE can be in 2016, for him to be able to afford to buy the car?

Ξ

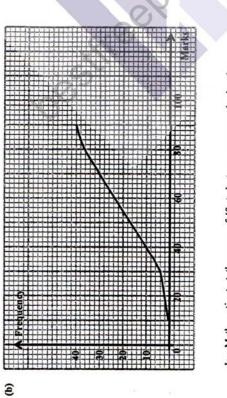
[Turn over 5

bestfreepagers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

6

**BLANK PAGE** 

GMS(S)/EMath/P2/Prelim/2016/4NA


In a class of 22 boys and 18 girls, 2 students are chosen at random to be chosen would be the chairperson and the second student chosen would the chairperson and vice-chairperson of the class. The first student (8)

Ξ

be the vice-chairperson. (1) Find the probability the chairperson and vice-chairperson are both girls.

Ξ

[2] Find the probability that out of the two selected students, one would be a boy and one would be a girl. 1



[2] [2] In a Mathematics test, the scores of 40 students are represented using the cumulative frequency graph as shown.

Find the interquartile range of the graph. Find the median mark. Find the range of the graph. €€Ê

[Turn over 7

GMS(S)/EMath/P2/Prelim/2016/4NA

| = <b>5</b> 4200 × 70%<br>= <b>5</b> 2940<br>Interest<br>= <u>PRT</u> | W                                                                         |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| $= \frac{2940(1.5)(3)}{100}$<br>= \$132.30                           | W                                                                         |
| Remaining amount to pay<br>= 2940 + 132.30<br>= \$3072.30            | IW                                                                        |
| Monthly installment<br>= $\frac{3072.30}{3 \times 12}$<br>= \$85.34  | VI                                                                        |
| x+5                                                                  | 81                                                                        |
| x + 25 or $2(x + 5)$                                                 | 81                                                                        |
| $\frac{1}{2}(x+25) = x+5$                                            | MI for forming the equation correctly                                     |
| x + 25 = 2x + 10 $x = 15$                                            | M1 for correct algebraic manipulation                                     |
|                                                                      | AI for answer                                                             |
| p=7; $q=11.3$                                                        | BI : BI                                                                   |
| apl                                                                  | MI for correct scale<br>MI for correct line<br>MI for writing can of line |
| 5.9 (error of ±0.2)                                                  | AI (Do not give this mark if                                              |
|                                                                      | dotted lines on the graph is not<br>shown)                                |
| Gradient                                                             | MI for tangent<br>MI for correct calculation of                           |
| = 3.78                                                               | gradient                                                                  |

| 1  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RI                              |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---|
|    | x + 0x + y = (x + 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                              |   |
| 11 | 5 x-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |   |
|    | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |   |
|    | $\frac{1}{2} - \frac{1}{2} + \frac{1}$      | M1 for changing the denominator |   |
|    | $(x+3)^2$ $(x+3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of the first fraction           |   |
|    | 5x+15+x-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |   |
|    | $(x+3)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1 for expressing as a single   |   |
|    | 6 <i>x</i> +13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fraction correctly              |   |
|    | $=\frac{1}{(x+3)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AI                              |   |
| 2  | Bank A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |   |
|    | Interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |   |
|    | PRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                               |   |
|    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |   |
|    | _ 100000(1)(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                               |   |
|    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1141                            |   |
|    | = \$2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | И                               | 0 |
|    | Bank B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | 8 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |   |
|    | Total amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | 0 |
|    | $\int \frac{1}{100} = \int \frac{1}{100} \frac{1}{100} = \int \frac{1}{100} \frac{1}$ |                                 |   |
|    | ( 05/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MI.                             |   |
|    | $= 100000 \left[ 1 + \frac{0.2}{100} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |   |
|    | = \$101002.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |   |
|    | Interest = $S1002.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AI                              |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1004-0005                       |   |
|    | Therefore, Bank A would be chosen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AI                              |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |   |

[Turn over 9

[Turn over 10

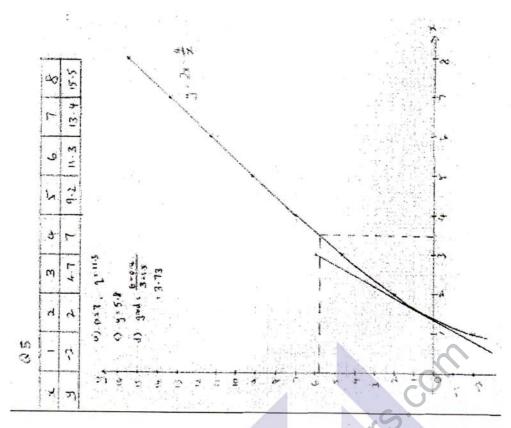
GMS(S)/EMath/P2/Prelim/2016/4NA

| $\frac{1}{2}(10)(v) = 225$<br>$\frac{1}{2}(10)(v) = 225$<br>$\frac{5v = 225}{v = 45}$<br>Acceleration<br>= 45 / 10<br>= 45 / 10<br>= 45 / 10<br>= 1800 - 225<br>= 1800 - 225<br>= 1800 - 225<br>= 1575 / 45<br>t - 10 = 1575 / 45<br>t - 10 = 1575 / 45<br>t - 10 = 35<br>t - 47 0 20<br>t - 10 = 5000<br>t - 53 000<br>t - 10 = 50 000<br>t - 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                             |                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------|----------------------------------------------------------|
| 5v = 225         v = 45         v = 45         Acceleration         = 45 / 10         = 45 m/s <sup>1</sup> Area of rectangle         = 45 m/s <sup>2</sup> Area of rectangle         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 1575         = 10000         = 40000         = 47000         = 47000         = 107020 - 105000         = 107020 - 105000         = 107020 - 105000         = 107020 - 105000         = 107020 - 105000         = 107020 - 105000         = 107020 - 105000         = 107020 - 105000         = 107020 - 105000         = 107020 - 105000         = 47 020 + 58         = 545 000         = 545 000         = 587 318 + 45 000         = 587 318 + 45 000         = 587 318 + 45 000         = 587 318 + 20000 - 65 000 </th <th>8a</th> <th><math>\frac{1}{2}(10)(v) = 225</math></th> <th>A1 for showing the countion of</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8a | $\frac{1}{2}(10)(v) = 225$                  | A1 for showing the countion of                           |
| $5v = 225$ $v = 45$ Acceleration $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 4.5 m/s^3$ Area of rectangle $= 1575$ $= 1800 - 225$ $= 1800 - 225$ $= 1800 - 225$ $= 1575$ $t - 10 = 1575 / 45$ $t - 10 = 35$ $t - 10 = 10 = 35$ $t - 10 = 35$ $t - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 7                                           |                                                          |
| v = 45           Acceleration $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 45 / 10$ $= 1575$ $= 1800 - 225$ $= 1800 - 225$ $= 1800 - 225$ $= 1800 - 225$ $= 1800 - 225$ $= 1575 / 45$ $t - 10 = 35$ $t - 2000$ $= 47 020 - 000$ $= 47 020 - 90%$ $= 545 000$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 5v = 225                                    | triangle = 225                                           |
| Acceleration<br>= 45 / 10<br>= 4.5 m/s <sup>3</sup><br>Area of rectangle<br>= 1800 - 225<br>= 1800 - 225<br>t - 10 = 35<br>t - 1                                                                                                                                                                                                                        |    | v = 45                                      |                                                          |
| = 45 / 10<br>= 4.5 m/s <sup>3</sup><br>Area of rectangle<br>= 1800 - 225<br>= 1575<br>= 1575<br>= 1575<br>= 1575<br>= 1575<br>= 1575<br>t - 10 = 1575 / 45<br>t - 10 = 35<br>t - 10 = 35 t - 10 = 35                                                                                                                           |    | Acceleration                                |                                                          |
| = 4.5 m/s <sup>3</sup> Area of rectangle         = 1800 - 225         = 1800 - 225         = 1800 - 225         = 1800 - 225         = 1800 - 225         = 1800 - 225         = 1575         t-10 = 1575/45         t-10 = 35         t=45 000         = 47 020 + 60 000         = 107020 - 105000         ×10000 - 518         = 47 020 × 1000%         = 47 020 × 90%         = 47 020 × 90%         = 47 318         545 000         = 545 000         = 545 000         = 587 318         Max price of COE         = 57 318 + 20000 - 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | = 45 / 10                                   |                                                          |
| Area of rectangle<br>= 1800 - 225<br>= 1575<br>= 1575<br>= 1575<br>t - 10 = 1575/45<br>t - 10 = 35<br>t - 10 = 35<br>t - 10 = 35<br>t - 10 = 35<br>t - 10 = 35<br>Amount Jimmy paid<br>= 45 000<br>= 47 020 + 60 000<br>= 47 020 + 60 000<br>= 47 020 + 60 000<br>= \$107 020<br>= \$10000<br>= \$10000 × 75%<br>= \$45 000<br>= \$18 + \$10000<br>= \$138 + \$10000<br>= \$138 + \$20000<br>= \$138 + \$20000 - \$5 000<br>= \$138 + \$20000 - \$5 0000<br>= \$138 + \$20000 - \$5 000<br>= \$138 + \$20000 - \$5 0000 - \$5 0000 - \$5 0000 - \$5 0000 - \$5 0000 - \$5 0000 - \$5 0000 - \$5 0000 - \$5 0000 - \$5 0000 - \$5 000 - \$5 000 - \$5 000 - \$5 0000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$5 000 - \$                                                                                                                                        |    | $= 4.5 \text{ m/s}^2$                       | BI                                                       |
| = 1800 - 225<br>= 1575<br>= 1575<br>t - 10 = 1575 / 45<br>t - 10 = 35<br>t - 10 = 000<br>= 45 000<br>= 47 020 + 60 000<br>= 47 020 - 105000<br>= 107020 - 1050000<br>= 107020 - 105000<br>= 107020 - 1050000<br>= 107020 - 1050000 - 105000<br>= 107020 - 105000 - 1050000<br>= 107020 - 105000 - 105000 - 107000 - 105000 - 107000 - 10700 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 107000 - 10700000 - 1070000 - 107000000 - 1070000000000                                                                                                                                                                                                                                                                                   |    | Area of rectangle                           |                                                          |
| = 1575<br>= 1575 / 45<br>t - 10 = 35<br>t - 10 = 35<br>t - 10 = 35<br>t - 10 = 35<br>t - 10 = 35<br>Amount Jimmy paid<br>= 45 000 + 60 000<br>= 5107 020 + 60 000<br>= 47 020 + 60 000<br>= 1.92%<br>Percentage increase<br>= 1.92%<br>= 1.                                                                                                            |    | = 1800 - 225                                | 1                                                        |
| aid<br>aid<br>> 0<br>> x 100%<br>> x 100%<br>> 100%<br>= 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | = 1575                                      | IW                                                       |
| t-10 = 35<br>t = 45<br>hmount Jimmy paid<br>= 45 000 + 60 000<br>= 5105 000<br>= 5105 000<br>= 5107 020<br>Percentage increase<br>= 47 020 + 60 000<br>= 47 020 + 60 000<br>= 47 020 - 105000<br>= 107020 - 105000<br>= 107020 - 105000<br>= 107020 - 105000<br>= 545 000<br>Total amount Dennis received<br>= 42 318 + 45 000<br>= 587 318<br>Max price of COE<br>= 87 318 + 20000 - 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | t - 10 = 1575 / 45                          |                                                          |
| t = 45 Amount Jimmy paid = 45 000 + 60 000 = 5105 000 = 47 020 + 60 000 = 47 020 + 60 000 = 47 020 + 60 000 = 47 020 + 60 000 = 47 020 + 60 000 = 47 020 + 60 000 = 47 020 + 60 000 = 47 020 + 60 000 = 47 020 + 60 000 = 47 020 + 60 000 = 107020 - 10500 = 47 020 = 47 020 = 107020 - 10500 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 318 = 42 200 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 = 50 000 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | t - 10 = 35                                 |                                                          |
| Amount Jimmy paid         = 45 000 + 60 000         = 45 000 + 60 000         = 47 020 + 60 000         = 47 020 + 60 000         = 47 020 + 60 000         = 47 020         Percentage increase         = 107020 - 105000         > 107020 - 105000         = 1.92%         90% of Dennis' COE price         = 47 020 × 90%         = 1.92%         90% of Dennis' COE price         = 47 020 × 90%         = 542 318         55% of car price         = 543 318         Total amount Dennis received         = 42 318         Max price of COE         = 87 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | t = 45                                      | AI                                                       |
| = \$105 000<br>= \$105 000<br>Amount Dennis paid<br>= 47 020 + 60 000<br>= \$107 020<br>Percentage increase<br>107020 - 105000 × 100%<br>= $1.92\%$<br>= $1.92\%$ |    | Amount Jimmy paid                           |                                                          |
| Amount Dennis paid<br>= 47 020 + 60 000<br>= \$107 020<br>= \$107 020<br>Percentage increase<br>105000 × 100%<br>= 1.92%<br>= 1.92%<br>= 47 020 × 9000<br>= 1.92%<br>= 47 020 × 100%<br>= 42 318 + 45 000<br>= 42 318 + 45 000<br>= 827 318 + 45 000<br>= 827 318 + 20000 - 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | = \$105 000                                 |                                                          |
| = 47 020 + 60 000<br>= \$107 020<br>Percentage increase<br>107020 - 105000<br>= 1,92%<br>= 1,92%<br>= 90% of Dennis' COE price<br>= 47 020 × 90%<br>= 42 318 + 45 000<br>= 42 318 + 45 000<br>= 587 318<br>Max price of COE<br>= 87 318 + 20000 - 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Amount Dennis paid                          | M1 for finding the amounts that<br>Jimmy and Dennis paid |
| se<br>0 × 100%<br>OE price<br>nis received<br>- 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | $= 47\ 020 + 60\ 000$<br>$= \$107\ 020$     | •                                                        |
| se<br>x 100%<br>OE price<br>Dis received<br>nis received<br>c 5 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                             |                                                          |
| N × 100%<br>OE price<br>nis received<br>- 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | Percentage increase                         |                                                          |
| OE price<br>nis received<br>- 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | $=\frac{10/020-105000}{10000} \times 100\%$ | M1 for finding (107020 – 105000)                         |
| OE price<br>nis received<br>- 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | = 1.92%                                     | AI                                                       |
| nis received<br>– 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 90% of Dennis' COE price                    |                                                          |
| nis received<br>- 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | = 47 020 × 90%                              |                                                          |
| nis received<br>65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C  | = \$42 318                                  | IM                                                       |
| nis received<br>65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 75% of car price                            |                                                          |
| his received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | = 60 000 × 75%                              |                                                          |
| is received<br>- 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | = \$45 000                                  | МІ                                                       |
| -65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | Total amount Dennis received                |                                                          |
| - 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | = 42 318 + 45 000                           |                                                          |
| - 65 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | = \$87 318                                  | A1                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  | Max price of COE                            |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | = 87318 + 20000 - 65000                     |                                                          |

AI for correct subbing of values into the correct formula for MI for correct subbing of values into the correct formula for surface area of hemisphere M1 for volume of hemisphere surface area of hemisphere M1 for volume of cylinder MI for finding AC ٩I M ١V M IW ĪW IV Total volume of material = 0.135π + 0.018π = 0.153π m<sup>3</sup> Volume of hemisphere  $= 0.36\pi + 2\pi (0.3)^2$  $= 0.54\pi \,\mathrm{m}^2$ Surface area (white) Volume of cylinder  $1 = \sqrt{\left(14\frac{1}{6}\right)^2 - 10^2}$ Surface area (red) = 2*m*<sup>th</sup>  $\tan \angle BAC = \frac{7.5}{4}$  $AC^2 = 4^2 + 7.5^2$  $= 0.36\pi + 2\pi^2$  $=\pi(0.3)^{2}(1.5)$  $= 2\pi (0.3)(0.6)$ ∠BAC = 61.9° Length of AD Length of AE  $AC = 8.5 \,\mathrm{cm}$  $=\frac{2}{3}\pi(0.3)^{3}$  $=14\frac{1}{6}$  cm  $= 0.36\pi \text{ m}^2$  $= 0.135\pi$  $(=\frac{2}{3}\pi^2)$  $= 0.018\pi$  $= 8.5 \times \frac{5}{3}$ = 10.0 cm  $= m^2 h$ 6bii 6bi R 6a 7a

2

GMS(S)/EMath/P2/Prelim/2016/4NA


- The BEST website to download FREE exam papers, notes and other materials from Singapore!

[Turn over 11

[Turn over 12

GMS(S)/EMath/P2/Prelim/2016/4NA

GMS(S)/EMath/P2/Prelim/2016/4NA



| It AI for reason                                                      | Al for answer | Al for reason                               | AI for answer | AI for reason | A1 for answer                  |           | A1 for reason                     | A1 for answer |         |           |         |    | BI    | <b>B</b>          |           | IM                                                           |   | VI   | MI for correct OI OR O3 | CAND IN | AI       | 81                | MI for correct Min OR Max value |          | AI           |
|-----------------------------------------------------------------------|---------------|---------------------------------------------|---------------|---------------|--------------------------------|-----------|-----------------------------------|---------------|---------|-----------|---------|----|-------|-------------------|-----------|--------------------------------------------------------------|---|------|-------------------------|---------|----------|-------------------|---------------------------------|----------|--------------|
| Angre AOC<br>= 51 × 2 (angle at center = 2×angle at<br>circumference) | = 102°        | Angle ABC<br>= 180 – 51 (angles in opp seg) | = 129°        | Angle ADC     | = 51° (angles in the same seg) | Angle CED | = 90 - 51 (angle in a semicircle) | = 39°         | P (G,G) | _ 18 _ 17 | - 40 39 | 51 | = 260 | P(B, G) + P(G, B) | (22 18) 2 | $= \left(\frac{40}{40} \times \frac{39}{39}\right) \times 2$ | n | = 55 | Q1 = 40                 | Q3 = 70 | IQR = 30 | Median = 55 marks | Min = 10                        | Max = 90 | Range = $80$ |
|                                                                       |               | 101                                         |               | 10111         |                                | 10iv      |                                   |               | Ilai    |           |         |    |       | Ilaii             |           |                                                              |   |      | 1161                    |         |          | 11611             | 1116111                         |          |              |

[Turn over 14

[Turn over 13





### **GUANGYANG SECONDARY SCHOOL, SINGAPORE**

2016 PRELIMINARY EXAMINATION TWO Secondary Four Normal (Academic)

| CANDIDATE<br>NAME |        |         |   |
|-------------------|--------|---------|---|
| CENTRE            | INDEX  | CLASS/  | 1 |
| NUMBER            | NUMBER | REG No. |   |

## MATHEMATICS SYLLABUS A

Paper 1

4045/01 18 August 2016 2 hours

Candidates answer on the Question Paper.

### READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are required to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

| Marks: |    |
|--------|----|
|        | 80 |
| 9      |    |

# CALCULATOR MODEL:

State 'no calculator' if you do not have a calculator. Failure to fill in the calculator model will result in loss of marks.

| For | Examiner | 's Use |
|-----|----------|--------|
|     |          |        |
|     |          |        |
|     |          |        |
|     |          |        |
|     |          |        |
|     |          |        |
|     |          |        |
|     |          |        |

This question paper consists of 18 printed pages, inclusive of this cover page

### Mathematical Formulae

Compound interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi r l$ 

Surface area of a sphere =  $4 \pi r^2$ 

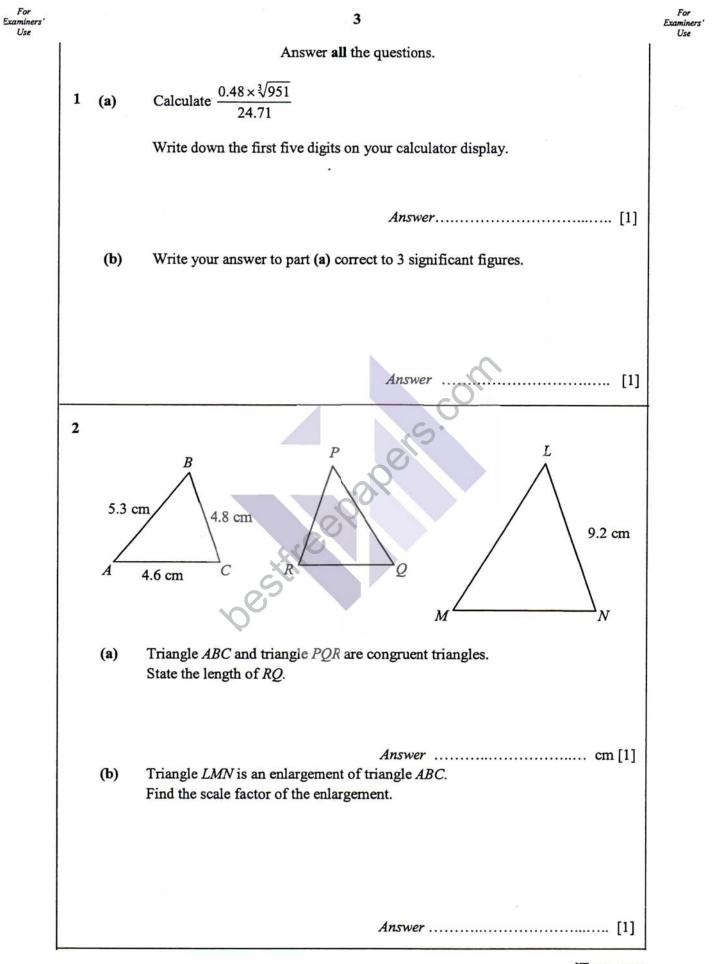
Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi$$

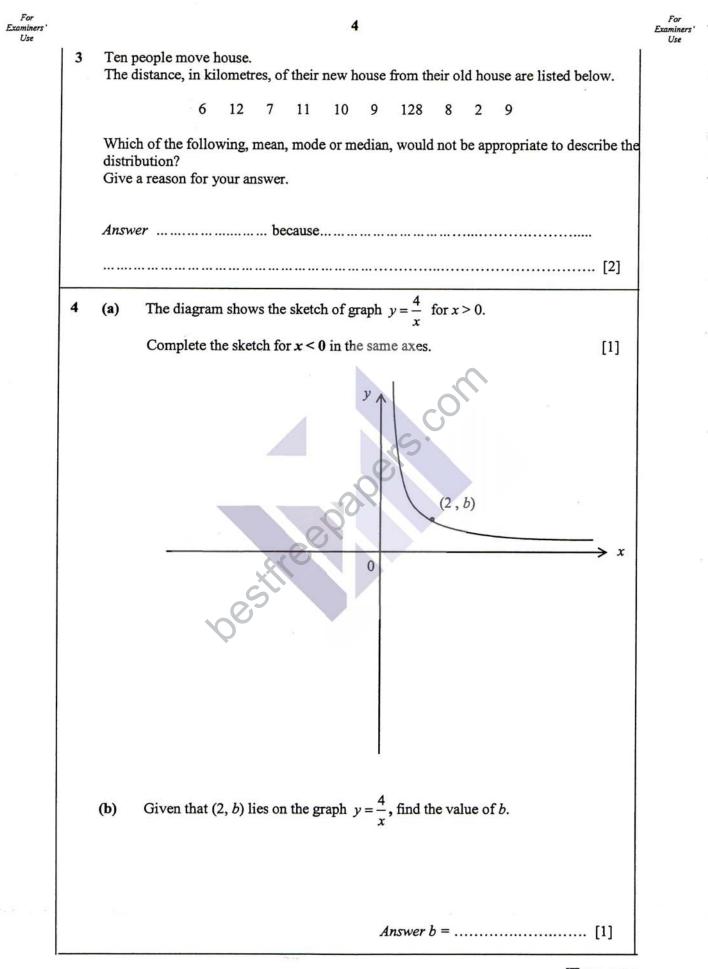
Area of triangle 
$$ABC = \frac{1}{2}ab\sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians


Trigonometry

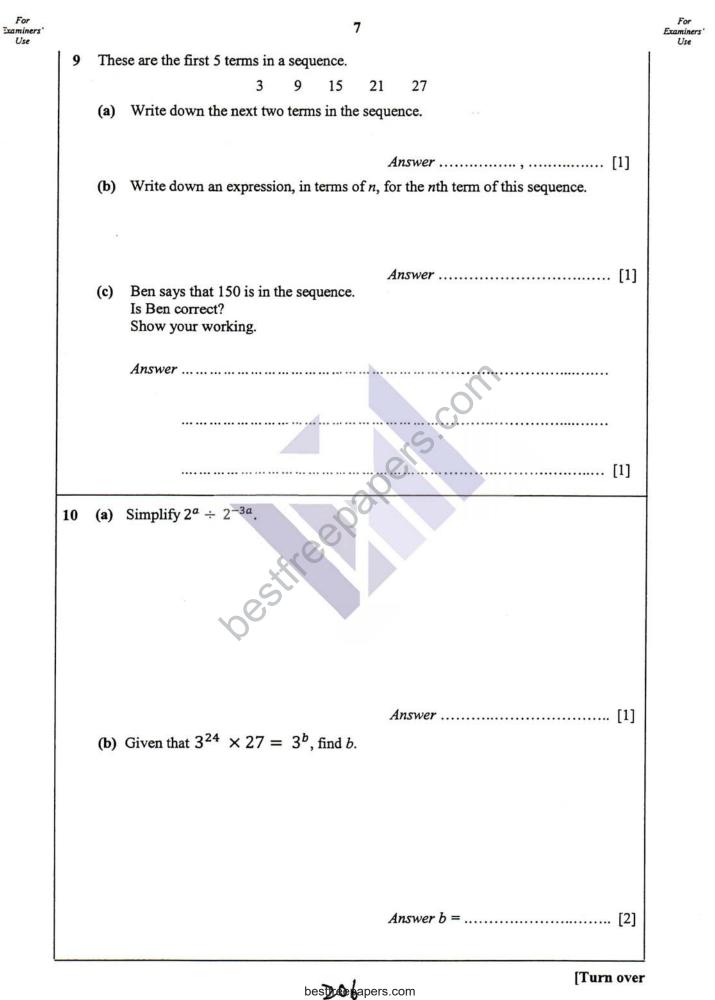
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

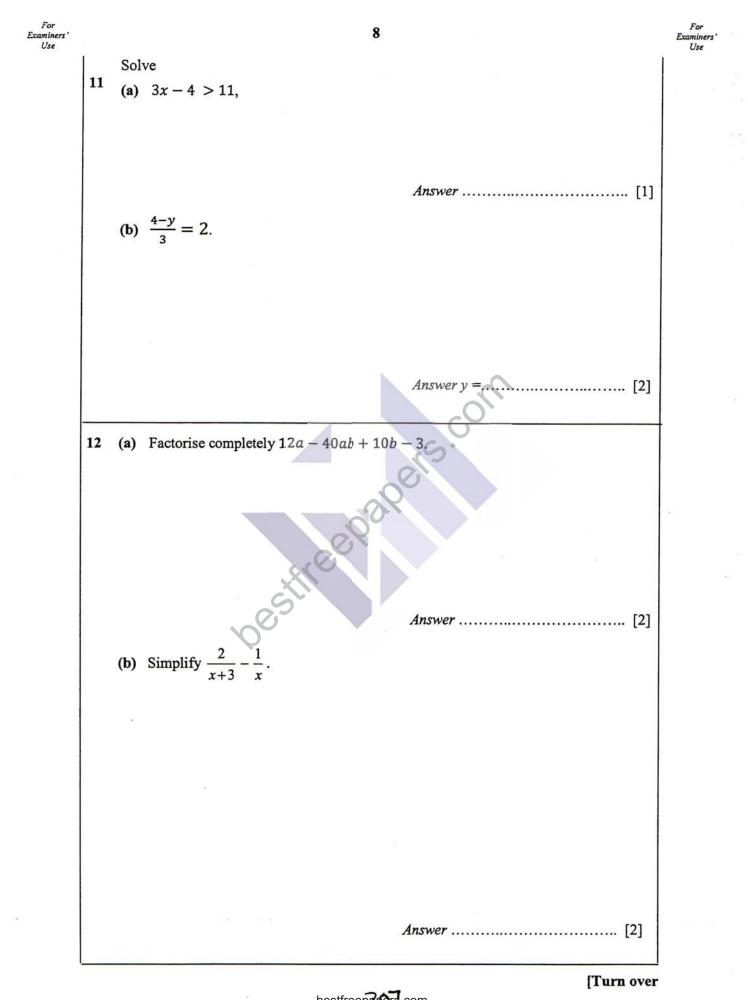

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$




[Turn over

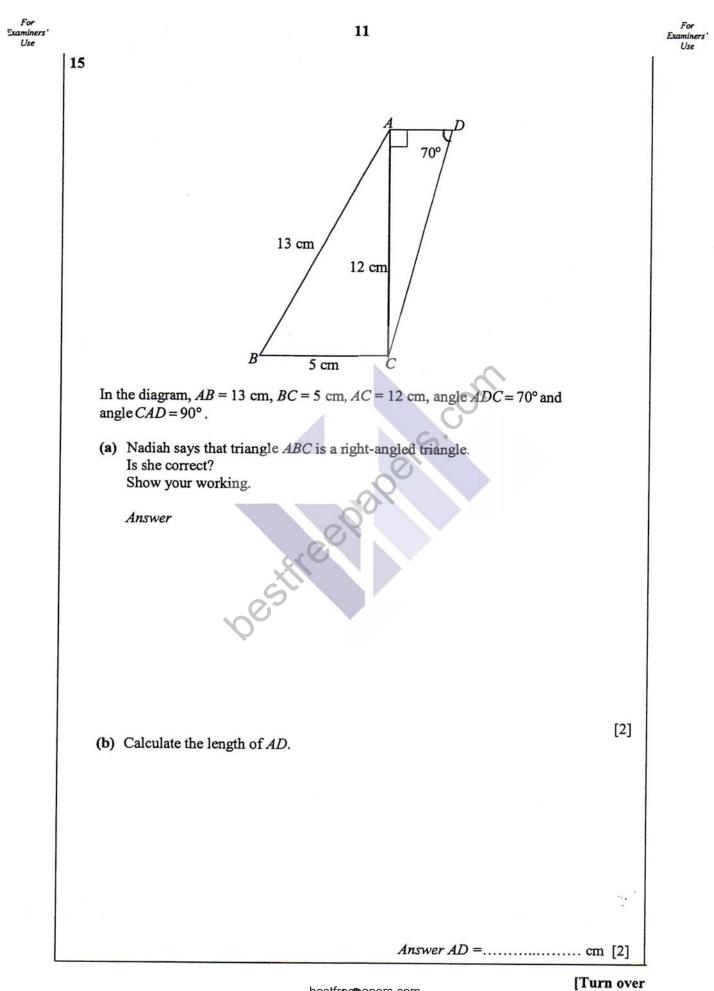


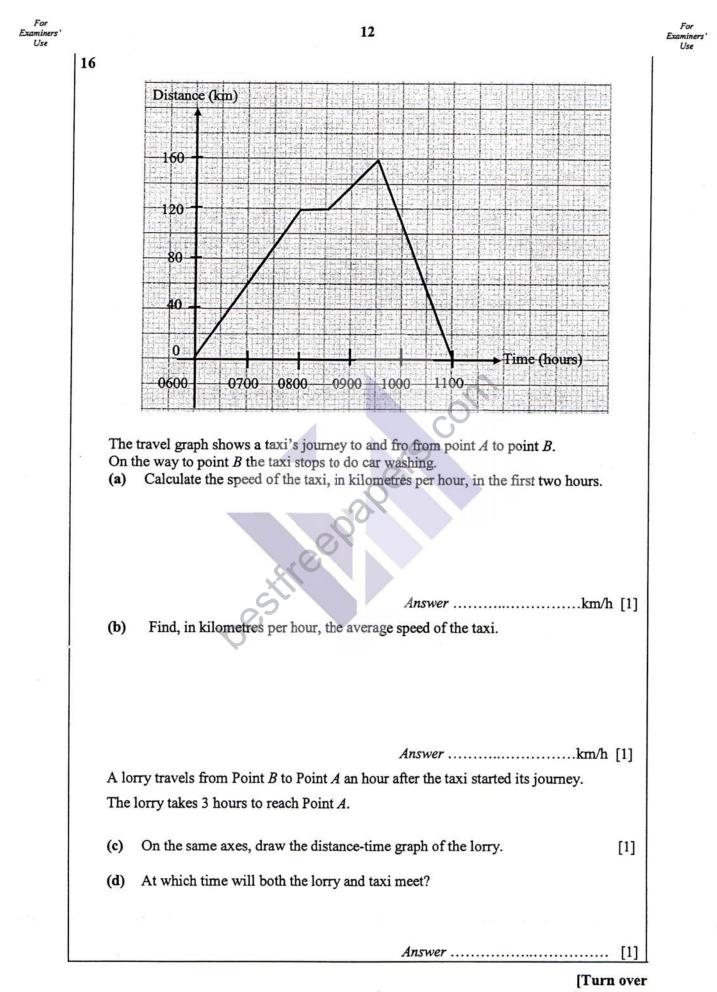

| For<br>Examiners'<br>Use |   | 5                                                                                                                                                                                                                                                                                                                                                                  | For<br>Examiners'<br>Use |
|--------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                          | 5 |                                                                                                                                                                                                                                                                                                                                                                    |                          |
|                          |   | In the kite, the diagonals bisect each other at right angle.                                                                                                                                                                                                                                                                                                       |                          |
|                          |   | (a) List two quadrilaterals with the diagonals bisect each other at right angle.                                                                                                                                                                                                                                                                                   |                          |
|                          |   | Answer                                                                                                                                                                                                                                                                                                                                                             |                          |
|                          |   | (b) Some properties of a kite are different from those of a rhombus.<br>Write down one such property. Answer                                                                                                                                                                                                                                                       |                          |
|                          | 6 | Mrs Raja buys some boxes of pencils and some packets of pens for people to use at a<br>workshop.<br>There are 40 pencils in a box. There are 15 pens in a packet.<br>She gives one pencil and one pen to each person at the workshop.<br>She has no pencil and also no pen left.<br>Find the least number of boxes of pencils and packets of pens Mrs Raja bought. |                          |
|                          |   | Answer boxes of pencils                                                                                                                                                                                                                                                                                                                                            |                          |
|                          |   | packets of pens [3]                                                                                                                                                                                                                                                                                                                                                |                          |

### [Turn over

For For 6 Examiners Examiners Use Use 7 The force of attraction, F newtons, between two magnets is inversely proportional to the square of the distance, x centimetres, between them. (a) Write down an expression for F in terms of x and a constant k. Answer  $F = \dots$ [1] (b) When the magnets are 4 cm apart, the force is 3 newtons. Find the value of constant k. Answer k =(c) Hence find the force when the magnets are 2 cm apart. Answer F =..... newtons [1] The mass of a certain atom is approximately 12 nanograms. 8 (a) Write 12 nanograms in grams using standard form. Answer ...... g [1] (b) A container contains 2 billion such atoms. Find the total mass, in grams, of the atoms in the container. Answer ..... g [2] [Turn over

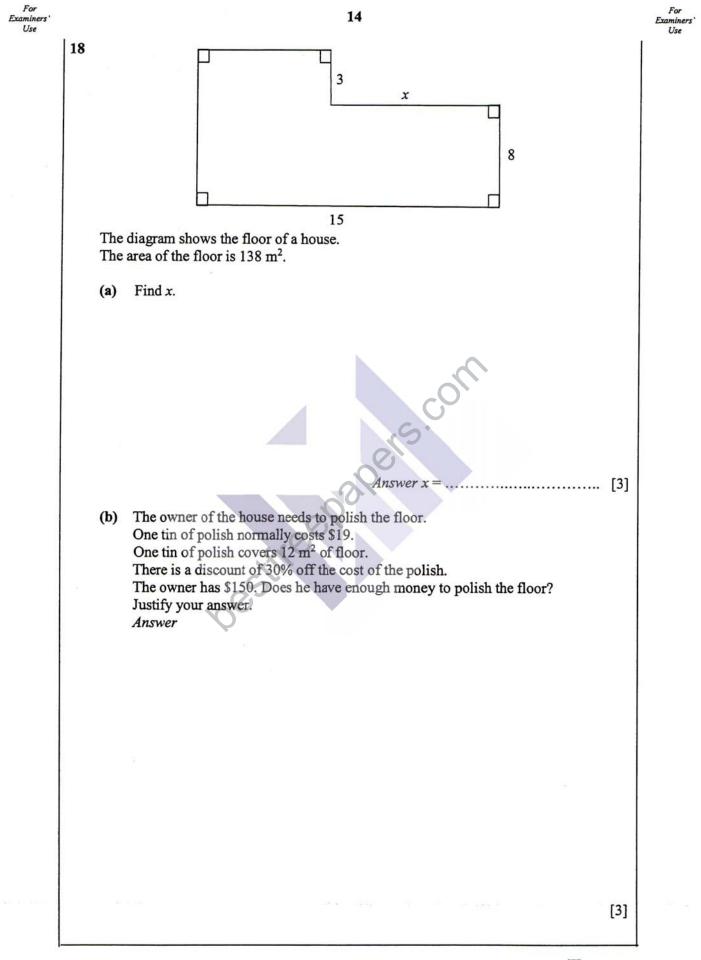






For Examiners Use For 9 Examiners Use  $x^2 - 10x - 3$  can be expressed in the form  $(x - p)^2 + q$ . 13 (a) Find p and q. Answer q =(b) Hence solve  $x^2 - 10x - 3 = 0$ . 

For Fo 10 Examiners Examiners Use Use Ray has \$620. 14 He divided the money among his 3 children - Alice, Benny and Cindy. The amount of money Alice and Benny received is in the ratio of 3 : 2. The amount of money Benny and Cindy received is in the ratio 5 : 3. (a) Express the amount of money received by Alice, Benny and Cindy in the ratio A:B:C.Answer [2] (b) Express the ratio of money received by Benny to the total amount of money Ray has. Answer ..... [1] (c) What is the difference in the amount of money Alice and Benny received? Answer \$..... [1]

### [Turn over


bestfreepaper com





bestfreepapers.com

| For<br>Examiners'<br>Use | 13                                                                       | For<br>Examiners'          |
|--------------------------|--------------------------------------------------------------------------|----------------------------|
| ror<br>Examiners'<br>Use | 17<br>B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | - For<br>Examiners'<br>Use |
|                          | <i>Answer ∠DCF</i> =° [4]                                                |                            |



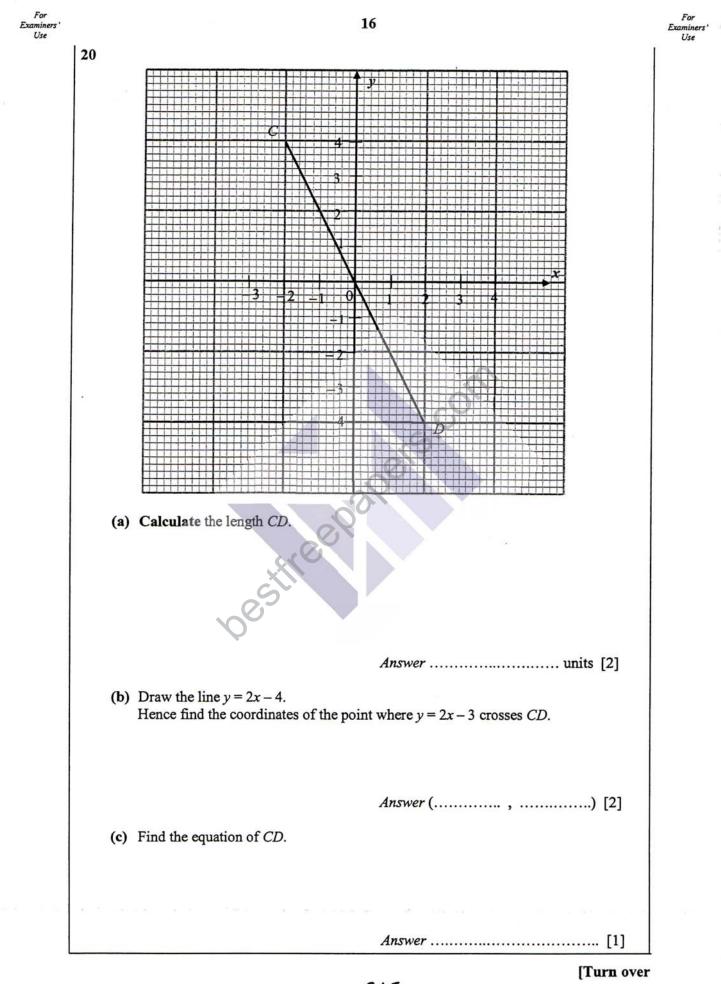
#### [Turn over

19 The table shows information on the cost of sending a standard regular letter and a standard large letter by post.

| All rates        | Local Postage Rate<br>refer to Singapore Currency (inclu | sive of 7% GST)                            |
|------------------|----------------------------------------------------------|--------------------------------------------|
| Weight Set Up to | Standard Regular<br>(C5,C6 & DL size envelope)           | Standard large<br>(Up to C4 size envelope) |
| 20 g             | \$0.30                                                   | \$0.60                                     |
| 40 g             | \$0.37                                                   | 1                                          |
| 100 g            |                                                          | \$0.90                                     |
| 250 g            |                                                          | \$1.15                                     |
| 500 g            |                                                          | \$1.70                                     |
| 1 kg             |                                                          | \$2.55                                     |

A company wants to post 400 letters.

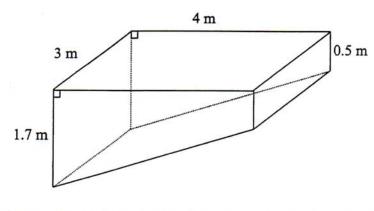
One twentieth of the letters are standard regular and the rest are standard large. All the standard regular letters weigh 30 g.


(a) Find the cost of posting all the standard regular letters.

Answer \$..... [2]

70% of the standard large letters weigh 90 g and the rest of the standard large letters weigh 200 g.

(b) Find the total cost of posting all the standard large letters.


Answer \$..... [3]





For Examiners' Use

# 21

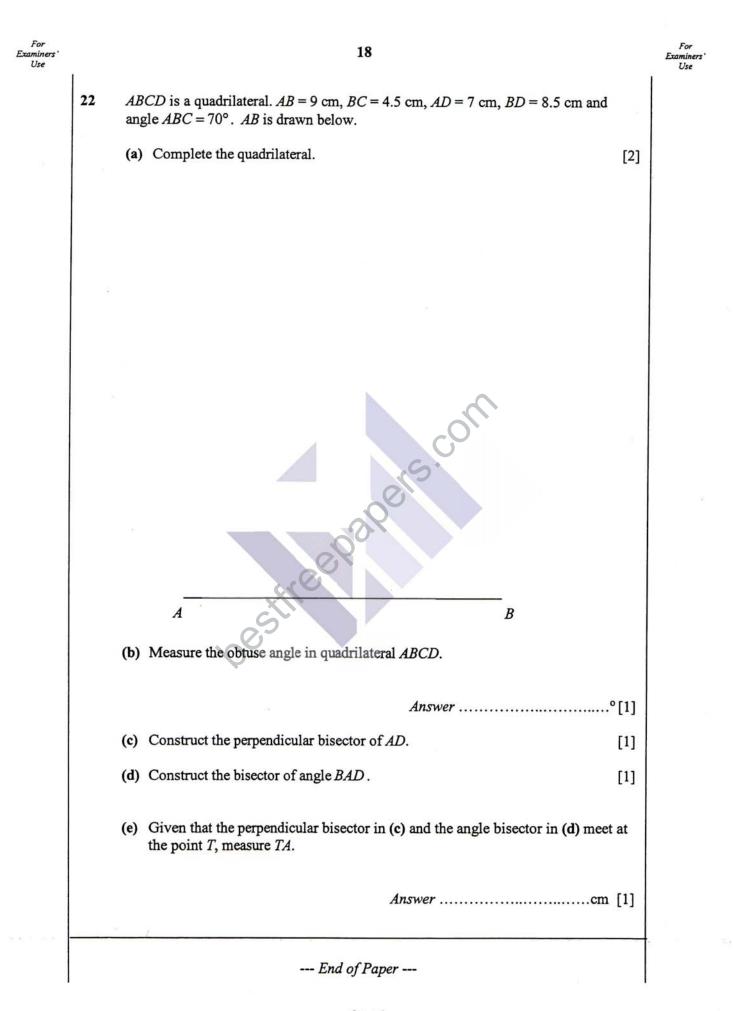


A pool, 3 m wide by 4 m long, is 0.5 m deep at the shallow end and 1.7 m deep at the other end.

The pool is completely full of water.

(a) Find the volume of the water in the pool.




Brandon wants to empty the pool so he can clean it. Brandon uses a pump to empty the pool. The volume of water in the pool decreases at a constant rate. The water level of the pool drops by 10 cm in the first 20 minutes.

(b) How much more time Brandon has to wait for the pump to empty the pool completely? Give you answer in hours and minutes.

Answer ...... hours..... mins [4]

#### [Turn over

- The BEST website to download FREE example ex



bestfreepapers.com

|                     |                                            |                                                    |          |                                                  | B0 if only one answer is correct. |        | B0 if only there is no conclusion.                                                         |                        |                                                             |                                          |     |                         | Alt:<br>= $3(4a - 1) - 10b(4a - 1)$<br>= $(4a - 1)(3 - 10b)$        |                           |
|---------------------|--------------------------------------------|----------------------------------------------------|----------|--------------------------------------------------|-----------------------------------|--------|--------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------|------------------------------------------|-----|-------------------------|---------------------------------------------------------------------|---------------------------|
| 81                  | B                                          | BI                                                 | BI       | MI                                               | 81                                | BI     | B                                                                                          | 8                      |                                                             | WI IV                                    | BI  | MI                      | MI                                                                  | W                         |
| $F = \frac{k}{x^2}$ | $3 = \frac{k}{4^2}$<br>3× 16 = k<br>k = 48 | $F = \frac{48}{x^3}$<br>= $\frac{48}{2^3}$<br>= 12 | 1.2×10-* | 1.2×10 <sup>-1</sup> × 2×10 <sup>9</sup><br>= 24 | 33, 39                            | 6n - 3 | When $6n - 3 = 150$<br>$n = \frac{153}{6} = 25.5$<br>$\neq$ an integer<br>Ben is incorrect | $2^{a-(-3a)} = 2^{4a}$ | $3^{24} \times 27 = 3^{b}$<br>$3^{24} \times 3^{3} = 3^{b}$ | $3^{24+3} = 3^{5}$<br>b = 24 + 3<br>= 27 | x>5 | 4-y=6<br>-y=6+4<br>y=-2 | 4a(3-10b) + (10b-3)<br>= $4a(3-10b) - (3-10b)$<br>= $(4a-1)(3-10b)$ | $\frac{2x-(x+3)}{x(x+3)}$ |
| 7a                  | 7b                                         | 7c                                                 | 8a       | 8b                                               | 9a                                | 96     | 9c                                                                                         | 10a                    | 10b                                                         | 5                                        | 11a | 116                     | 12a                                                                 | 12b                       |

4-1

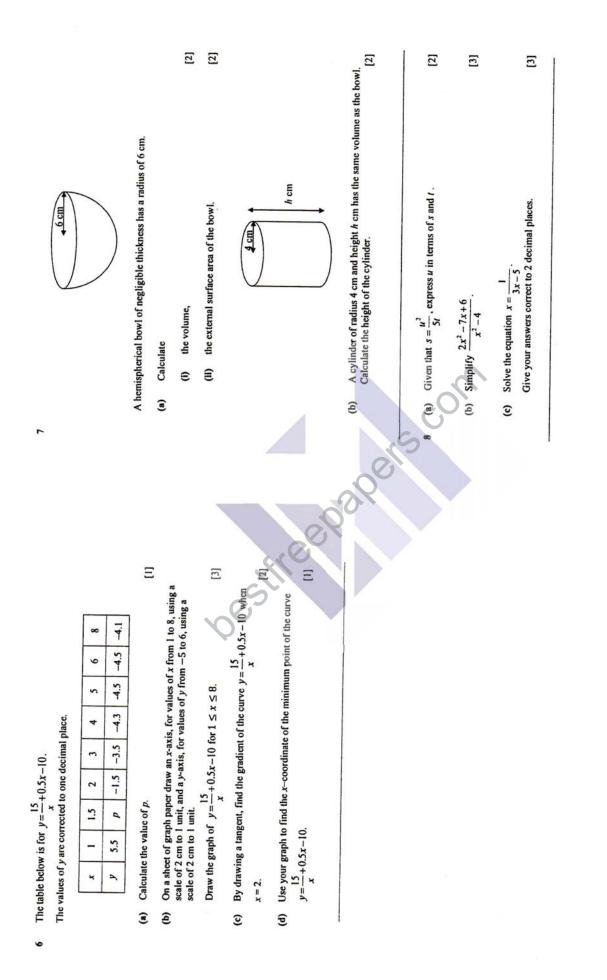
| Allawer                                                                                                                                                  | MArk     | Comments          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|
| 0.1910                                                                                                                                                   | 81       |                   |
| 0.191                                                                                                                                                    | BI       |                   |
| RQ = CB = 4.8                                                                                                                                            | BI       |                   |
| $\frac{LN}{AC} = \frac{9.2}{4.6} = 2$                                                                                                                    | BI       |                   |
| Mean<br>The extreme value 128 will distort the result.                                                                                                   | B1<br>B1 |                   |
|                                                                                                                                                          |          | <b>0</b> 65 (4:5) |
| When $x = 2$ , $y = 3$                                                                                                                                   | B        | Ē                 |
| <i>v</i> = <i>z</i><br>Rhombus and square                                                                                                                | 81       |                   |
| A rhombus has 4 equal sides whereas a kite<br>has 2 pairs of equal sides.                                                                                | BI       |                   |
| 40 = $2^{2} \times 3$<br>15 = $3 \times 5$<br>LCM of 40 and 15 is $2^{2} \times 3 \times 5 = 120$<br>Least No. of boxes of pencil = $\frac{120}{20} = 3$ | MI       |                   |
| Least No. of boxes of pens = $\frac{120}{15}$ = 8                                                                                                        | ٩١       |                   |

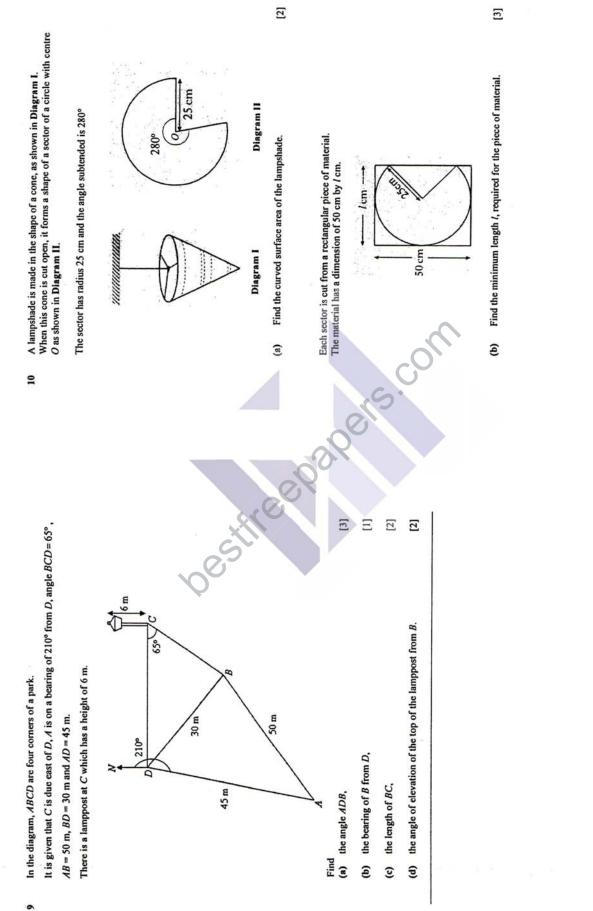
|  |                | B | Alt:<br>$3x = 1 \times 15 - 3x = 138 - M1$<br>$3x = 1 \times 15 - 138 - M1$<br>$x = \frac{27}{3} = 9 - A1$ |
|--|----------------|---|------------------------------------------------------------------------------------------------------------|
|  | 320<br>54 km/h |   | gle)<br>\$19) × 12                                                                                         |

|                                                                 |                                        |                                                                | oestire                                              |                       |                                                                                                   | Alt:<br>Cosine Rule.                                                                                                                           |                                                                                          |
|-----------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| VI                                                              | BI<br>BI                               | MI                                                             | ν<br>M                                               | BI                    | B                                                                                                 | M IA                                                                                                                                           | м і                                                                                      |
| $\frac{2x-x-3}{x(x+3)}$ $\frac{-2}{x(x+3)}$ $\frac{-2}{x(x+3)}$ | $(x-5)^2 - 28$<br>p = 5 and<br>q = -28 | $(x-5)^2 = 28$<br>$x-5 = \pm\sqrt{28}$<br>x = 10.3 or $-0.292$ | A:B B:C<br>3:2 5:3<br>15:10 10:6<br>A:B:C<br>15:10:6 | 10:(15+10+6)<br>10:31 | Unit difference= 15 - 10<br>= 5<br>1 unit = \$620 + 31<br>= \$20<br>5 units = 5 × \$20<br>= \$100 | Since $5^2 + 12^2 = 13^2$ .<br>$BC^2 + AC^2 = AB^2$<br>By converse of Pythagoras' Theorem,<br>triangle ABC must be a right-angled<br>triangle. | $\tan 70^{\circ} = \frac{12}{AD}$ $AD = \frac{12}{\tan 70^{\circ}}$ $= 4.37 \mathrm{cm}$ |
|                                                                 | 13a                                    | 136                                                            | 14a                                                  | 14b                   | 14c                                                                                               | 15a                                                                                                                                            | 15b                                                                                      |

besting appropers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

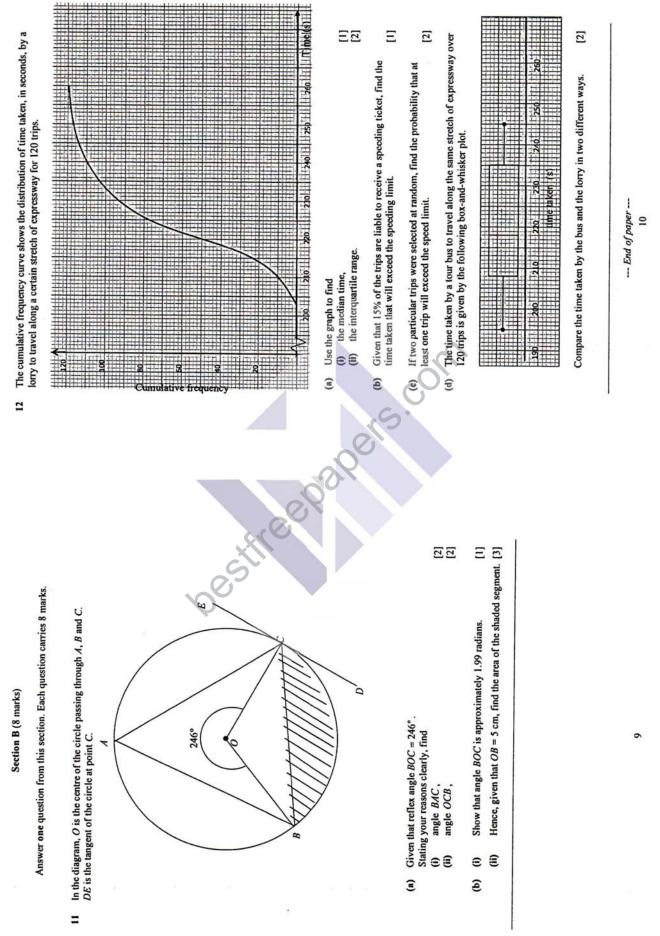
| BI                            | MI                                                                                        | Ш                                                                        | W                                                                                                                     | М                                                                                                                  | Ч                                                                   | (a) point C - BI<br>paint D - BI<br>BO 7 a ones shown<br>-In 7 no joint y of here<br>BI<br>BI |
|-------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| y = -2x                       | Volume<br>= $[\frac{1}{2} \times (1.7 + 0.5) \times 4] \times 3$<br>= 13.2 m <sup>3</sup> | Volume of water emptied in 20 mins<br>= 3 x4x0.1<br>= 1 2 m <sup>3</sup> | water emptied in 20 mins<br>of water emptied = 1.2 ×3                                                                 | Total time taken to empty the pool<br>= $\frac{3.6}{3.6}$<br>= $3\frac{2}{3}$ hr<br>= $3 hr 40$ min                | Extra time required = 3 hr 40 min – 20min<br>= 3 hr 20 min          |                                                                                               |
| 21a                           | 22a                                                                                       | 22b                                                                      |                                                                                                                       |                                                                                                                    |                                                                     | 238, 236, d                                                                                   |
|                               | Accept 1.375                                                                              |                                                                          |                                                                                                                       | pest                                                                                                               |                                                                     |                                                                                               |
| He does not have enough money | $\frac{1}{20} \times 400 = 20 \text{ standard regular letters}$                           | IM 10:00 × 02 × 02 × 00 × 00 × 00 × 00 × 00                              | No. of standard large letters = 400 - 20<br>= 380<br>Cost of letters weigh 100g<br>= 0.7 × 380 × \$0.90<br>= \$239.40 | Cost of letters weigh 200g<br>= 0.3 × 380 × \$1.15<br>= \$131.10<br>Total cost = \$239.40 + \$131.10<br>= \$370.50 | Length of CD<br>= $\sqrt{(-4-4)^2 + (2-(-2))^2}$ MI<br>= 8.94 units |                                                                                               |
|                               | 19a                                                                                       |                                                                          | 961<br>961                                                                                                            |                                                                                                                    | 20a                                                                 | 209                                                                                           |


bestfreepapers.com - The BEST website to download FREE examples routes and other materials from Singapore!




Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians Arc length =  $r\theta$ , where  $\theta$  is in radians Area of triangle  $ABC = \frac{1}{2}ab \sin C$ Curved surface area of a cone = m/lSurface area of a sphere =  $4 m^2$ Volume of a sphere  $=\frac{4}{3}m^{3}$ Total amount =  $P\left(1 + \frac{r}{100}\right)^{2}$ Volume of a cone =  $\frac{1}{3}m^2h$  $a^2 = b^2 + c^2 - 2bc\cos A$ Mathematical Formulae  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Mean =  $\sum_{k=1}^{n}$ Standard deviation = Compound interest Mensuration Statistics 19 August 2016 2 hours The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For  $\pi$ , use either your calculator value or 3.142. 4045/02 The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60. GUANGYANG SECONDARY SCHOOL, SINGAPORE 2016 PRELIMINARY EXAMINATION TWO Write your answers and working on the separate Answer Paper provided. Write your name, index number and class on all the work you hand in. At the end of the examination, fasten all your work securely together. Secondary Four Normal (Academic) Do not use staples, paper clips, glue or correction fluid. Graph paper (1 sheet) You may use a pencil for any diagrams or graphs. Answer Paper **READ THESE INSTRUCTIONS FIRST** MATHEMATICS SYLLABUS A Write in dark blue or black pen. Additional Materials: Answer all questions. Answer one question. Section A Section B Paper 2

This question paper consists of <u>10</u> printed pages, inclusive of this cover page


|                                                                                                                                                   | (E) (E)                                                                                            | 5 5                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The stem-and-leaf diagram shows the Mathematics test scores of 10 boys.<br>4   5<br>5   2 3 4 4 5<br>6   2 5 8<br>7   2<br>Key: 4 5 represents 45 | State the modal mark.<br>What fraction of the boys score at least 55 marks?<br>Find the mean mark. | Mr Lim invested \$30 000 in a company which pays an interest at the rate<br>of 2% per year compounded yearly.<br>Calculate the total interest he would have earned in 10 years.<br>He attended a concert at the Esplanade Concert Hall.<br>The cost of the ticket, inclusive of 7% Goods and Services Tax (GST),<br>was \$\$201.16.<br>Calculate, correct to the nearest cent, the GST paid for the ticket. | He spent Japanese Y en $\$500\ 000$ for a holiday trip to Japan.<br>The exchange rate was $\$\$1 = \$77.172$ .<br>Calculate the amount he spent for the holiday.<br>Give your answer correct to the nearest dollars.                                                        |                                                                                                                                                                                                                                                   |
| The                                                                                                                                               | ê ê î                                                                                              | <b>(a)</b>                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>0                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   |
| 4                                                                                                                                                 |                                                                                                    | N)                                                                                                                                                                                                                                                                                                                                                                                                          | .9.4                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
|                                                                                                                                                   |                                                                                                    | E                                                                                                                                                                                                                                                                                                                                                                                                           | Bag <i>B</i> .<br>[2]                                                                                                                                                                                                                                                       | [4]                                                                                                                                                                                                                                               |
| Section A (52 marks)<br>Answer all the questions in this section. $\int E$                                                                        |                                                                                                    | Lines $AB$ and $CD$ are parallel.<br>Find y.                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>2 Bag A contains 4 red and 6 white buttons.</li> <li>Bag B contains 7 red and 5 white buttons.</li> <li>A button is drawn at random from Bag A followed by another button from Bag B. Find the probability of drawing two buttons of different colours.</li> </ul> | 3 A concert sells adult tickets and child tickets.<br>The total cost of 3 adult tickets and 1 child ticket is \$30.<br>The total cost of 1 adult ticket and 3 child tickets is \$22.<br>Find the cost of each adult ticket and each child ticket. |





œ

-



bestileepapers.com

| Sec 4 | <u>Sec 4NA Prelim Exam Math Paper 2 2016 Marking Scheme</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scheme |                                            |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------|-----|
| NS    | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mark   | Comments                                   |     |
| -     | $2y + 6y = 180^{\circ}$ (int angle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IW     | -1 mark for any missing                    |     |
|       | $8 y = 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | degree.                                    |     |
|       | y = 22.5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AI     |                                            |     |
| 2     | $P(\text{different colors}) = \left(\frac{4}{10} \times \frac{5}{12}\right) + \left(\frac{6}{10} \times \frac{7}{12}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IW     |                                            |     |
|       | = 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AI     |                                            |     |
| 3     | Let $x$ be the cost of adult ticket<br>and $y$ be the cost of child ticket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | ~                                          |     |
|       | 3x + y = 30 $x + 3y = 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ш      | Forming two algebraic equations            |     |
|       | 3x + y - 3x - 9y = 30 - 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | S                                          |     |
|       | -8y = -36<br>y = 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IW     |                                            |     |
|       | x = 22 - 3(4.5)<br>= 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                            | 20  |
|       | Cost of adult ticket = \$8.50<br>Cost of child ticket = \$4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ١٧     | A0 if not 2dp or<br>no/one conclusion only | 200 |
| 4a    | Mode = 54 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BI     |                                            | 2   |
| 4b    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BI     |                                            |     |
| 4c    | $Mean = \frac{45 + + 72}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IM     |                                            |     |
|       | 10<br>= 58 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ٩١     |                                            |     |
| Sa    | Amount = $30000\left(1+\frac{2}{100}\right)^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IM     |                                            |     |
|       | = \$36 569.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                            |     |
|       | Interest<br>= \$36 560 83 - \$ 30 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                            |     |
|       | = \$ 6569.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ١٧     |                                            |     |
| Sb    | $GST = \frac{201.16}{107} \times 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IM     |                                            |     |
|       | = \$13.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ١٧     |                                            |     |
| 50    | Amount spent = $\frac{500\ 000}{77.172}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IW     |                                            |     |
|       | Landon Contra Cont | AI     |                                            |     |
|       | c .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                            |     |

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

|         |                                                                                                                                                                              |                                                                                                                               | tem - tem -                                                                                     |                                                                      |                                                                                                                   |                                                                                                             |                                                                                     |                                                                                                                                 |                        |                                            |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------|
| ٩I      | W R                                                                                                                                                                          | W I                                                                                                                           | ī π                                                                                             | АІ                                                                   | IW IV                                                                                                             | MI<br>AI                                                                                                    | BI                                                                                  | MI.<br>VIII                                                                                                                     | 81                     | MI                                         |
| =20.9 m | Let $\theta$ be the angle of elevation<br>$\tan \theta = \frac{6}{20.856680}$<br>$\theta = tan^{-1} \left(\frac{6}{20.856680}\right)$<br>= 16.0934<br>$= 16.0^{\circ} (1dp)$ | Curved surface area of the shade<br>$=\frac{280}{360} \times \pi \times 25 \times 25$ $= 1527.163095$ $= 1530 \text{ cm}^{2}$ | $\frac{x}{25} = \cos(\frac{360 - 280}{2})$ $x = 25 \times (\frac{360 - 280}{2})$ $= 19.1511108$ | <i> </i> = 25 + 19.15111108<br>= 44.15111108<br>= 44 cm (nearest cm) | $\angle BAC = \frac{360^{\circ} - 246^{\circ}}{2}$ $= 57^{\circ}  (\angle at centre = 2 \angle at circumference)$ | $\angle OCB = \frac{180^{\circ} - 114^{\circ}}{2}$ $= 33^{\circ} \text{ (base $\angle$ of isos. $\Delta$)}$ | $\angle BOC$<br>= $\frac{\pi}{1.986} \times (360 - 246)$<br>= 1.986 rad<br>=1.99rad | Area of the segment<br>$=\frac{1}{2} \times 5 \times 5 \times (1.98967534 - 1.989675347)$<br>=13.451623<br>$=13.5 \text{ cm}^2$ | Median = 221.5 - 222 s | Interquartile range =<br>= 229-217<br>= 12 |
|         | 96                                                                                                                                                                           | 10a                                                                                                                           | 109                                                                                             |                                                                      | 11ai                                                                                                              |                                                                                                             | 11bi                                                                                | 411                                                                                                                             | 12ai                   | 12aii                                      |

|                                                                                                                                |                                                                                                                           |                                                                                        | 08                              | 5                                |                         |                                      |                                                                           |                                                          |                                                                                                              |                                    |                                                          |                                                                                                                               |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|----------------------------------|-------------------------|--------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| MI<br>AI                                                                                                                       | WI<br>VI                                                                                                                  | MI AI                                                                                  | MI                              | WW                               | ١٧                      | Σ                                    |                                                                           | W IV                                                     | IW W                                                                                                         | V                                  | BI                                                       | Ψ                                                                                                                             |                                                                         |
| Volume of the bowl<br>= $\frac{2}{3} \times \pi \times 6 \times 6 \times 6$<br>= 452.3893421169<br>= 452 cm <sup>3</sup> (3sf) | External surface area of the bow!<br>= $2 \times \pi \times 6 \times 6$<br>= $226.194671058$<br>= $226 \text{ cm}^2(38f)$ | Height of cylinder = $\frac{452.3893421169}{\pi \times 4 \times 4}$<br>= 9.00 cm (3sf) | $u^2 = 5st$ $u = \pm\sqrt{5st}$ | $\frac{(2x-3)(x-2)}{(x-2)(x+2)}$ | $=\frac{(2x-3)}{(x+2)}$ | $\frac{x=\frac{1}{3x-5}}{3x^2-5x=1}$ | $3x^{2} - 5x - 1 = 0$ $x = \frac{5 \pm \sqrt{(-5)^{2} - 4(3)(-1)}}{2(3)}$ | $x = \frac{5 \pm \sqrt{37}}{6}$<br>x = 1.85 or x = -0.18 | $50^{2} = 30^{2} + 45^{2} - 2(30)(45)\cos ADB$ $\cos ADB = \frac{50^{2} - 30^{2} - 45^{2}}{50^{2} - 45^{2}}$ | -2(30)(45)<br>$ADB = 80.9^{\circ}$ | Bearing of <i>B</i> from <i>D</i> = 210-80.9<br>= 129.1° | $\angle CDB = 129.0564478^{\circ} - 90^{\circ}$<br>= 39.0564478^{\circ}<br>BC = 30<br>sin 39.0564478^{\circ} = sin 65^{\circ} | $BC = \frac{30 \times \sin 39.0564478^{*}}{\sin 65^{*}}$<br>= 20.856680 |
|                                                                                                                                | 7aii                                                                                                                      | 7b                                                                                     | 8a                              | 86                               |                         | 8c                                   |                                                                           |                                                          | 9a                                                                                                           |                                    | 96                                                       | 90                                                                                                                            |                                                                         |

| 07  | $\frac{13}{100} \times 120 = 18$<br>$\therefore$ Time taken = 213 (213 to 213.5)                                                                        | BI |                                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------|
| 12c | $P(at least   exceed the speed) = \frac{18}{120} \times \frac{102}{119} + \frac{102}{120} \times \frac{18}{119} + \frac{18}{120} \times \frac{17}{119}$ | W  | Alt:<br>= $1 - \frac{102}{120} \times \frac{101}{119}$ |
|     | $=\frac{37}{140}$                                                                                                                                       | ٩I | $=\frac{39}{140}$                                      |
| 124 | Median = 218 s<br>Median of the tour bus are lower than the<br>lorry which means tour bus travel faster in<br>the expressway                            | BI |                                                        |
|     | Interquartile range<br>= 235 - 208<br>= 27                                                                                                              |    | Ve                                                     |
|     | Interquartile range of the tour bus is higher<br>than the lorry which means tour bus speed is<br>less consistent than the lorry.                        | 81 | ,st                                                    |



Calculator Model:

Class: Sec



# KENT RIDGE SECONDARY SCHOOL PRELIMINARY EXAMINATION 2016

### MATHEMATICS PAPER 1

#### 4045/01

# SECONDARY 4 NORMAL (ACADEMIC)

#### Monday 22 August 2016

2 hours

| KENT RDGE SECONDARY SCHOOL KENT RDGE SECONDARY S | KENT RIDGE SECONDARY SCHOOL KENT RIDGE<br>KENT RIDGE SECONDARY SCHOOL KENT RIDGE |                           |                      |                      |                       |                               |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|----------------------|----------------------|-----------------------|-------------------------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KENT RIDGE SECONDARY SCHOOL KENT RIDGE                                           | E SECONDARY SCHOOL KENT R | DGE SECONDARY SCHOOL | KENT RIDGE SECONDARY | SCHOOL KENT RIDGE SEC | ONDARY SCHOOL KENT RIDGE SECO | NDARY SCHOOL |

Name:

# **READ THESE INSTRUCTIONS FIRST**

Write your name, index number and class in the spaces provided at the top of this page.

Do not open this question paper until you are told to do so.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

DO NOT USE staples, paper clips, highlighters, glue, correction fluid or correction tape.

Answer all questions.

Write your answers in the spaces provided on the question paper .

If working is needed for any question it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

The number of marks available is given in the brackets [] at the end of each question or part question.

The total mark for this paper is 80.

| For Exa | aminer's Use |
|---------|--------------|
| Total   | 80           |

This Question Paper consists of 18 printed pages, including this page.

Setter: Ms Genevieve Thong

[Turn over

Compound interest

For

Use

Examiner

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi r l$ Surface area of a sphere =  $4 \pi r^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 

Volume of a sphere =  $\frac{4}{3}\pi r^3$ 

Area of triangle  $ABC = \frac{1}{2}ab\sin C$ 

Arc length =  $r \theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

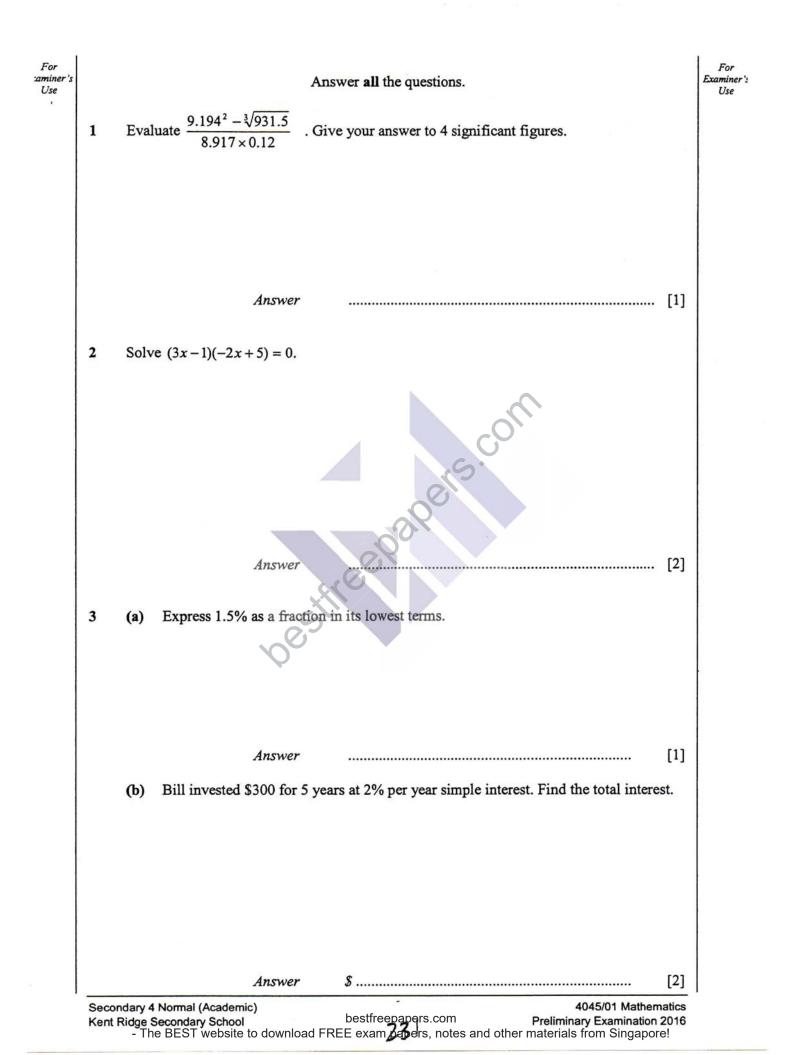
Trigonometry

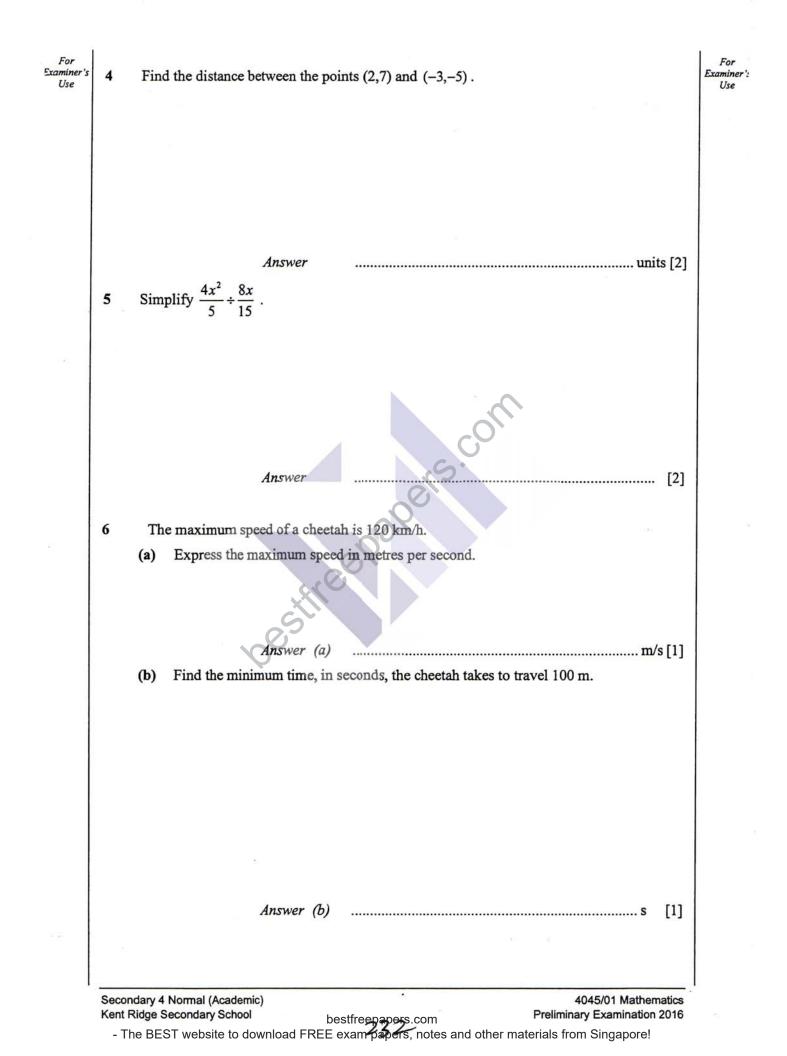
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum f x}{\sum f}$$

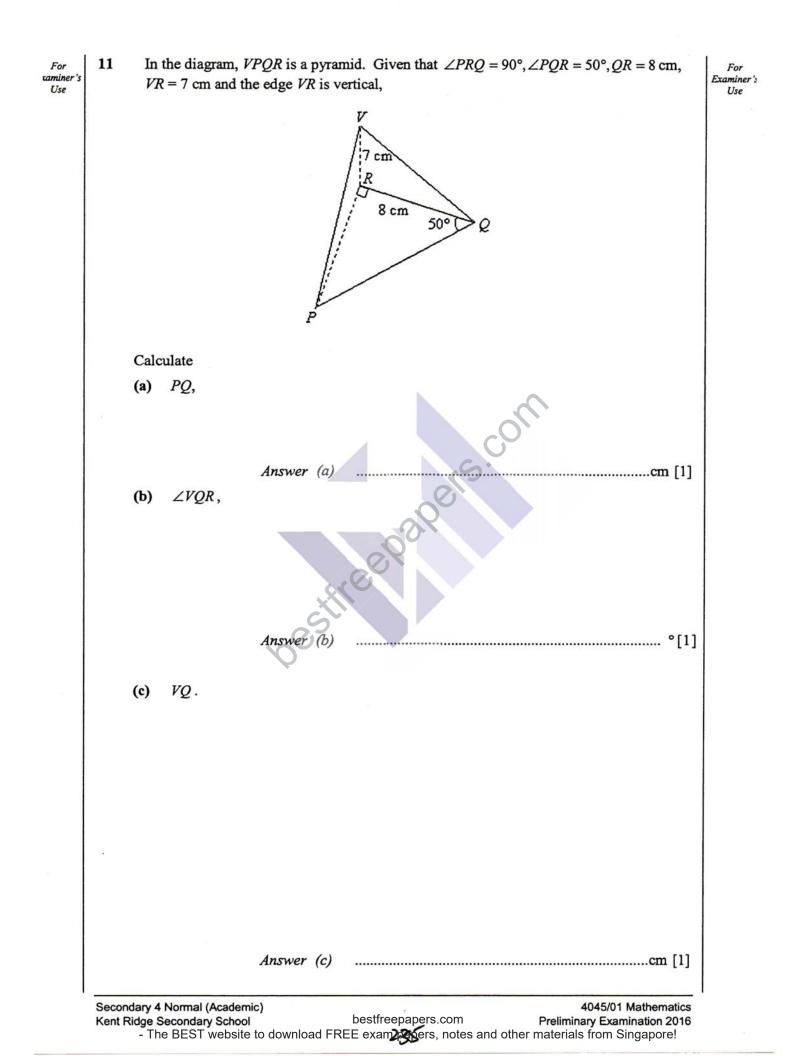
Standard deviation = 
$$\sqrt{\frac{\sum f x^2}{\sum f} - \left(\frac{\sum f x}{\sum f}\right)^2}$$

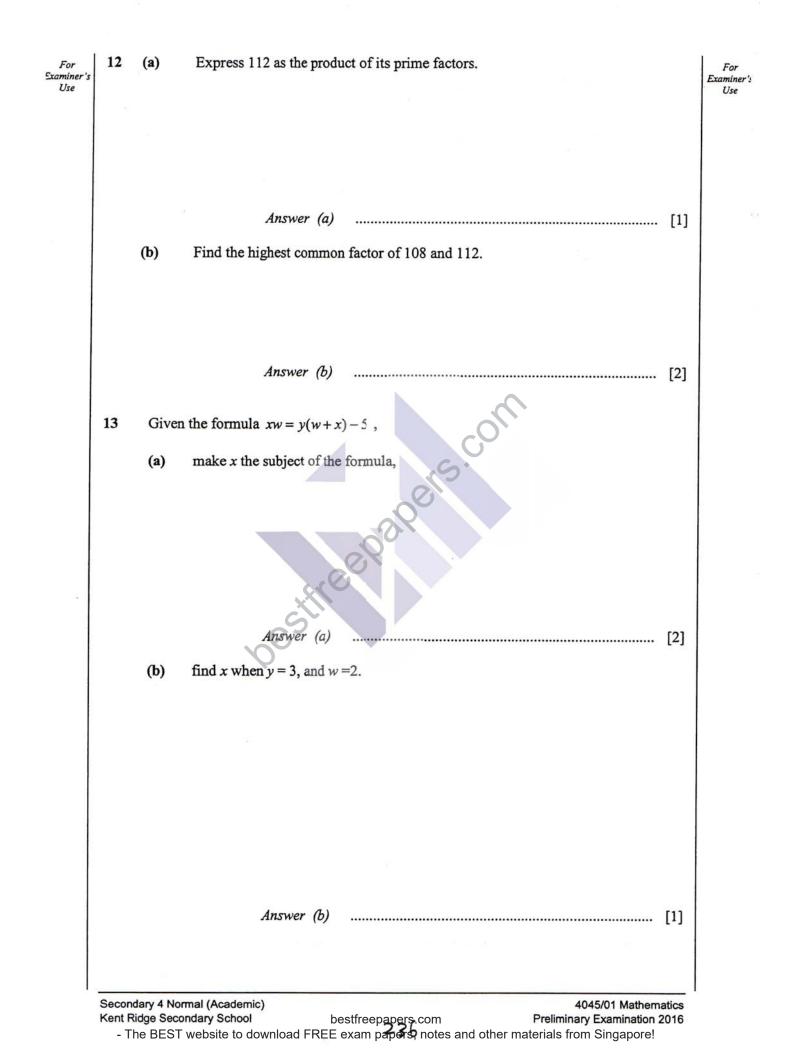

Secondary 4 Normal (Academic) Kent Ridge Secondary School

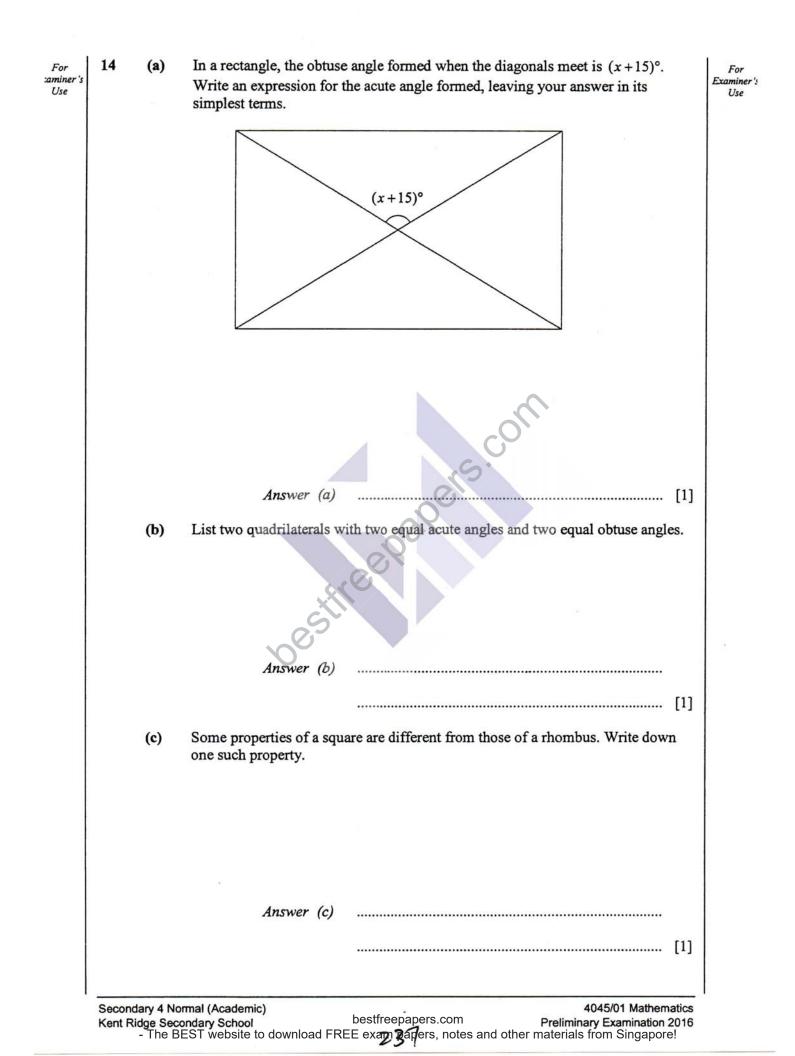

bestfreepapers.com

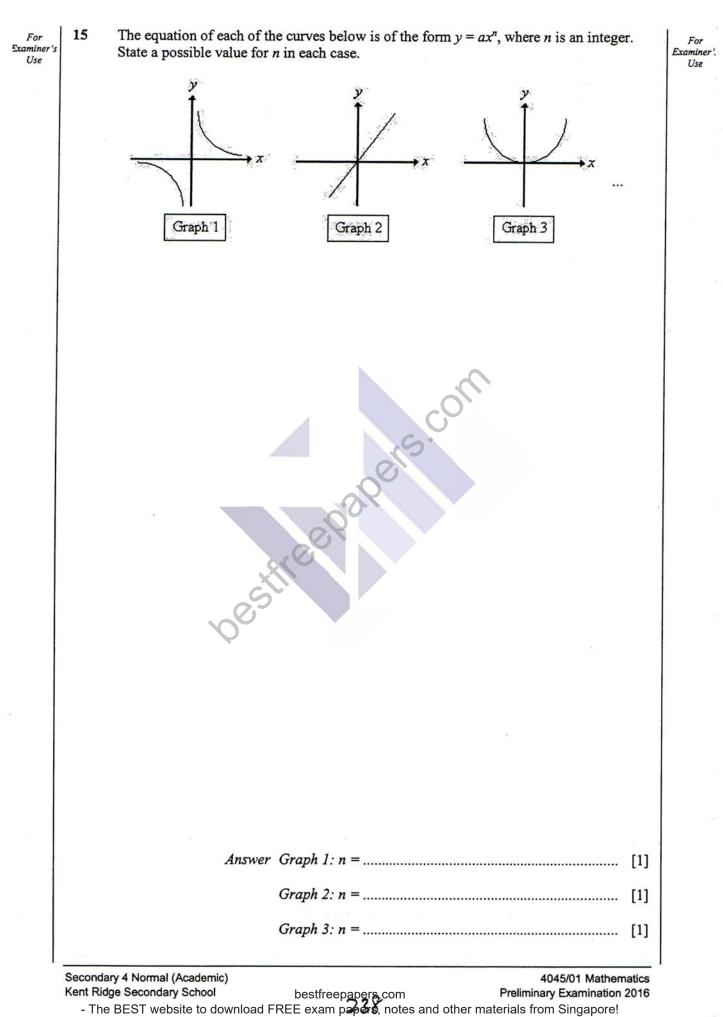
4045/01 Mathematics Preliminary Examination 2016 For

Examiner's

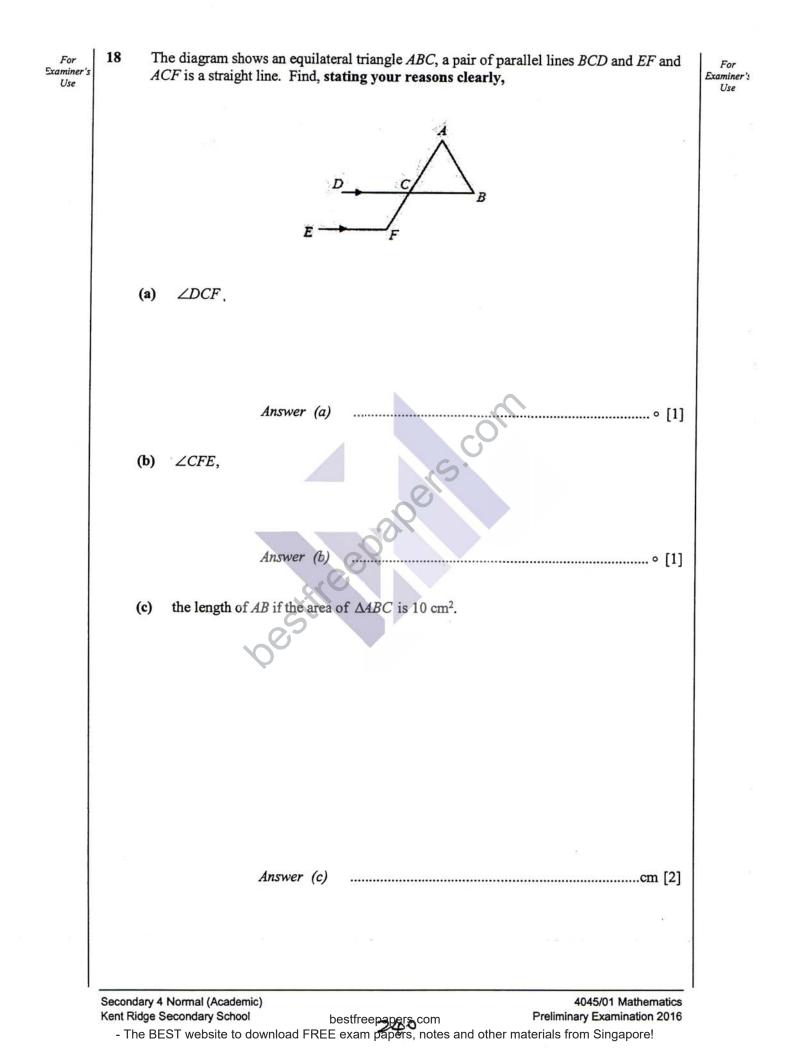

Use

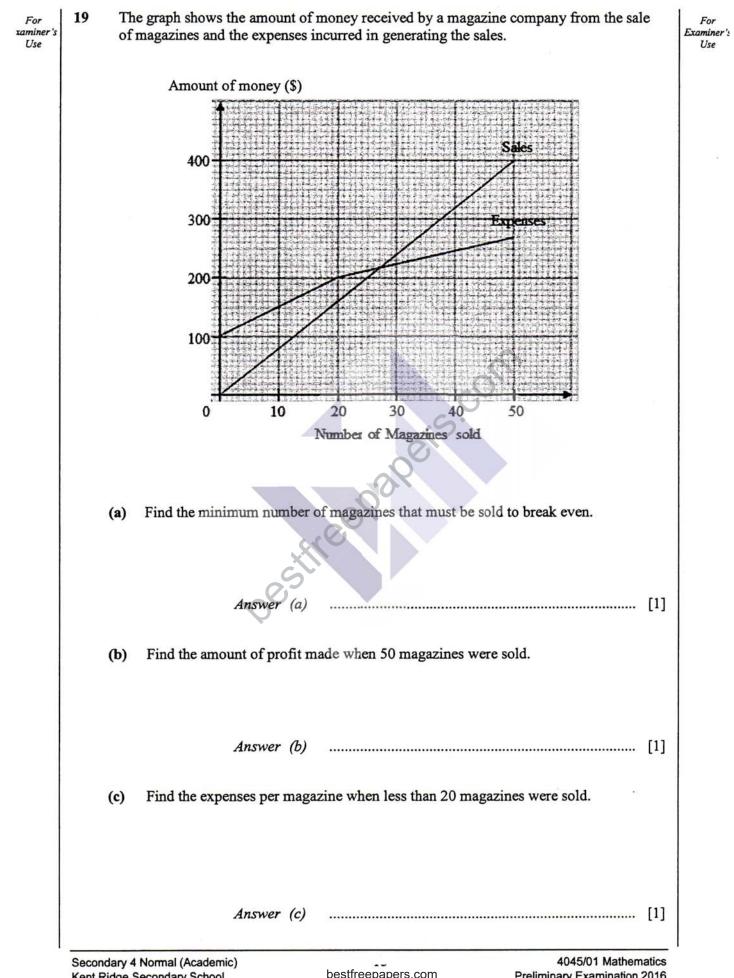




|   | Answer (a)                                                                                                                  | [1]   |
|---|-----------------------------------------------------------------------------------------------------------------------------|-------|
|   | (b) If 4 of the boys can paint the classroom in 8 hours, how many boys will be need<br>paint the same classroom in 2 hours? | ed to |
| 8 | Answer (b)<br>Solve $11x^2 - 15x = 110$ using the quadratic formula, giving your answers correct to 2 decimal places.       | [2]   |
|   | Answer                                                                                                                      | [3]   |

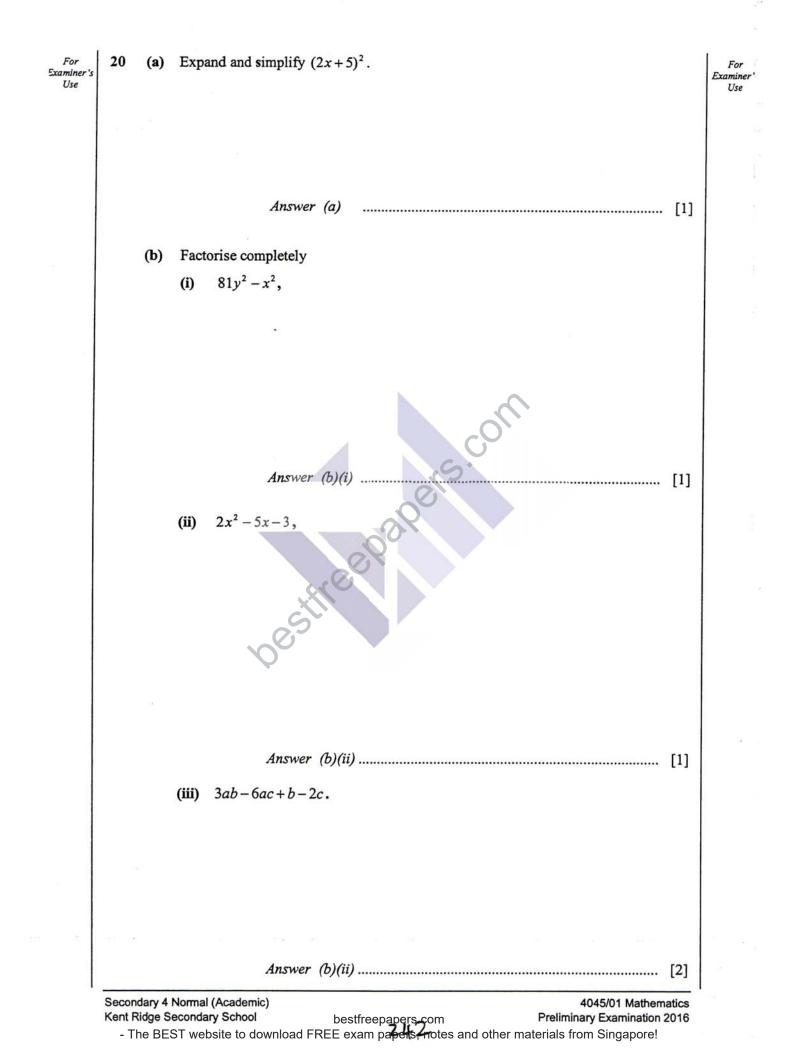
| 9  | Find the smallest integer value of x that satisfies the inequality $3x + 2 > 20$ . |     |
|----|------------------------------------------------------------------------------------|-----|
|    |                                                                                    |     |
|    | Answer                                                                             | [2] |
| 10 | (a) Solve $4^{2x} = 32$ .                                                          |     |
|    | Answer (a)                                                                         | [2] |
|    | (b) Given that $3^{13} \div 27 \times 5^0 = 3^k$ , find k.                         |     |
|    |                                                                                    |     |
|    |                                                                                    |     |
|    |                                                                                    |     |
|    | Answer (b)                                                                         | [2] |









16 Julian buys 12 pears and 2 apples and the total cost is \$10.20. For For aminer's Adam buys 6 pears and 9 apples and the total cost is \$9.90. Examiner's Use Use The cost of Julian's fruits can be shown by the equation 12p + 2a = 1020. Write the cost of Adam's fruits in terms of p and a. (a) Answer (a) ..... [1] Hence solve the simultaneous equations to find the cost of each pear and each (b) apple. A pear costs ... Answer An apple costs 17 A map is drawn to a scale of 1: 20 000. (a) A river is represented by 15 cm on the plan. Find the actual length of the river in meters. [2] Find the area, in square kilometres, of a forest represented by 36 cm<sup>2</sup> on the map. (b) Answer (b) [2] Secondary 4 Normal (Academic) 4045/01 Mathematics dge Secondary School bestfreepapers.com Preliminary Examination 20 - The BEST website to download FREE exam sapers, notes and other materials from Singapore! Kent Ridge Secondary School Preliminary Examination 2016





 Kent Ridge Secondary School
 bestfreepapers.com
 Preliminary Examination 2016

 - The BEST website to download FREE examplers, notes and other materials from Singapore!



For aminer's

Use

21

Mr. Smith's gross annual income was \$74 000 for the year 2011. He has 2 children and his wife is not working. The tax reliefs are shown below:

For Examiner's Use

[2]

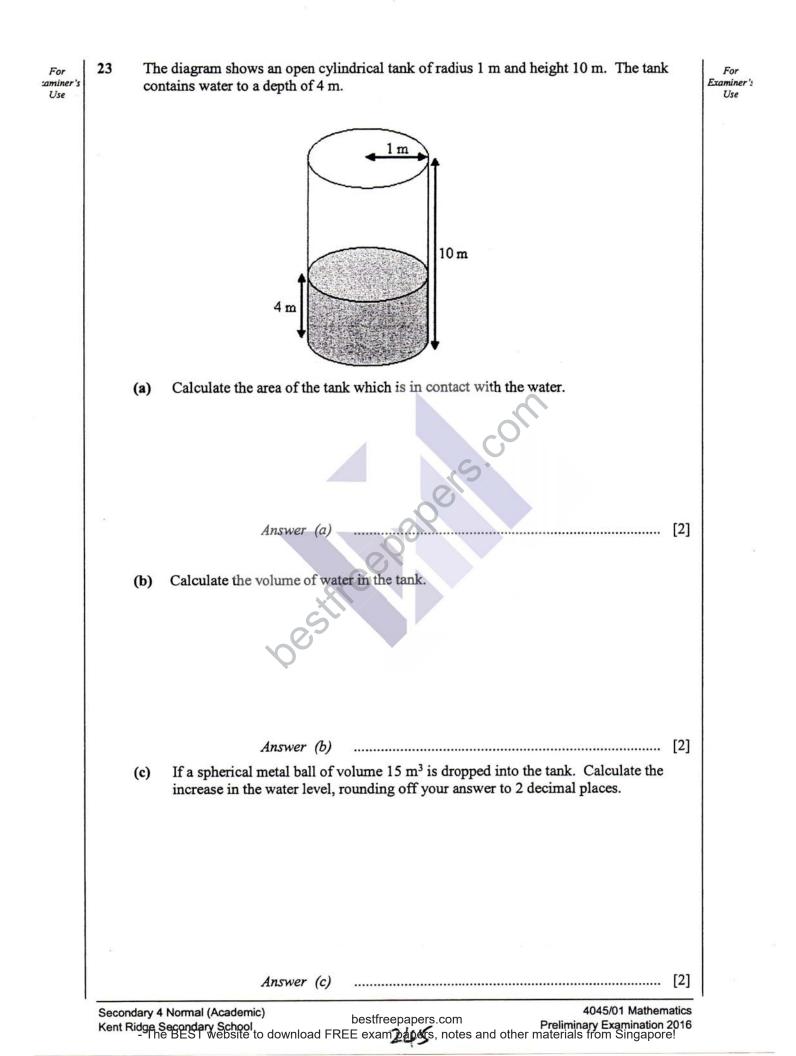
[3]

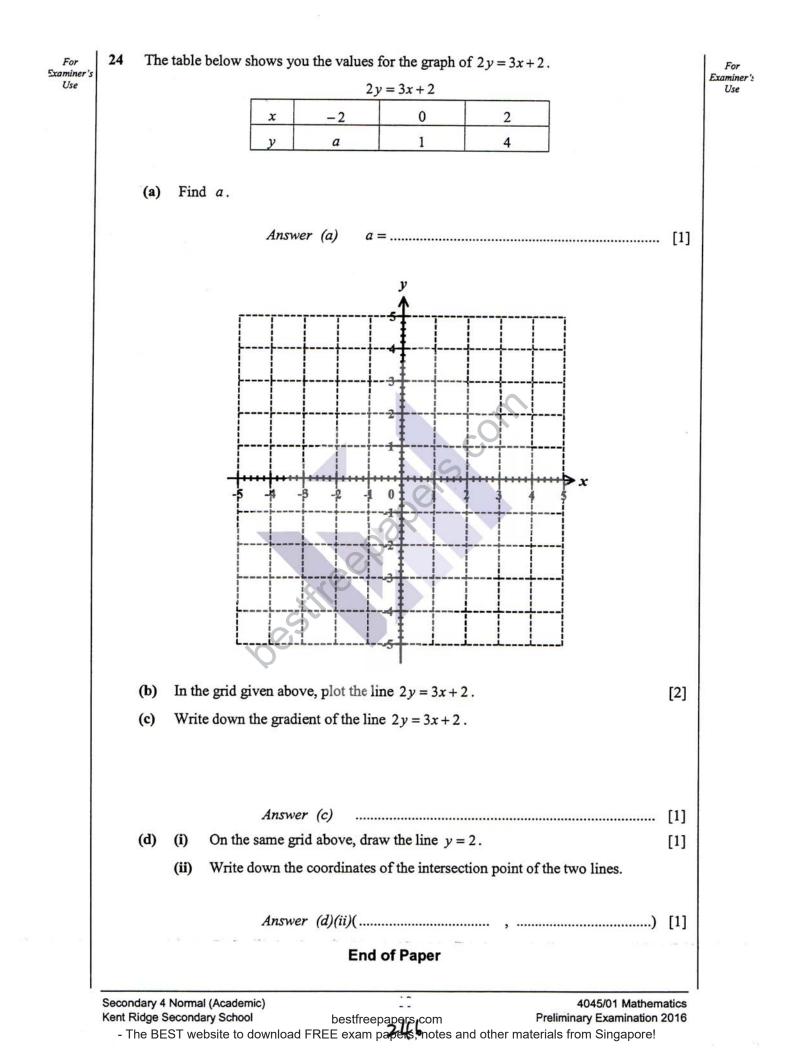
| Tax relief           | Amount      |  |
|----------------------|-------------|--|
| Personal             | \$1500      |  |
| Wife                 | \$2000      |  |
| Children             | \$1250 each |  |
| CPF contribution     | \$14800     |  |
| Donations to charity | \$12000     |  |

An extract of the tax rates from the Inland Revenue Department is shown below.

|                           | Chargeable<br>Income<br>(\$) | Rate (%) | Gross Tax Payable<br>(\$) |
|---------------------------|------------------------------|----------|---------------------------|
| On the first              | 20 000                       |          | 0                         |
| On the next               | 10 000                       | 2.75     | 825                       |
| On the first              | 30 000                       |          | 825                       |
| On the next               | 10 000                       | 3.15     | 315                       |
| On the first              | 40 000                       |          | 1 140                     |
| On the next               | 40 000                       | 4.85     | 1 940                     |
| On the first              | 80 000                       | 7        | 3080                      |
| On the next               | 80 000                       | 15.5     | 12 400                    |
| On the first              | 160 000                      |          | 15 480                    |
| Remaining amount<br>above | 160 000                      | 25.45    |                           |

(a) Calculate the amount of income tax that Mr. Smith has to pay.


\$ ..... Answer (a)


(b) Mr Faz paid \$84 610 for his income tax in 2011. Calculate his chargeable income, for 2011.

Answer (b) \$ .....

. 12

(a)  $x^2 - 4x - 9$  can be written as  $(x + p)^2 + q$ . 22 For For Examiner Examiner's Use Find p and q. Use Answer (a) *p*=..... ..... [2] q =Hence, solve  $x^2 - 4x - 9 = 11$ . (b) Answer (b) Secondary 4 Normal (Academic) 4045/01 Mathematics Kent Ridge Secondary School Preliminary Examination 2016 - The BEST website to download FREE exam papers, notes and other materials from Singapore!





|             |       |                                        |                                   |                                        |                                                     | 800                                                    | 2                                       |                                   |     |                                                                 |   |
|-------------|-------|----------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------------------------|--------------------------------------------------------|-----------------------------------------|-----------------------------------|-----|-----------------------------------------------------------------|---|
| Remarks     |       | BI for each correct answer             |                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                     | M1 for changing to<br>multiplication                   |                                         |                                   |     | Or<br>Paint classroom32 man hours<br>2 hours requires 16 boys   |   |
| rks Awarded | BI    | B2                                     | VI VI                             | MI                                     | MI                                                  | MI                                                     | BI                                      | 81                                | 81  |                                                                 |   |
| u           | 69.87 | $x = \frac{1}{3}$ or $x = \frac{5}{2}$ | $\frac{1.5}{100} = \frac{3}{200}$ | $l = \frac{300(2)(5)}{100} = 530$      | $\sqrt{(7 - (-5))^2 + (2 - (-3))^2}$<br>= 1 3 units | $\frac{4x^2}{5} \times \frac{15}{8x}$ $= \frac{3x}{2}$ | $\frac{120000}{60 \times 60} = 33.3m/s$ | $\frac{100}{33.333}$ = 3 <i>s</i> | 3:2 | $B = \frac{k}{H}$ $4 = \frac{k}{8}$ $k = 32$ $B = \frac{32}{2}$ |   |
| Qn. No.     |       |                                        | æ                                 | ٩                                      |                                                     |                                                        | (a)                                     | (q)                               | (a) | <b>(q</b> )                                                     | _ |
| ð           | -     | 2                                      | 3                                 |                                        | 4                                                   | stfreepaper                                            | 9                                       |                                   | 2   |                                                                 | _ |

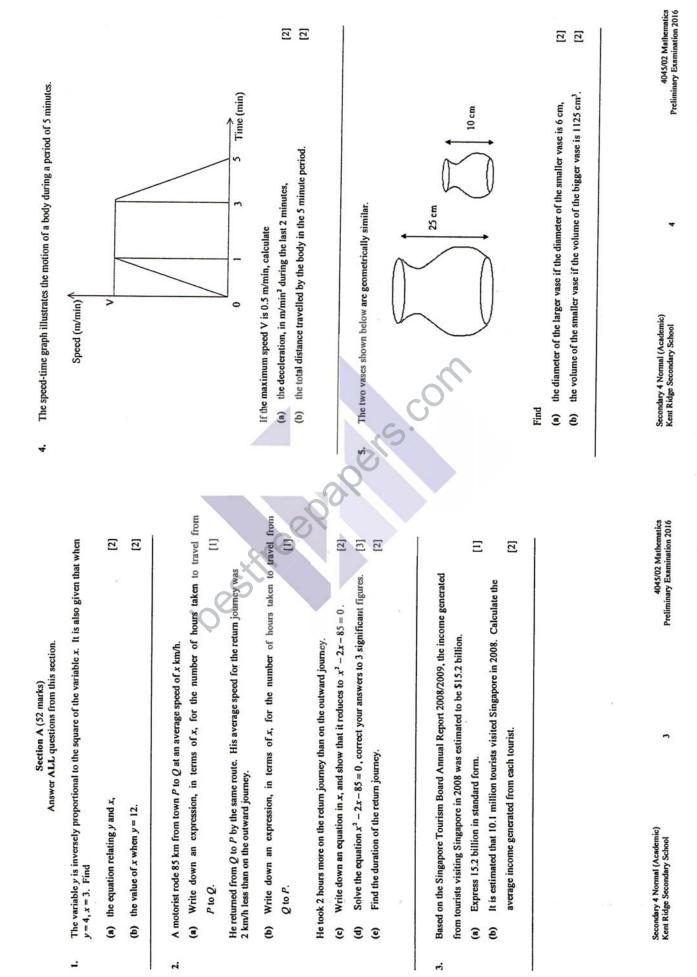
|                                                                    |         |       |                            |                                  |                   | Recognise $5^{0}$ =1 or 27=3 <sup>3</sup> |               |     |                                | 2                      |                                 |                             |                                      |                      | ~                      | 2 24 26<br>27 28 | Ш |                  |              |                   |                          |    |
|--------------------------------------------------------------------|---------|-------|----------------------------|----------------------------------|-------------------|-------------------------------------------|---------------|-----|--------------------------------|------------------------|---------------------------------|-----------------------------|--------------------------------------|----------------------|------------------------|------------------|---|------------------|--------------|-------------------|--------------------------|----|
| MI<br>A2                                                           |         | MI    |                            | IM                               | Ы                 | IW                                        | 71            |     |                                | 14                     |                                 | 2                           | A1                                   | 81                   | IW                     | ٩١               |   |                  | MI for bring | all x terms<br>A1 |                          | A1 |
| $\frac{-(-15)\pm\sqrt{(15)^2-4(11)(-110)}}{2(11)}$<br>= 3.92,-2.55 | 3x > 18 | x > 6 | .: smallest integer x is 7 | 2 <sup>4s</sup> = 2 <sup>5</sup> | $x = \frac{5}{4}$ | 3 <sup>13-3</sup> = 3 <sup>4</sup>        | <i>k</i> = 10 |     | $\cos 50^\circ = \frac{8}{PQ}$ | PQ = 12.45<br>= 12.4cm | $\tan \angle VOR = \frac{7}{2}$ | $\angle VQR = 41.2^{\circ}$ | $VQ = \sqrt{7^2 + 8^2}$ $= 10.63 cm$ | $112 = 2^4 \times 7$ | $108 = 2^2 \times 3^3$ | $HGF = 2^2 = 4$  |   | xw = xy + yw - 5 |              |                   | $x = \frac{3(2)-5}{2-3}$ |    |
|                                                                    |         |       |                            | (a)                              |                   | (q)                                       |               |     | (8)                            |                        | (q)                             |                             | (e)                                  | (a)                  | (p)                    |                  |   | (a)              |              |                   | (q)                      |    |
|                                                                    | 6       |       |                            | 10                               |                   |                                           |               | 400 | 11                             |                        |                                 |                             |                                      | 12                   |                        |                  |   | 13               |              |                   |                          |    |

- The BEST website to download FREE exam **patiens**, notes and other materials from Singapore!

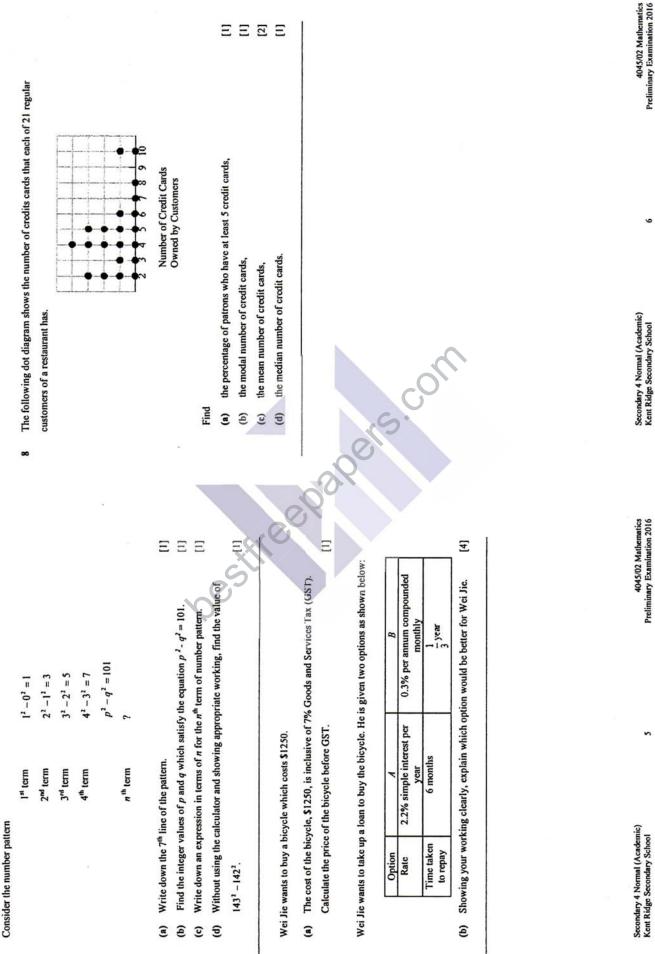
|             |                      |                     |                |             |                                   |                                                                                                                                             | 84610-15480 MI                           | 100<br>25.45 × 69130                                                                                  |                                                                  | Al is awarded only if both p and<br>q are given correctly with the<br>correct signs. |
|-------------|----------------------|---------------------|----------------|-------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| BI          | <b>B</b> I           |                     | V              | A2<br>A7    | MI                                | W IV                                                                                                                                        | W                                        | W IV                                                                                                  | W                                                                | VI                                                                                   |
| 400-270=130 | 200/20= <b>\$</b> 10 | $4x^{2} + 20x + 25$ | (y + x)(y - x) | (2x+1)(x-3) | 3a(b-2c) + l(b-2c) = (b-2c)(3a+1) | Chargeable income<br>= 74000 - 1500 - 2000 - 1250(2)<br>-14800 - 12000<br>= 41200<br>$tax = 1140 + \frac{4.85}{100} \times 1200 = $1198.20$ | Remaining amt<br>84610 – 15480 = \$69130 | Chargeable income<br>$160000 + \frac{100}{25.45} \times 69130$<br>160000 + 271630.65<br>= \$431630.65 | <br>$x^{3} - 4x - 9$<br>= (x - 2) <sup>2</sup> - 4 - 9<br>n = -2 | q=-13                                                                                |
| (q)         | (c)                  | (a)                 | (þi)           | (iid)       | (iiid)                            | (a)                                                                                                                                         | (q)                                      | G                                                                                                     | (a)                                                              |                                                                                      |
|             |                      | 20                  | _              |             |                                   | 21                                                                                                                                          |                                          | 19                                                                                                    | 22                                                               |                                                                                      |

| Diagonals are equal in length for<br>square but not rhombus     Diagonals are equal in length for<br>square but not rhombus       Negative odd number     B1       1     B1       2     B1       3     -(1):       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(12       12     -(13       12     -(13       12     -(12 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

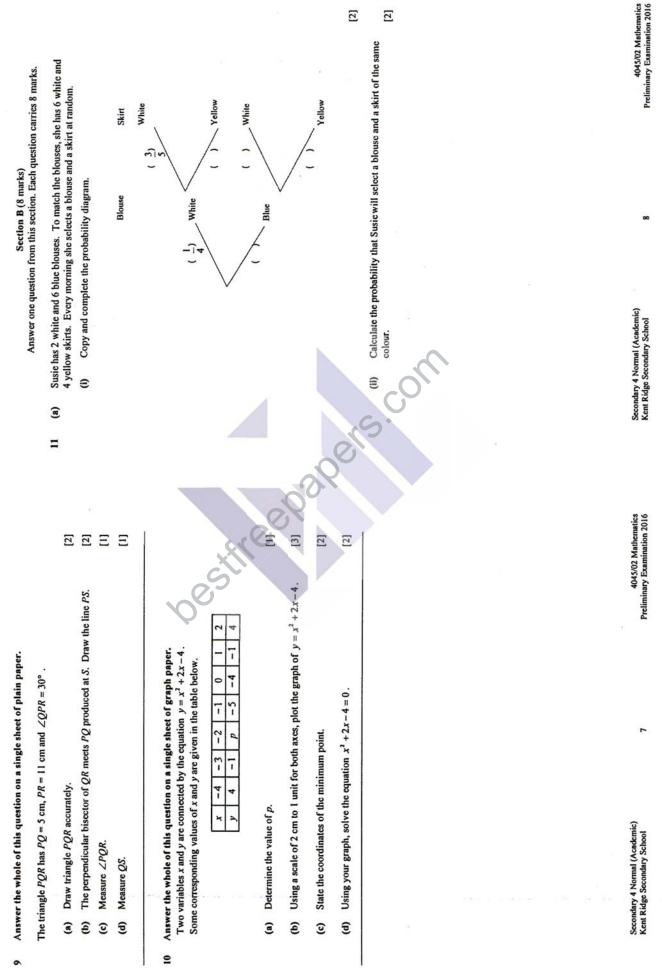

| For x-coordinate accept (0.6-0.8)                                |                                            |     |                           |              |                                      |     |     | 00                                                                                                                                           |                | cor |        |              |     |                             |
|------------------------------------------------------------------|--------------------------------------------|-----|---------------------------|--------------|--------------------------------------|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|--------|--------------|-----|-----------------------------|
| Note : Hence<br>So any other technique will be<br>given 0 marks. | e.c.f                                      |     | For curved Surface        |              | 0                                    | Š   |     |                                                                                                                                              | <u>y=2</u>     | *   | ₩<br>• | <br>         |     | Based on what is seen on QP |
|                                                                  | W                                          | MI  | IW                        | 1            | MI                                   | MI  | IV  | belling                                                                                                                                      |                |     | **-    | <br><u> </u> | 81  | 81                          |
| $x^{2} + 8x - 9$<br>= $(x - 2)^{2} - 13$<br>Solve                | <sup>2</sup> -13 = 11<br><sup>2</sup> = 24 | . 0 | $\pi(1)^2 + \pi(2)(4)(1)$ | $= 28.27m^2$ | $\pi(1)^2(4)$ = 12.566m <sup>3</sup> |     |     | (b) C1 – all points plotted correctly<br>C1 – line drawn joining the points with labelling<br>(d)(i) C1- line drawn correctly with labelling |                |     |        |              |     | (0.67,2) E                  |
| (q)                                                              |                                            |     | (a)                       |              | (q)                                  | (c) | (a) | ହ                                                                                                                                            |                |     |        |              | (c) | d(ii)                       |
|                                                                  |                                            |     | 23                        |              |                                      |     | 24  | hastfragnang                                                                                                                                 | <b>KO 0000</b> |     |        | <br>         |     |                             |

- The BEST website to download FREE exam papers.com

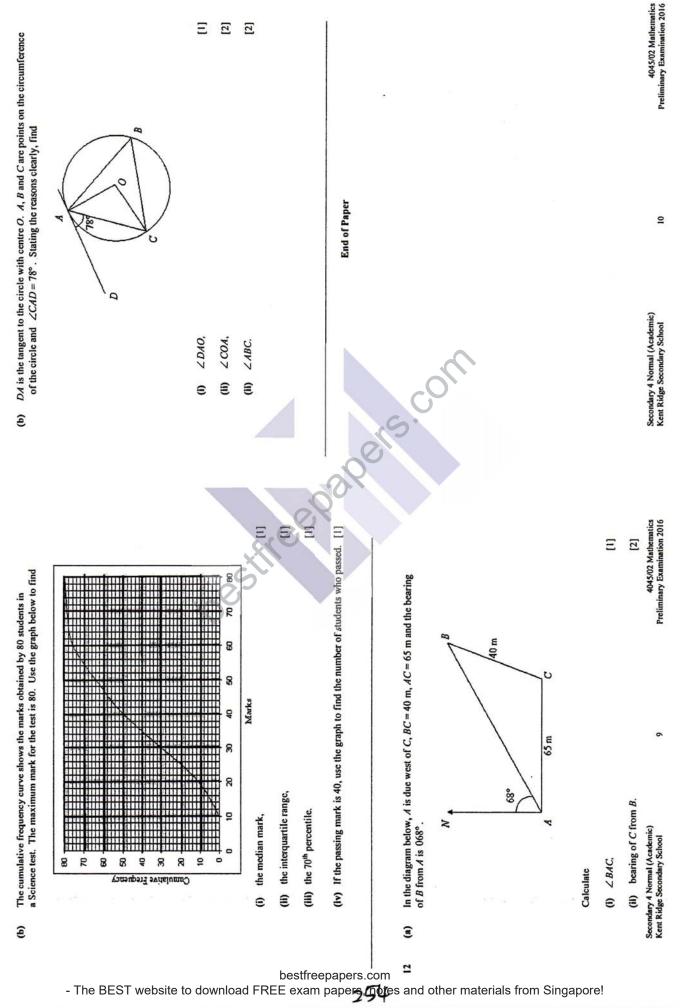

best eepaners. on the second

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians Z Jx Arc length =  $r \theta$ , where  $\theta$  is in radians Curved surface area of a cone =  $\pi r/l$ Area of triangle  $ABC = \frac{1}{2}ab\sin C$ Surface area of a sphere =  $4 \pi r^{2}$ Mathematical Formulae Volume of a cone =  $\frac{1}{2}\pi r^2 h$ Total amount =  $P\left(1 + \frac{r}{100}\right)^n$ Volume of a sphere =  $\frac{4}{3}\pi r^3$  $a^2 = b^2 + c^2 - 2bc\cos A$  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$  $Mean = \frac{\sum f x}{\sum f}$ Standard deviation = 2 Secondary 4 Normal (Academic) Kent Ridge Secondary School Compound interest Trigonometry Mensuration Statistics If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer 09 For Examiner's Use [Turn over 2 hours выт воюс, кат люст весовыту воюс, кат пос выт воюс, кат люст весовыту воюс, кат люс выт воюс, кат люст весовыт воюс, кат люс выт воюс, кат люст весовыту воюс, кат люс 4045/02 **PRELIMINARY EXAMINATION 2016** At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. The total of the marks for the paper is 60. You are expected to use a scientific calculator to evaluate explicit numerical expressions. KENT RIDGE SECONDARY SCHOOL Calculator Model: Total This Question Paper consists of 10 printed pages, including this page. Setter: Ms Genewieve Thong Class: Sec Write your answers and working on the separate pieces of paper provided. o three significant figures. Give answers in degrees to one decimal place Write your name, index number and class on all the work you hand in. You are reminded of the need for clear presentation in your answers. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. REDE RECOM Do not open this question paper until you are told to do so. WARY SCHOOL KENT NIDGE SECONDARY SCHOOL WARY SCHOOL KENT NIDGE SECONDARY SCHOOL MARY SCHOOL KENT NIDGE SECONDARY SCHOOL NEARY SCHOOL KENT NIDGE SECONDARY SCHOOL For  $\pi$ , use either your calculator value or 3.142. SECONDARY 4 NORMAL (ACADEMIC) **READ THESE INSTRUCTIONS FIRST** MATHEMATICS SYLLABUS A Wednesday 17 August 2016 Write in dark blue or black pen. Additional Materials: Graph paper (1 sheet) Answer one question. Section A Answer all questions. Plain paper (1 sheet) Answer papers Name: PAPER 2 Section B

4045/02 Mathematics Preliminary Examination 2016




bestfreepapers.com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

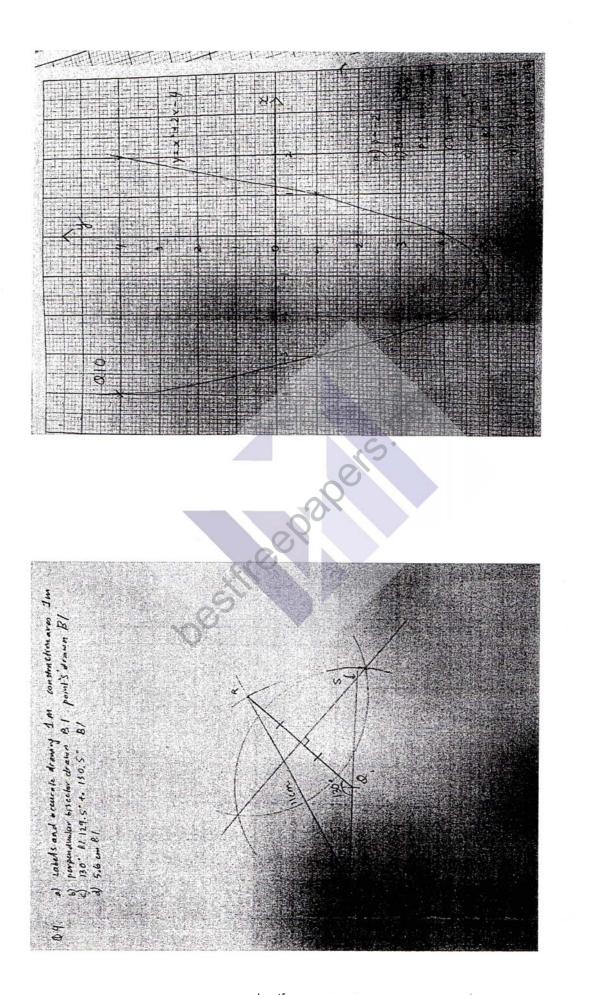



- The BEST website to download FREE exam papers.com

9



bestfreepapers.com - The BEST website to download FREE exam papers notes and other materials from Singapore!




best eepeners.com

|    | 0   | $\frac{1}{2} \times 0.5 + 2 \times 0.5 + \frac{1}{2} (0.5 \times 2)$ | IW           | Or $\frac{1}{2}(5+2)(\frac{1}{2})$    |       |
|----|-----|----------------------------------------------------------------------|--------------|---------------------------------------|-------|
|    |     | 2 2<br>=1.75m                                                        | AI           | Area of trapezium                     | _     |
|    |     |                                                                      |              |                                       |       |
| 5  | 8   | $\frac{10}{2} = \frac{6}{2}$                                         | IW           | Correct                               | ratio |
|    |     | 25 d<br>d = 15cm                                                     | AI           | comparco                              |       |
|    | ٩   | ,10.1 v                                                              | IW           |                                       |       |
|    | _   | $\left(\frac{1}{25}\right)^{-2} = \frac{1125}{1125}$                 |              |                                       |       |
|    |     | v = 72 <i>cm</i> <sup>3</sup>                                        | AI           |                                       |       |
|    |     |                                                                      |              |                                       |       |
|    | (a) | $7^2 - 6^2 = 13$                                                     | VI           |                                       |       |
|    | (q) | p=51; q=50                                                           | AI           |                                       |       |
|    | (c) | $n^2 - (n-1)^2 = 2n - 1$                                             | ٩I           |                                       |       |
|    | (p) | $143^{2} - 142^{2} = (143 + 142)(143 - 142)$                         | AI IA        | No mark if working                    | rking |
|    |     | = 285                                                                |              | not seen.                             |       |
|    |     |                                                                      |              |                                       |       |
| -  | (a) | \$1168.22                                                            | AI           |                                       |       |
|    | (q) | 0.3/2                                                                |              | No mark                               | for   |
|    |     | $(1250)(2.2)(0.5)$ $(1250)(1+\frac{112}{100})^{-1}$                  | MI cliner or | $1250(1+\frac{0.3}{2})^{\frac{1}{2}}$ |       |
|    |     |                                                                      |              | 001                                   |       |
|    |     | = \$13.75 = 1251.25                                                  |              | C7.1C71=                              |       |
|    |     |                                                                      | AI for total |                                       |       |
| 0  |     | \$1263.75                                                            | or interest  |                                       |       |
|    |     |                                                                      | for option B |                                       |       |
|    | C   |                                                                      | Al for total |                                       |       |
|    |     | Dution B                                                             | or interest  |                                       |       |
|    |     | a monda                                                              |              |                                       |       |
|    |     |                                                                      |              |                                       |       |
|    |     | 2                                                                    | A1 final Ans |                                       |       |
|    |     |                                                                      |              |                                       |       |
| 00 |     | 10                                                                   | BI           |                                       |       |
|    | 3   | $\frac{1}{21} \times 100\% = 47.6\%$                                 | ;            |                                       |       |
|    | 4   | 4                                                                    | 81           |                                       |       |
|    | 0   | 2×4+3×2+4×5+5×4+6×2+7+8+10×2                                         | MI           |                                       |       |
|    |     | 21                                                                   |              |                                       |       |
|    |     | = 4.81                                                               | A1           |                                       |       |
|    | -   | P                                                                    | BI           |                                       |       |

| Remarks           | M1 awarded as long as<br>correct k found |               |                      |                       | No A1 for ± missing |                    | BI for each correct | answer<br>Must have units | No.                    | expression                          | Rid of denominator            |                                               | MI working                                              |                          |    |                              |                         | Recognise million 10 <sup>6</sup>                      |    |                   |         |
|-------------------|------------------------------------------|---------------|----------------------|-----------------------|---------------------|--------------------|---------------------|---------------------------|------------------------|-------------------------------------|-------------------------------|-----------------------------------------------|---------------------------------------------------------|--------------------------|----|------------------------------|-------------------------|--------------------------------------------------------|----|-------------------|---------|
| Marks Awarded     |                                          | IM            | AI                   | IM                    | AI                  |                    |                     | BI                        | BI                     | BI                                  | B1                            |                                               |                                                         | A2                       | IW | V                            | BI                      | MI ccf                                                 | VI | IW                |         |
| Solution Solution | $4 = \frac{k}{3^2}$                      | <i>k</i> = 36 | $y = \frac{36}{x^3}$ | $12 = \frac{36}{x^3}$ | $x = \pm\sqrt{3}$   | x = 1.73 or - 1.73 | 85<br>— hours       | ×                         | $\frac{85}{x-2}$ hours | $\frac{85}{x-2} - \frac{85}{x} = 2$ | 85x - 85(x - 2) = 2(x - 2)(x) | $0 = 2x^{2} - 4x - 170$ $0 = x^{2} - 2x - 85$ | $x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-85)}}{2^{2}}$ | = 10.27<br>= 10.3, -8.27 |    | 10.27 - 2 10.27 =<br>= 10.3h | 1:52 × 10 <sup>10</sup> | $\frac{15.2 \times 10^9}{101 \times 10^6} = \$1504.95$ |    | <u>0-0.5</u><br>2 | = -0.25 |
|                   |                                          |               |                      | 1                     |                     |                    |                     |                           |                        |                                     |                               |                                               |                                                         |                          |    |                              |                         | A                                                      |    |                   |         |

- The BEST website to download FREE exam papers, otes and other materials from Singapore!



bestfreepapers com - The BEST website to download FREE exam papers, notes and other materials from Singapore!

|                                                                                     |                                                 | C | 2        |                                                |             |                        | 5.                                               | S              |                                                      |                                  |                                   |                                                                               |
|-------------------------------------------------------------------------------------|-------------------------------------------------|---|----------|------------------------------------------------|-------------|------------------------|--------------------------------------------------|----------------|------------------------------------------------------|----------------------------------|-----------------------------------|-------------------------------------------------------------------------------|
| bestir                                                                              | multiplication                                  |   |          |                                                |             |                        | 360°-(112+37.498)°                               |                |                                                      |                                  |                                   |                                                                               |
|                                                                                     | MI                                              |   | BI       | BI                                             | 81          | BI                     | IW                                               |                | AI                                                   | 81                               | MI<br>AI                          | MI                                                                            |
| blouse skirt<br>$\frac{3}{5}$ white<br>$\frac{3}{5}$ yellow<br>$\frac{3}{5}$ yellow | $\frac{1}{4} \times \frac{3}{5} = \frac{3}{20}$ |   | 35 marks | 4/-2.3=22 marks of 40-2.3=21 marks<br>44 marks | 30 students | ZBAC = 90° - 68° = 22° | $\frac{\sin ABC}{65} = \frac{\sin 22^\circ}{40}$ | ZABC = 37,498° | <i>bearing</i> = 360°-(180°-68°)-37.498°<br>= 210.5° | 90° tangent perpendicular to rad | COA = 180° - 2(90 - 78)<br>= 156° | $\angle ABC = 156/2 = 78^{\circ}$ (angle at centre= 2 angle at circumference) |
|                                                                                     | (aii)                                           |   | (pi)     | hiii                                           | biv         | (ai)                   | (aii)                                            |                |                                                      | (id)                             | (iid)                             | (jiiid)                                                                       |
| =                                                                                   | estfr                                           |   | =        | Der                                            |             | 12                     |                                                  |                |                                                      | 12                               |                                   |                                                                               |

- The BEST website to download FREE exam papers notes and other materials from Singapore!



R