Candidate's Name	Class	Register Number	

BALESTIER HILL SECONDARY SCHOOL PRELIMINARY EXAMINATION 2016 SECONDARY 4 NORMAL ACADEMIC

ADDITIONAL MATHEMATICS PAPER 1

4044/01

Thursday

4 August

1 hour 45 minutes

Additional materials: Writing paper (5 sheets)

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 70.

For Examiner's Use

/70

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
, $a \ne 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$b^2 + \ldots + \binom{n}{r} a^{n-r} b^r + \ldots + b^n$$

where n is a positive integer and
$$\binom{n}{r} = \frac{n!}{(n-r)! r!} = \frac{n(n-1)...(n-r+1)}{r!}$$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for AABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

$$a^2 = b^2 + c^2 - 2bc \cos A.$$

$$\Delta = \frac{1}{2} ab \sin C.$$

- Find the range of values of x for which (2x-1)(x+4) < 18.
- 2(a) Express the principle values of the following in terms of π .
 - [1]
 - [1]
- (b) State the range of values of x for which $\cos^{-1} x$ and $\sin^{-1} x$ are defined. [1]
- The equation of a curve is given by $y = 2x + \frac{9}{x^2}$. A point (x, y) moves along the curve in such a way that the x-coordinate is increasing at a constant rate of 0.08 units per second. Find the corresponding rate of change of the y-coordinate at the instant when x = 4.
- Find the value of y for which $\frac{25}{5^{y+1}} = \sqrt{5^{y-2}}$.
- Given that $f(x) = (2x+1)^7 x^3$, find the value of f'(2).
- It is given that the curve $y^2 = kx$, where k is a constant, passes through the point A(6,3).
 - Find the value of k.
 - [1]

The points $B(2\frac{2}{3}, 2)$ and $C(2\frac{2}{3}, -2)$ also lie on the curve.

- Sketch the graph, marking the points A, B and C clearly.
- Find the area of the triangle ABC.

[2]

[2]

[3]

- Find the range of values of q for which $2x^2 + qx q$ is always positive.
- Find the range of values of k for which the line y = kx 2 intersect the curve $y = \frac{3x-2}{1-2x}$ at two distinct points. [3]
- In an AC circuit, the current I amperes is modeled by the following sine function $I = 16 \sin 3t$, where t is the time in milliseconds.
 - State the amplitude of the current.
 - Find the time at the first instant when the current is 10 amperes. [3]
 - Sketch the graph of I for the interval $0 \le t \le \pi$. [3]
- The function $f(x) = ax^3 + x^2 + bx 4$ has a factor of x 2 and a stationary value
 - (i) Find the value of a and of b. [5]
 - Hence, factorise f(x) completely. [2]
- The first three terms in the expansion, in ascending powers of x, of $(3+4x^2)^8$ are $a+bx^2+cx^4$. Find the values of a, b and c. [3]
 - The term independent of x in the expansion of $\left(x^3 + \frac{p}{x^2}\right)^{10}$ is 210. Find the value of p where p > 0. [5]

[3]

[1]

Prove the identity $\frac{1}{\cos x} - \frac{\cos x}{1 + \sin x} = \tan x$. [4]

Hence, find all the angles between 0° and 360° for which

$$\frac{1}{\cos 2x} - \frac{\cos 2x}{1 + \sin 2x} = \frac{5}{12}$$
 [4]

Find $\int \frac{1}{(7x+2)^8} dx$. [3]

Given that $y = \frac{2x^2}{3+2x}$, show that the first derivative is $\frac{4x(x+3)}{(3+2x)^2}$ [4]

Hence evaluate $\int_{-2}^{2} \frac{2x(x+3)}{(3+2x)^2} dx.$

END OF PAPER

Solution	<u>s</u>		
1	$(2x-1)(x+4) < 18$ $2x^2 + 8x - x - 4 < 18$		М1
	$2x^{2} + 7x - 22 < 0$ $(2x + 11)(x - 2) < 0$		MI
	-5.5 < x < 2		A1
2(a)(i)	$\frac{\pi}{6}$		BI
2(a)(ii)	$-\frac{\pi}{4}$		BI
2(b)	$-1 \le x \le 1$	-	BI
3.	$y = 2x + \frac{9}{x^2}$		
	$\frac{dy}{dx} = 2 - \frac{18}{x^3}$	1921	М1
	When $x = 4$, $\frac{dy}{dx} = \frac{55}{32}$		
	$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$		
	$= \frac{55}{32} \times 0.08 = \frac{11}{80}$		MI Al
4.	$\frac{25}{5^{y+1}} = \sqrt{5^{y-2}}$		
	$\frac{5^2}{5^{y+1}} = 5^{\frac{y-2}{2}}$		МІ
ů.	$5^{y-1} = 5^{\frac{y-2}{2}}$		МІ
	$1 - y = \frac{y - 2}{2}$		MI
	$y=1\frac{1}{3}$	\	Al
5.	$f(x) = (2x+1)^7 x^3$		
	$f'(x) = 3x^2(2x+1)^7 + 7x^3(2x+1)^6(2)$		MI MI MI
	$=x^2(2x+1)^6(20x+3)$		MI
	f'(2) = 2687500		Al
6(i)	$y^2 = kx$		•

BHSS 4N AM Prelim Examinations 2016

	At $A(6, 3)$, $3^2 = 6k$	- [
	$k=1\frac{1}{2}$	[B1]
6(ii)	[B1] Shape [B1] Points marked correctly	
6(iii)	Area of $\triangle ABC = \frac{1}{2} \left(4 \left(6 - 2\frac{2}{3}\right)\right)$	[M1]
	$= 6\frac{2}{3} \text{ units}^2$	[A1]
7(a)	For $2x^2 + qx - q$ to be always positive,	
	$b^2 - 4ac < 0$	[M1]
	$q^2 - 4(2)(-q) < 0$	
	$q^2 + 8q < 0$	[M1]
	-8 < q < 0	[A1]
7(b)	$y = \frac{3x - 2}{1 - 2x} \text{ and } y = kx - 2$	
	$\Rightarrow kx - 2 = \frac{3x - 2}{1 - 2x}$	[M1]
	(kx-2)(1-2x) = 3x-2	,
	$2kx^2 - kx - x = 0$	
	Since line intersects curve at 2 distinct points,	[M1]
	$b^2 - 4ac > 0$	[MI]
	$(-k-1)^2 > 0$	
	k > -1 or $k < -1$	[A1]
8(i)	16	[B1]
8(ii)	$16 \sin 3t = 10$	
	$\sin 3t = \frac{5}{8}$	[MI]
	$\alpha = 0.675$	[M1]
	3t = 0.675	[141]
	t = 0.225 ms	[A1]
(iii)	[B1] correct shape	
	[B1] correct max and min value	u a
	[B1] correct x intercepts	

9(i)	$f(x) = ax^3 + x^2 + bx - 4$	
	f(2) = 0	
	$a(2^3) + 2^2 + 2b - 4 = 0$	
	4a + b = 0 (1)	[M1]
	$f'(x) = 3ax^2 + 2x + b$	[MI]
	f'(1)=0	885 0 88
	3a + 2 + b = 0 (2)	[M1]
	Using substitution method,	
	a = 2, b = -8	[A1, A1]
9(ii)	$f(x) = 2x^3 + x^2 - 8x - 4$	
	$= (x-2)(2x^2 + 5x + 2)$	[M1]
	=(x-2)(2x+1)(x+2)	[A1]
10(a)	$(3+4x^2)^8 = a+bx^2+cx^4$	
C	a = 6561, b = 69984, c = 326592	[B1, B1, B1]
10(b)	$\left(x^3 + \frac{p}{x^2}\right)^{10}$	
	$T_{r+1} = {10 \choose r} (x^3)^{10-r} \left(\frac{p}{x^2}\right)^r$	[M1]
	$= \binom{10}{r} x^{30-5r} p^r$	[M1]
	For term independent of x ,	
	30 - 5r = 0	[M1]
	r = 6	[M1]
	$\binom{10}{6}p^6 = 210$	
	$210 p^6 = 210$	
	p = 1 since $p > 0$	[A1]
l(i)	$LHS = \frac{1}{\cos x} - \frac{\cos x}{1 + \sin x}$	
	$= \frac{1 + \sin x - \cos^2 x}{\cos x (1 + \sin x)}$	[M1]
	$=\frac{\sin^2 x + \sin x}{\cos x (1 + \sin x)}$	25
	COS X(1 + SIII X)	[M1]

BHSS 4N AM Prelim Examinations 2016

4044/01

BHSS 4N AM Prelim Examinations 2016

4044/01

	$= \frac{\sin x(\sin x + 1)}{\cos x(1 + \sin x)}$ $= \frac{\sin x}{\cos x}$	[M1]
	$= \cos x$ $= \tan x = \text{RHS}$	[A1]·
11(ii)	$\frac{1}{\cos 2x} - \frac{\cos 2x}{1 + \sin 2x} = \frac{5}{12}$	
14	$\tan 2x = \frac{5}{12}$ $\alpha = 22.6^{\circ}$	[M1] [M1]
	$2x = 22.6^{\circ}, 202.6^{\circ}, 382.6^{\circ}, 562.6^{\circ}$	
H	x = 11.3°, 101.3°, 191.3°, 281.3°	[A1, A1]
12(a)	$\int \frac{1}{(7x+2)^8} dx = \int (7x+2)^{-8} dx$	
	$=\frac{(7x+2)^{-7}}{7(-7)}+C$	[M1, M1]
	$= -\frac{1}{49(7x+2)^7} + C$	[A1]
12(b)(i)	$y = \frac{2x^2}{3 + 2x}$	
	$\frac{dy}{dx} = \frac{(3+2x)(4x)-2x^2(2)}{(3+2x)^2}$	[M1, M1]
	$=\frac{4x^2+12x}{(3+2x)^2}$	[M1]
	$= \frac{4x(x+3)}{(3+2x)^2}$	[A1]
12(b)(ii)	$\int_{-2}^{2} \frac{4x(x+3)}{(3+2x)^{2}} dx = \left[\frac{2x^{2}}{3+2x} \right]_{-2}^{2}$	
	$\frac{1}{2} \int_{-2}^{2} \frac{4x(x+3)}{(3+2x)^{2}} dx = \frac{1}{2} \left[\frac{8}{7} - \frac{8}{-1} \right]$	[M1, M1]
	$\int_{-2}^{2} \frac{2x(x+3)}{(3+2x)^2} dx = \frac{1}{2} \left(\frac{64}{7} \right) = 4\frac{4}{7}$	[M1, A1]

Candidate's Name	Class	Register Number
7		

BALESTIER HILL SECONDARY SCHOOL PRELIMINARY EXAMINATION 2016 SECONDARY 4 NORMAL ACADEMIC

ADDITIONAL MATHEMATICS PAPER 2

4044/02

Friday

6

12 August

1 hour 45 minutes

Additional materials: Writing paper (5 sheets)

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 70.

For Examiner's Use

/70

This paper consists of 5 printed pages, including this cover page.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
, $a \ne 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{r} a^{n-r} b^{r} + \dots + b^{n},$$

where n is a positive integer and
$$\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)...(n-r+1)}{r!}$$
.

2. TRIGONOMETRY

Identitie

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

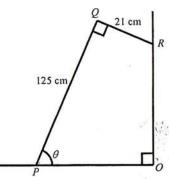
Formulae for AABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

$$a^2 = b^2 + c^2 - 2bc \cos A.$$

$$\Delta = \frac{1}{2} ab \sin C.$$

- Given that $2x^4 + x^2 + x + 1 = (x^2 1)(Ax^2 + 3) + Bx + C$, find the values of A, B and C. Hence, find the remainder when 20 111 is divided by 99 by assigning a suitable value to x.
- Solve, for angles between 0 and 2π ,


$$\cos 2x - 3\cos x = 1 \tag{5}$$

[5]

- A rectangular box has a square base of side $(3+2\sqrt{5})$ cm. Find its height in the [5] form of $a + b\sqrt{5}$ if the volume is $(93 + 51\sqrt{5})$ cm³.
- Solve the equation $2^{2x+1} 3(2^{x+1}) 8 = 0$
- Given that the roots of $2x^2 8x + 13 = 0$ are α and β ,
 - evaluate $\alpha^2 + \beta^2$.
 - hence find the quadratic equation whose roots are $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.
 - A curve for which $\frac{dy}{dx} = \frac{k}{x^2} x$, where k is a constant, has a stationary point at

$$(3, -8\frac{1}{2}).$$

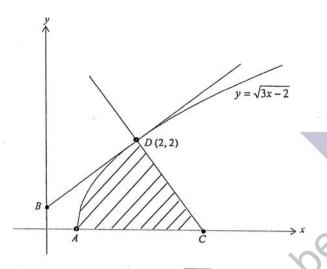
- Find the value of k.
- Find the equation of the curve. (ii)
- Determine the nature of the turning point $(3, -8\frac{1}{2})$. [2]

The following figure shows a machining tool PQR leaning against a vertical wall OR. It is given that QR = 21 cm, PQ = 125 cm, $\angle PQR = \angle POR = 90^{\circ}$. OP is the distance between the foot of the wall and the support of the machining tool, and it is such that $OP = 21 \sin \theta + 125 \cos \theta$.

Express OP in the form R sin $(\theta + \alpha)$, where R > 0 and α is an acute [3]

Hence

- state the greatest distance between the foot of the wall and the support of the tool and find the corresponding value of θ , [3]
- [2] find the value of θ when OP = 100 cm.
- The equation of a circle C is $x^2 + y^2 + 4x 6y + 4 = 0$
 - Find the radius of the circle and the coordinates of the centre of C. [4]
 - [3] Explain why C touches the x-axis.
 - Find the equation of another circle which is a reflection of C in the line


$$y = -1. [2]$$

[2]

[3]

- A closed cylindrical can of negligible thickness, radius r cm and height h cm, is to be constructed to hold a liquid of 350π cm³. The cost is least if the cans have the smallest possible surface area.
 - (i) Express h in terms of r and show that the total surface area of the cylindrical can is $A = 2\pi r^2 + \frac{700\pi}{r}$.
 - (ii) Given that r can vary, find the dimensions of the can (i.e. r and h) when the surface area is the least.
 - (iii) The material used to manufacture the can cost \$0.05 per 1000 cm². Find the value of A when the cost is the least, and hence find the minimum cost of producing 1000 cans.

10

The diagram shows part of the curve $y = \sqrt{3x-2}$, intersecting the x-axis at A. The tangent and normal to the point at D(2, 2) cut the y-axis at B and x-axis at C

(i) Find the coordinates of A. [1]

(ii) Find the equation of the line CD. [3]

(iii) Find the coordinates of C. [1]

(iv) Find the area of the shaded region. [5]

END OF PAPER

BHSS 4N AM Prelim Examinations 2016

respectively.

4044/02

[3]

[4]

[3]

Solutions

1	$2x^4 + x^2 + x + 1 = (x^2 - 1)(Ax^2 + 3) + Bx + C$	T
	A = 2, B = 1, C = 4	[B1, B1, B1]
	A - 2, B - 1, C - 4	[61, 61, 61]
	$2x^4 + x^2 + x + 1 = (x^2 - 1)(2x^2 + 3) + x + C$	(8)
	$2(10^4) + 10^2 + 10 + 1 = 20111$	
	$\Rightarrow x = 10$	[MI].
	Hence, remainder = $10 + 4 = 14$	[A1]
2	$\cos 2x - 3\cos x = 1$	
	$2\cos^2 x - 1 - 3\cos x = 1$	[MI]
	$2\cos^2 x - 3\cos x - 2 = 0$	
	$(\cos x - 2)(2\cos x + 1) = 0$	[M1]
	$\cos x = 2 \Rightarrow \text{ no solution}$	[A1]
	$\cos x = -\frac{1}{2}$	
2	2	
	$\alpha = \frac{\pi}{3}$	[M1]
	$x = \frac{2\pi}{3}, \frac{4\pi}{3}$	[A1]
3	Height	
	$=\frac{93+51\sqrt{5}}{(3+2\sqrt{5})^2}$	
	$-\frac{1}{(3+2\sqrt{5})^2}$	[M1]
	$=\frac{93+51\sqrt{5}}{29+12\sqrt{5}}$	
	27.12.43	[M1]
	$=\frac{(93+51\sqrt{5})(29-12\sqrt{5})}{29^2-(12\sqrt{5})^2}$	
	$-\frac{29^2-(12\sqrt{5})^2}{}$	[M1]
	$=\frac{-363+363\sqrt{5}}{121}$	100000
	121	[M1]
	$=-3+3\sqrt{5}$	[A1]
- 721	$2^{2x+1} - 3(2^{x+1}) - 8 = 0$	
	$2^{2x} \times 2 - 3(2^x \times 2) - 8 = 0$	[M1]
	Let $u = 2^x$.	
	$2u^2 - 6u - 8 = 0$	[M1]

BHSS 4N AM Prelim Examinations 2016

4044/02

	(u-4)(u+1)=0	[M1]
	u = 4 or -1	
	$2^x = -1 \implies$ no solution	[A1]
a e	$2^x = 4 \implies x = 2$	[A1]
5(i)	$2x^2 - 8x + 13 = 0$	
	$\alpha + \beta = 4; \ \alpha\beta = \frac{13}{2}$	[M1]
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	[M1]
	= 3	[A1]
5(ii)	$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{12}{169}$	[M1]
	$\frac{1}{\alpha^2} \times \frac{1}{\beta^2} = \frac{4}{169}$	[M1]
	Hence, $x^2 - \frac{12}{169}x + \frac{4}{169} = 0$	[A1]
6(i)	$\frac{dy}{dx} = \frac{k}{x^2} - x$	
	When $x = 3$, $\frac{k}{3^2} - 3 = 0$	[B1]
	k = 27	[51]
6(ii)	$\frac{dy}{dx} = \frac{27}{x^2} - x$	
	$y = \int \frac{27}{x^2} - x \mathrm{d}x$	
	$=\frac{27x^{-1}}{-1}-\frac{x^2}{2}+C$	[M1]
	$=-\frac{27}{x}-\frac{x^2}{2}+C$	[M1]
	At $(3, -8\frac{1}{2}), C=5$	
	Hence, $y = -\frac{27}{x} - \frac{x^2}{2} + 5$	[A1]
6(iii)	$\frac{d^2y}{dx^2} = -\frac{54}{x^3} - 1$	[M1]

	8	
1	When $x = 3$, $\frac{d^2y}{dx^2} = -3 < 0$	
	Hence, $(3, -8\frac{1}{2})$ is a maximum point.	[A1]
7(i)	$R = \sqrt{21^2 + 125^2} = \sqrt{16066}$	[M1]
	$\alpha = 80.5^{\circ}$	[M1]
	Hence, $\sqrt{16066} \sin(\theta + 80.5^{\circ})$	[A1]
7(ii)	Greatest distance = 127 cm (3 sf)	[B1]
	$\sin (\theta + 80.5^{\circ}) = 1$	[M1]
	θ + 80.5° = 90°	1
	θ = 9.5°	[A1]
7(iii)	$21\sin\theta + 125\cos\theta = 100$	
(C)	$\sqrt{16066} \sin(\theta + 80.5^*) = 100$	-
	$\sin(\theta + 80.5^*) = \frac{100}{\sqrt{16066}}$	[M1]
	α = 52.1°	
	θ + 80.5° = 52.1° (NA), 127.9°	
	<i>θ</i> = 47. 4°	[A1]
8(i)	$x^2 + y^2 + 4x - 6y + 4 = 0$	
	$x^{2} + 4x + 2^{2} - 2^{2} + y^{2} - 6y + (-3)^{2} - (-3)^{2} + 4 = 0$	[M1, M1]
	$(x+2)^2 + (y-3)^2 = 9$	
-	Hence, centre = $(-2, 3)$, radius = 3	[A1, A1]
B(ii)	When $y = 0$,	[M1]
	$x^2 + 4x + 4 = 0$	-
	x = -2	[MI]
	Since there is only 1 root, C touches the x-axis.	[A1]
B(iii)	New centre = $(-2, -5)$	[M1]
	Hence, $(x+2)^2 + (y+5)^2 = 9$	[A1]
9(i)	$350\pi = \pi r^2 h$	The second
	$h = \frac{350}{r^2}$	[B1]
	$A = 2\pi r^2 + 2\pi r h$	[M1]

BHSS 4N AM Prelim Examinations 2016

	9	
	$= 2\pi r^2 + 2\pi r \left(\frac{350}{r^2}\right)$ $= 2\pi r^2 + \frac{700\pi}{r^2}$	[A1]
9(ii)	$\frac{dA}{dr} = 4\pi r - \frac{700\pi}{r^2}$	[MI]
	$4\pi r - \frac{700\pi}{r^2} = 0$	[M1]
	r = 5.59 cm h = 11.2 cm	[A1]
9(iii)	$A = 590 \text{ cm}^2 (3 \text{ sf})$ $Cost = \frac{589.739 \times 1000}{1000} \times 0.05$	[B1] [M1]
	1000 × 0.05 = \$29.49	[A1]
10(i)	$A=(\frac{2}{3},0)$	[B1]
10(ii)	$\frac{dy}{dx} = \frac{1}{2} (3x - 2)^{-\frac{1}{2}} (3)$ $= \frac{3}{2\sqrt{3x - 2}}$ When $x = 2$, $\frac{dy}{dx} = \frac{3}{4}$	[M1]
	$\Rightarrow m_{CD} = -\frac{4}{3}$	[M1]
	Hence, CD: $y = -\frac{4}{3}x + \frac{14}{3}$	[A1]-
10(iii)	$C = (3\frac{1}{2}, 0)$	[B1]
10(iv)	Area of shaded region $= \int_{\frac{2}{3}}^{2} \sqrt{3x - 2} dx + \frac{1}{2} \left(\frac{3}{2}\right) (2)$	[M1, M1]
	$= \left[\frac{(3x-2)^{\frac{3}{2}}}{3\left(\frac{3}{2}\right)} \right]_{\frac{2}{3}}^{2} + 1.5$	[М1]

$=\frac{16}{9}+1.5$	[M1]
$=3\frac{5}{18} \text{ units}^2$	[A1]

BHSS 4N AM Prelim Examinations 2016

4044/02

BHSS 4N AM Prelim Examinations 2016

4044/02

BBSS/Prelims/2016/Sec 4NA/Add Maths/Paper 1

Bukit Batok Secondary School N Level Preliminary Examination 2016

Secondary 4 Normal Academic

ADDITIONAL MATHEMATICS

4044/01

Paper 1

02 August 2016

1000 - 1145

1 hour 45 minutes

Additional Materials: 8 pieces of writing paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staple, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on the separate answer paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of

angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 70.

Mathematical Formulae 1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where *n* is a positive integer and
$$\binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \frac{n(n-1) \dots (n-r+1)}{r!}$$

2. Trigonometry

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$sec^2 A = 1 + tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

This document consists of 5 printed pages.

Apply your past knowledge to new situations!

Page 2

[3]

[2]

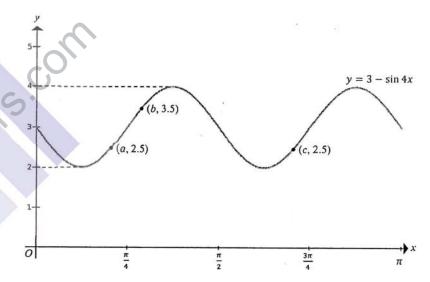
[1]

[2]


[3]

[3]

- Given that $2y = 4x^2 6x 1$, determine the range of values of x for which $y < -1\frac{1}{2}$.
- [3]
- Differentiate $x\sqrt{2x+1}$ with respect to x and show that it reduces to $\frac{3x+1}{\sqrt{2x+1}}$.
 - Hence, find $\int \frac{12x+4}{\sqrt{2x+1}} dx$. [2]
- The carriage of a roller coaster reaches y metres above the ground when it is horizontally x metres away from the starting point, where $y = a \sin 2x + b$ for $0 \le x \le \pi$. The carriage reaches a maximum height of 35 metres and a minimum height of 5 metres above the ground respectively.
 - Calculate the values of a and of b.
 - With reference to (i), determine the maximum height of the carriage if
 - only the value of a is halved.


of the rate of increase of x when x = 4.

- only the value of b is doubled. [1]
- 5 The following rhombus is made up of eight equilateral triangles of side x cm.

- Show that the area of the rhombus, $A \text{ cm}^2$, is given by the equation $A=2\sqrt{3}x^2.$
- Given that A is increasing at a constant rate of $8\sqrt{3}$ cm²/s, calculate the value
- The points $P\left(-\frac{1}{2}, -\frac{1}{2}\right)$, Q(2, 1) and $R\left(\frac{1}{2}, y\right)$ lie on the same Cartesian plane. If angle PQR is a right angle, find the value of y.
 - (ii) Find the area of triangle PQR. [2]

- Expand $(1+3x)(1-x)^6$ as far as the term in x^4 .
 - Hence, by using an appropriate substitution for x, evaluate 1.03×0.99^6 . Give your answer correct to 5 decimal places. [2]
- Using the substitution $u = 8a^3$, or otherwise, express $64a^6 1$ as a product of two factors. [2]
 - Hence, by considering the sums and differences of cubes, express $64a^6 - 1$ as a product of four factors with integer coefficients. [3]

The diagram above shows the graph $y = 3 - \sin 4x$, for $0 \le x \le \pi$, passing through the points (a, 2.5), (b, 4.5) and (c, 2.5), where a, b and c are constants.

- State the amplitude and period of the graph. [2]
- Using the symmetry of the graph, or otherwise, and making a the subject; find an equation connecting
 - a, c and π , [1]
 - a, b and π . [2]
- State the range of values of x, for $0 \le x \le \frac{\pi}{2}$, such that the graph is strictly increasing. [1]

BBSS/Prelims/2016/Sec 4NA/Add Maths/Paper

Find, in radians, the two principal values of θ for which 10

$$5 \tan^2 \theta + 24 \tan \theta - 5 = 0.$$
 [4]

- By using a suitable trigonometric identity, explain why the values of θ found in part (i) satisfy the equation $\tan 2\theta = \frac{5}{12}$. [2]
- The equation of the tangent at the point P(10, -10) on the parabola $y^2 = 10x$ is 2y + x + 10 = 0.
 - Find the equation of the normal to the parabola at P. [2]

The normal to the parabola at A intersects the parabola again at the point B.

- Find the coordinates of B. [3]
- Sketch the parabola and the normal to the parabola at A, clearly marking the points A and B on your sketch. [2]
- The roots of the equation $x^2 6x + 2 = 0$ are α and β .
 - State the value of $\alpha + \beta$ and of $\alpha\beta$.
 - Hence, evaluate $\alpha^2 + \beta^2$. [1]
 - Find a quadratic equation with roots $\frac{1}{\alpha^2} \beta^2$ and $\frac{1}{\beta^2} \alpha^2$. Give your answer in the form $ax^2 + bx + c = 0$ where a, b and c are integers. [5]
- The function f(x) is defined by $f(x) = \frac{1}{3}x^3 + kx$, for all real values of x.
 - Find the range of values of k for which f(x) has no stationary points.
 - If k = -4, (ii)
 - state the number of stationary points, (a)

[1]

[2]

find the coordinates of the stationary points.

[3]

- If f(x) has only one stationary point,
 - state the value(s) of k,

[1]

(b) determine the nature of this stationary point. [2]

- End of Paper -

BBSS Sec 4 NA Additional Mathematics Answer and Marking Scheme

Qn	Solutions		Marks
	$\int \frac{4}{(2x-5)^3} \mathrm{d}x$		
	$= 4 \int (2x - 5)^{-3} dx$		
1	$=4\left[\frac{(2x-5)^{-2}}{-2(2)}\right]+c$		MI MI
	$=-\frac{1}{(2x-5)^2}+c$	10	
	(2x-5)2 T C	N	A1
OH 15111		01 12 1	No. of the last of
	$2y = 4x^2 - 6x - 1$		
	$y = 2x^2 - 3x - \frac{1}{2}$		2.0
			1 m ²⁰
	When $y < -1\frac{1}{2}$,		
2	$2x^2 - 3x - \frac{1}{2} < -1\frac{1}{2}$		мі
	$2x^2 - 3x + 1 < 0$		
	(2x-1)(x-1) < 0		МІ
	$\frac{1}{2} < x < 1$	1983	Al
	. 2		
707	THE A THE TWO A VALUE OF THE PARTY OF THE PA	519 B	graphic gapting
1	$\frac{d}{dx}(x\sqrt{2x+1})$		T
	4.4		
	$=\frac{\mathrm{d}}{\mathrm{d}x}\left[x(2x+1)^{\frac{1}{2}}\right]$		
	$=x\left(\frac{1}{2}\right)(2x+1)^{-\frac{1}{2}}(2)+(2x+1)^{\frac{1}{2}}(1)$		MI .
3i	$= x(2x+1)^{-\frac{1}{2}} + (2x+1)^{\frac{1}{2}}$		
		*)	7/
	$= (2x+1)^{-\frac{1}{2}}(x+2x+1)$		Al
	$= \frac{3x+1}{\sqrt{2x+1}} $ (shown)		
	Control of the Contro		
	$\int \frac{12x+4}{\sqrt{2x+1}} \mathrm{d}x$		
	$=4\int \frac{3x+1}{\sqrt{2x+1}} dx$		ļ.,,
3ii			MI
34	$=4\left[x\sqrt{2x+1}\right]+c$		
	$=4x\sqrt{2x+1}+c$		

Qn	Solutions	NEW TO PROGRESS OF THE BOOK OF	Marks	777-27122-1-12
	EITHER	OR		
	$y = a \sin 2x + b$			
				7
	Max height achieved when $\sin 2x$			
12	= 1			
	35 = a(1) + b	1		
	$35 = a + b \tag{1}$			
	Min height achieved when sin 2x	l .		
	= -1	Difference between max and min		
4(a)	5 = a(-1) + b	is 30 metres,		
4(4)	$5 = -a + b \tag{2}$	Secretaria serioscia.		
	(2)	$a=\frac{30}{2}$		
	(1) + (2)	a = 15	B1	
	40 = 2b	- SAME	100000	
	b = 20	b = 5 ± 30		
		$b = 5 + \frac{30}{2}$ $b = 20$		
	When $b = 20$,	0 = 20	BI	
	35 = a + 20			
	a=15			
		1		allow ECF
Secretary Name of Street	(Maximum height would decrease	by 7.5 m. from 35 m to)		accept answer
4(b)(i)	27.5 m.	o, 115 m, nom 55 m to,	BI	based on 4(a)
	KT-DOWNER			
	have been a material and the control of the control		1	allow ECF
4(b)(ii)	(Maximum height would increase t	by 20 m, from 35 m to)		accept answer
1-/(/	55 m.		BI	based on 4(a)
		with the same of t		
To being		난다면서 하는 가이에 나는 사람들이 되었다.	Firm t	VEHICLE OF THE PARTY OF THE PAR
40,1445	EITHER	OR	7 Min. 1	All burgers
T. Hali	EITHER		7 (4.1)	All services
To haras	EITHER	$h = \sqrt{(2x)^2 - x^2}$	PAGE 1	
Art Falkis		$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$	2000.11	
5(i)	EITHER $A = 8 \left[\frac{1}{2}(x)(x) \sin \left(\frac{\pi}{3} \right) \right]$	$h = \sqrt{(2x)^2 - x^2}$	M1	19.
5(i)	$A = 8 \left[\frac{1}{2}(x)(x) \sin \left(\frac{\pi}{3} \right) \right]$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$	55	19
5(i)	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$	M1 A1	Sili
5(i)	$A = 8 \left[\frac{1}{2}(x)(x) \sin \left(\frac{\pi}{3} \right) \right]$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$	55	esti
5(i)	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $\therefore A = 2\sqrt{3}x^2$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	55	esti
5(i)	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $\therefore A = 2\sqrt{3}x^2$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	55	estil
5(i)	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $\therefore A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dx}{dt} \right]$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	55	estil
5(i)	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $\therefore A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dx}{dt} \right]$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	55	estil
5(i)	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $\therefore A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} \right]$ $\frac{dA}{dt} = 8\sqrt{3} \text{ (given in question)}$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	Al	estil
5(i)	$A = 8 \left[\frac{1}{2} (x)(x) \sin \left(\frac{\pi}{3} \right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2} \right)$ $A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} = 8\sqrt{3} \text{ (given in question)} \right]$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	55	estil
5(i)	$A = 8 \left[\frac{1}{2} (x)(x) \sin \left(\frac{\pi}{3} \right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2} \right)$ $A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} = 8\sqrt{3} \text{ (given in question)} \right]$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	Al	estil
5(i) 5(ii)	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $\therefore A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} \right]$ $\frac{dA}{dx} = 4\sqrt{3}x$ $\frac{dx}{dt} = \frac{8\sqrt{3}}{4\sqrt{3}x}$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	A1	estil
	$A = 8 \left[\frac{1}{2} (x)(x) \sin \left(\frac{\pi}{3} \right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2} \right)$ $A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} = 8\sqrt{3} \text{ (given in question)} \right]$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	Al	estil
	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} \right]$ $\frac{dA}{dt} = 8\sqrt{3} \text{ (given in question)}$ $\frac{dA}{dx} = 4\sqrt{3}x$ $\frac{dx}{dt} = \frac{8\sqrt{3}}{4\sqrt{3}x}$ $\frac{dx}{dt} = \frac{2}{x}$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	A1	estil
	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} \right]$ $\frac{dA}{dt} = 8\sqrt{3} \text{ (given in question)}$ $\frac{dA}{dx} = 4\sqrt{3}x$ $\frac{dx}{dt} = \frac{8\sqrt{3}}{4\sqrt{3}x}$ $\frac{dx}{dt} = \frac{2}{x}$ When $x = 4$,	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	A1	estil
	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} \right]$ $\frac{dA}{dt} = 8\sqrt{3} \text{ (given in question)}$ $\frac{dA}{dx} = 4\sqrt{3}x$ $\frac{dx}{dt} = \frac{8\sqrt{3}}{4\sqrt{3}x}$ $\frac{dx}{dt} = \frac{2}{x}$ When $x = 4$,	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	A1	estil
	$A = 8 \left[\frac{1}{2}(x)(x) \sin\left(\frac{\pi}{3}\right) \right]$ $A = 4x^2 \left(\frac{\sqrt{3}}{2}\right)$ $A = 2\sqrt{3}x^2$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad \left[\therefore \frac{dx}{dt} = \frac{dA}{dt} + \frac{dA}{dt} + \frac{dA}{dt} \right]$ $\frac{dA}{dt} = 8\sqrt{3} \text{ (given in question)}$ $\frac{dA}{dx} = 4\sqrt{3}x$ $\frac{dx}{dt} = \frac{8\sqrt{3}}{4\sqrt{3}x}$ $\frac{dx}{dt} = \frac{2}{x}$	$h = \sqrt{(2x)^2 - x^2}$ $h = \sqrt{3x^2}$ $h = \sqrt{3}x$ $A = 2x(\sqrt{3}x)$ $\therefore A = 2\sqrt{3}x^2$	A1	estil

Qn (Page 3)	Solutions	Marks
_	PQR is a right angle,	Accept other correct
	Gradient $PQ \times \text{gradient } QR = -1$	working steps
	$\frac{1 - \left(-\frac{1}{2}\right)}{2 - \left(-\frac{1}{2}\right)} \times \frac{y - 1}{\frac{1}{2} - 2} = -1$	MI
	3 y-1	
6i	$\frac{1}{5} \times \frac{1}{\frac{3}{2}} = -1$	
	$\frac{3}{5} \times \frac{y-1}{\frac{3}{2}} = -1$ $-\frac{2(y-1)}{3} = -\frac{5}{3}$	мі
		IVII .
	2y - 2 = 5	31305A35a
	$y=3\frac{1}{2}$	Al
\rightarrow	Area of triangle PQR	
	$ 2 \frac{1}{2} - \frac{1}{2} $	
	$=\frac{1}{2} \begin{vmatrix} 2 & \frac{1}{2} & -\frac{1}{2} & 2 \\ 1 & \frac{7}{2} & -\frac{1}{2} & 1 \end{vmatrix}$	MI
	1 2 2 1	
6ii	$= \frac{1}{2} \left[\left(7 - \frac{1}{4} - \frac{1}{2} \right) - \left(\frac{1}{2} - \frac{7}{4} - 1 \right) \right]$	
	$\equiv \frac{1}{2} \left(\frac{17}{2} \right)$	
		200
Cal	$=4\frac{1}{4} \text{ units}^2$	Al
	$(1+3x)(1-x)^6$	
	$= (1+3x)(1-x)^{2}$ $= (1+3x)[1-6x+15x^{2}-20x^{3}+15x^{4}+\cdots]$	мі
	Since we are only required to expand up to the term in x^4 ,	MI
7(i)	(1+3x)(1-x) ⁶	
	$\approx 1(1-6x+15x^2-20x^3+15x^4)+3x(1-6x+15x^2-20x^3)$	MI
	$\approx 1 - 3x - 3x^2 + 25x^3 - 45x^4$	Al
	~ 1 - 3x - 3x + 23x - 43x	Ai .
7	1.03×0.99^{6}	
	$= [1 + 3(0.01)][1 - (0.01)]^6$	
	$\approx 1 - 3(0.01) - 3(0.01)^2 + 25(0.01)^3 - 45(0.01)^4$	MI
77111	≈ 0.96972455	1200000
	= 0.96972 Correct to 5 d.p.	Al
	r a che camana de la composición de la	<u> </u>
T	64a ⁶ - 1	
	$=(8a^3)^2-(1)^2$	
	$=(u)^2-(1)^2$	MI
	$= (8a^3 + 1)(8a^3 - 1)$	AI
	$64a^6 - 1$	
	$= (8a^3 + 1)(8a^3 - 1)$	
- 1	$= [(2a)^3 + 1][(2a)^3 - 1]$	MI
	$= (2a+1)[(2a)^2 - (2a) + 1](2a-1)[(2a)^2 + (2a) + 1]$	MI
	$= (2a+1)(4a^2-2a+1)(2a-1)(4a^2+2a+1)$	Al

Apply your past knowledge to new situations!

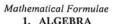
Page 7

Apply your past knowledge to new situations!

Page 8 BBSS/Prelims/2016/Sec 4NA/Add Maths/Paper 1

BBSS/Prelims/2016/Sec 4NA/Add Maths/Paper bestfreepapers.com

The BEST website to download FREE exam papers, notes and other materials from Singapore!


Marks

Qn	Solutions	Marks
	Amplitude: 1	BI
9i	Period: $\frac{\pi}{2}$	Bi
9iia	$c = a + \frac{\pi}{2}$ $a = c - \frac{\pi}{2}$	BI
******	•	
9iib	$\frac{a+b}{2} = \frac{\pi}{4}$ $\alpha + b = \frac{\pi}{2}$ $\alpha = \frac{\pi}{2} - b$	MI
2.500.00	$a = \frac{\pi}{2} - b$	AI
9iii	$\frac{\pi}{8} < x < \frac{3\pi}{8}$	B1
Mar		DECEMBER
	$5\tan^2\theta + 24\tan\theta - 5 = 0$	
	$(5\tan\theta-1)(\tan\theta+5)=0$	MI
	$\tan \theta = \frac{1}{5}$ or $\tan \theta = -5$	MI
10i	$\theta = 0.1973955598$ or $\theta = -1.373400767$	* /
	$\theta = 0.197 \text{ (3 sf)}$ or $\theta = -1.37 \text{ (3 sf)}$	Al Al
	$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$	
	$\frac{5}{12} = \frac{2\tan\theta}{1-\tan^2\theta}$	MI
	$5(1 - \tan^2 \theta) = 12(2 \tan \theta)$	2 22
10ii	$5 - 5 \tan^2 \theta = 24 \tan \theta$	
	$5 \tan^2 \theta + 24 \tan \theta - 5 = 0$	Al
	$\therefore \text{ The values in part (i) satisfy the equation } \tan 2\theta = \frac{5}{12}.$	
	I I	

Qn	Solutions	1 3 1	Marks
	Equation of tangent at $P(10, -10)$:		
	2y + x + 10 = 0		
	$y = -\frac{1}{2}x - 5$		
11i	Gradient of normal = 2		MI
171/7151	Equation of normal at $P(10, -10)$;		1411
	y - (-10) = 2(x - 10)		
	y = (-10) = 2(x - 10) y = 2x - 30		AI
	y = 2x = 30		AI
	$y^2 = 10x \qquad (1)$		
	y = 2x - 30 (2)		2 -
	Sub (2) into (1)		
	$(2x - 30)^2 = 10x$		
	$4x^2 - 130x + 900 = 0$		
	$2x^2 - 65x + 450 = 0$		MI
	(2x - 45)(x - 10) = 0		
	$x = 22\frac{1}{2}$ or $x = 10$		M1
Hii	(Reject)		
	(,)		
	When $x = 22\frac{1}{2}$,		
	$y = 2\left(22\frac{1}{2}\right) - 30$		
	y = 15		
		12	
	$\therefore B\left(22\frac{1}{2},15\right)$		Al
	<u>,</u> †′		G1 Shape of curve
1	15	_	and straight line
79	1n. B		
- 6	,		G2 Points A and B
4	-3 16 13 20 23 30 35	<u>;</u>	labelled
11iii			
	-10-		Condone if graphs
	-11		are not labelled.
	-34	_	
	.,,,,		

Qn	Solutions	Marks
	$x^2 - 6x + 2 = 0$	
	$\alpha + \beta = 6$	B1
12i	$\alpha\beta=2$	B1
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	
	$\alpha^2 + \beta^2 = (6)^2 - 2(2)$	
12ii	$\alpha^2 + \beta^2 = 32$	ВІ
	New roots $\frac{1}{\alpha^2} - \beta^2$ and $\frac{1}{\beta^2} - \alpha^2$	
	Sum of new roots	
	$=\frac{1}{\alpha^2}-\beta^2+\frac{1}{\beta^2}-\alpha^2$	
	$=\frac{1}{\alpha^2}+\frac{1}{\beta^2}-\alpha^2-\beta^2$	
	$=\frac{\alpha^2+\beta^2}{(\alpha\beta)^2}-(\alpha^2+\beta^2)$	мі
	$=\frac{32}{(2)^2}-32$	
	= -24	Al
12iii	Product of new roots	
	$= \left(\frac{1}{\alpha^2} - \beta^2\right) \left(\frac{1}{\beta^2} - \alpha^2\right)$	
	$=\frac{1}{(\alpha\beta)^2}-1-1+(\alpha\beta)^2$	MI
	$=\frac{1}{(2)^2}-1-1+(2)^2$	
	$=\frac{9}{4}$	Al
	New equation	
	$x^2 - (-24)x + \left(\frac{9}{4}\right) = 0$	2.5
	$4x^2 + 96x + 9 = 0$	A1

Qn	Solutions		M. Marian	1 mail 1 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Marks
13a	$f(x) = \frac{1}{3}x^3 + kx$ $f'(x) = x^2 + k$ To find stationary parameters $x^2 + k = 0$ $x^2 = -k$ Since there are no simple $x > 0$				M1
13bi	If $k = -4$, $f(x) = \frac{1}{3}x^3 - 4x$ $f'(x) = x^2 - 4$ To find stationary in the state of the	0	30°00		ВІ
S	$(x+2)(x-2) = 0$ $\therefore x = -2 \text{ or } x = 2$ When $x = -2$, $f(-2) = \frac{1}{3}(-2)^3 - 4(-2)$				Bi
13bii	$f(-2) = 5\frac{1}{3}$ When $x = 2$, $f(2) = \frac{1}{3}(2)^3 - 4(1)^3$				
	$f(2) = -5\frac{1}{3}$		1)		В1
13ci	To have exactly on $k = 0$	e stationary p	ooint,		ВІ
	x	-0.1	0	0.1	Accept any reasonable working step
	f'(x)	+	0	+	working stop
13cii	gradient	1	D' Rex	1	
	shape of curve	,	$\overline{}$	•	МІ
	There is a stationar	y point of inf	lexion at the p	point (0, 0).	AI

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4aa}}{2a}$$

Binomial Expansion

Identities

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \frac{n(n-1)...(n-r+1)}{r!}$

2. Trigonometry

 $\sin^2 A + \cos^2 A = 1$

 $\sec^2 A = 1 + \tan^2 A$

 $\csc^2 A = 1 + \cot^2 A$

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

 $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

 $\sin 2A = 2 \sin A \cos A$

 $\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$

 $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$

Formulae for \(\Delta ABC \)

$$\sin A - \sin B - \sin C$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

BE OUR BEST

Bukit Batok Secondary School Preliminary Examination 2016

Secondary 4 Normal Academic

ADDITIONAL MATHEMATICS

4044/01

Paper 2

03 August 2016

1000 - 1145

1 hour 45 minutes

Additional Materials: 8 pieces of writing paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staple, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on the separate answer paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of

angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 70.

This document consists of 5 printed pages.

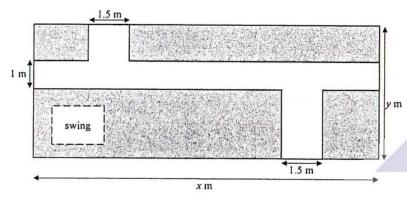
Apply your past knowledge to new situations!

[4]

[4]

1

Write 9^{x-1} as a power of 3.


[1]

[3]

[3]

Hence, or otherwise, find the value of x for which $9^{x-1} = 27 \times 3^{4x+5}$.

3

The diagram (not drawn to scale) shows a rectangular courtyard x m long and y m wide located outside Raffles Place MRT Station. It contains a walking path and a swing. The shaded area represents the grass grown in the courtyard and the non-shaded area represents the walking path. The swing occupies an area of 4 m².

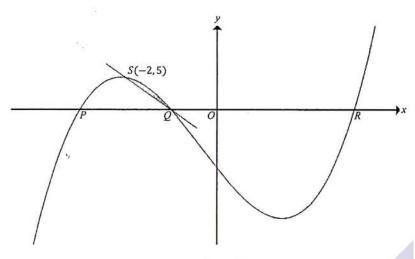
- Given that the total area of grass in the courtyard is 249.5 m², show that 2xy - 2x - 3y = 504.
- Given also that the perimeter of the courtyard is 70 m. calculate the dimensions of the courtyard.
- Without using a calculator, express $\frac{3-\sqrt{2}}{1+\sqrt{2}}$ in the form $\alpha+b\sqrt{2}$, where a and b are integers.
 - Hence, or otherwise, find the values of the integers p and q for which

$$\frac{3-\sqrt{2}}{1+\sqrt{2}} = (p+\sqrt{2})(q-\sqrt{2}).$$
 [5]

- (a) Given that $y = \frac{x^3}{x^2 + 4}$, find $\frac{dy}{dx}$ and explain why y is an increasing function.
 - Given that $y = 4x(x-2)^3$, find $\frac{dy}{dx}$ and the set of values of x for which y is decreasing. [4]
- Angles A and B are such that $2\sin(A-B) = 3\cos(A+B)$.

(i) Show that
$$\tan A = \frac{2 \tan B + 3}{3 \tan B + 2}$$
. [4]

Given also that $B = \frac{\pi}{6}$, find, without using a calculator, $\tan A$ in the form


$$a - b\sqrt{3}$$
, where a and b are rational numbers. [4]

- The equation of a circle is $x^2 + y^2 6x 8y = 0$.
 - Find the coordinates of the centre of the circle and determine the length of the radius.
 - The point A(6,8) lies on the circle. Find the coordinates of the point B such that AB is the diameter of the circle. [2]
 - The line 3x + 4y = 50 meets the circle at a point C. Explain why this line is a tangent to the circle. [4]

[4]

[3]

[2]

The diagram shows part of the curve $y = x^3 + ax^2 - 9x - 9$, where a is an integer. Given that x + 1 is a factor of $x^3 + ax^2 - 9x - 9$,

(i) show that the value of a is 1,

(ii) solve the equation $x^3 + x^2 - 9x - 9 = 0$ and hence state the coordinates of the points P, Q and R, where the curve meets the x-axis. [4]

A line through Q meets the curve again at the point S(-2,5).

- (iii) Find the area of the shaded region between the curve and the line QS.
- (a) (i) Show that the equation $2 \csc^2 x + 7 \cot x = 4 \cot^2 x + 5$ may be written in the form $2 \cot^2 x 7 \cot x + 3 = 0$.
 - (ii) Hence solve the equation $2 \csc^2 x + 7 \cot x = 4 \cot^2 x + 5$, for $0^{\circ} \le x \le 180^{\circ}$. [4]
- (b) (i) Express $4\cos\theta 3\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ radians. [3]
 - (ii) The height, h metres, of a water wave at Sentosa Wave Pool is given by $h = 4\cos t 3\sin t$, where t is the time in seconds after the start of the artificial wave generator.
 - After how many seconds does the wave reach a height of 4 metres again? [3]

- End of Paper -

BBSS Sec 4 NA Additional Mathematics Answer and Marking Scheme

	Solutions	Marks
	$y = \frac{\sqrt{2x-1}}{3x^2-5} = \frac{(2x-1)^{\frac{1}{2}}}{3x^2-5}$	
	$dy = (3x^2 - 5) \left[\frac{1}{2} (2x - 1)^{-\frac{1}{2}} (2) \right] - (2x - 1)^{\frac{1}{2}} (6x)$	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	$\frac{dy}{dx} = \frac{(3x^{-3})[2^{(2x-1)/2}(2x)]}{(3x^{2}-5)^{2}}$	MI .
	310	
1	$(3-5)\begin{bmatrix} \frac{1}{2}(1) - \frac{1}{2}(2) \end{bmatrix} - (1)\frac{1}{2}(6)$	
	when $x = 1$, $\frac{dy}{dx} = \frac{(3-5)\left[\frac{1}{2}(1)^{-\frac{1}{2}}(2)\right] - (1)^{\frac{1}{2}}(6)}{(3-5)^2}$	MI
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-8}{4}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2$	Al
F. Car		
	$9^{x-1} = 3^{2(x-1)}$	
2i	$=3^{2x-2}$	Bl
	$9^{x-1} = 27 \times 3^{4x+5}$	
	$3^{2x-2} = 3^3 \times 3^{4x+5}$	MI
2ii	2x - 2 = 3 + 4x + 5	M1
	2x = -10	1
	x = -5	Al
PARTY I		
100	xy - x(1) - y(1.5) + 1.5(1) - 4 = 249.5	MI
	A(1) (1.0(1) + - 2+7.5	
	xy - x - 1.5y = 252	12.00
3i	xy - x - 1.5y = 252 2xy - 2x - 3y = 504	MI
3i	xy - x - 1.5y = 252 $2xy - 2x - 3y = 504$	12.00
3i	2xy - 2x - 3y = 504	MI
3i		MI
3i	2xy - 2x - 3y = 504 $2xy - 2x - 3y = 504$ (1)	MI
3i	2xy - 2x - 3y = 504 $2xy - 2x - 3y = 504$ $2x + 2y = 70$ $y = 35 - x$ (1) (2) (3)	MI AI
3i	2xy - 2x - 3y = 504 $2xy - 2x - 3y = 504$ $2x + 2y = 70$ $y = 35 - x$ Sub (3) into (1) (1)	MI AI
3i	2xy - 2x - 3y = 504 $2xy - 2x - 3y = 504$ $2x + 2y = 70$ $y = 35 - x$ Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$	MI AI
31	2xy - 2x - 3y = 504 $2xy - 2x - 3y = 504$ $2x + 2y = 70$ $y = 35 - x$ Sub (3) into (1) (1)	MI AI
31	$2xy - 2x - 3y = 504$ $2xy - 2x - 3y = 504$ $2x + 2y = 70$ $y = 35 - x$ (3) Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$ $70x - 2x^2 - 2x - 105 + 3x = 504$	MI AI
	$2xy - 2x - 3y = 504$ $2xy - 2x - 3y = 504 (1)$ $2x + 2y = 70 (2)$ $y = 35 - x (3)$ Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$ $70x - 2x^2 - 2x - 105 + 3x = 504$ $2x^2 - 71x + 609 = 0$	MI AI
	$2xy - 2x - 3y = 504$ $2xy - 2x - 3y = 504 \qquad (1)$ $2x + 2y = 70 \qquad (2)$ $y = 35 - x \qquad (3)$ Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$ $70x - 2x^2 - 2x - 105 + 3x = 504$ $2x^2 - 71x + 609 = 0$ $(2x - 29)(x - 21) = 0$ $\therefore x = 14.5 \text{ or } x = 21$	MI AI
3i 3ii	$2xy - 2x - 3y = 504$ $2xy - 2x - 3y = 504 \qquad (1)$ $2x + 2y = 70 \qquad (2)$ $y = 35 - x \qquad (3)$ Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$ $70x - 2x^2 - 2x - 105 + 3x = 504$ $2x^2 - 71x + 609 = 0$ $(2x - 29)(x - 21) = 0$ $\therefore x = 14.5 \text{ or } x = 21$ When $x = 14.5$,	MI Al
	$2xy - 2x - 3y = 504$ $2xy - 2x - 3y = 504 \qquad (1)$ $2x + 2y = 70 \qquad (2)$ $y = 35 - x \qquad (3)$ Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$ $70x - 2x^2 - 2x - 105 + 3x = 504$ $2x^2 - 71x + 609 = 0$ $(2x - 29)(x - 21) = 0$ $\therefore x = 14.5 \text{ or } x = 21$	MI Al
	$2xy - 2x - 3y = 504$ $2xy - 2x - 3y = 504 \qquad (1)$ $2x + 2y = 70 \qquad (2)$ $y = 35 - x \qquad (3)$ Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$ $70x - 2x^2 - 2x - 105 + 3x = 504$ $2x^2 - 71x + 609 = 0$ $(2x - 29)(x - 21) = 0$ $x = 14.5 \text{ or } x = 21$ When $x = 14.5$, $y = 35 - 14.5$	MI MI
	$2xy - 2x - 3y = 504$ $2xy - 2x - 3y = 504 \qquad (1)$ $2x + 2y = 70 \qquad (2)$ $y = 35 - x \qquad (3)$ Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$ $70x - 2x^2 - 2x - 105 + 3x = 504$ $2x^2 - 71x + 609 = 0$ $(2x - 29)(x - 21) = 0$ $\therefore x = 14.5 \text{ or } x = 21$ When $x = 14.5$, $y = 35 - 14.5$ $y = 20.5 (\text{Reject, since } x > y)$	MI MI
	$2xy - 2x - 3y = 504$ $2xy - 2x - 3y = 504 \qquad (1)$ $2x + 2y = 70 \qquad (2)$ $y = 35 - x \qquad (3)$ Sub (3) into (1) $2x(35 - x) - 2x - 3(35 - x) = 504$ $70x - 2x^2 - 2x - 105 + 3x = 504$ $2x^2 - 71x + 609 = 0$ $(2x - 29)(x - 21) = 0$ $\therefore x = 14.5 \text{ or } x = 21$ When $x = 14.5$, $y = 35 - 14.5$ $y = 20.5 (\text{Reject, since } x > y)$ When $x = 21$,	MI MI

Pager 0

Qn	Solutions	Marks
	$\frac{3-\sqrt{2}}{1+\sqrt{2}} = \frac{3-\sqrt{2}}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}}$	MI
	$=\frac{3-\sqrt{2}-3\sqrt{2}+2}{2}$	мі
4i	$= \frac{3 - \sqrt{2} - 3\sqrt{2} + 2}{1 - 2}$ $= \frac{5 - 4\sqrt{2}}{-1}$	IMI
12	$= \frac{1}{-1}$ $= -5 + 4\sqrt{2}$	
	= -3 + 4 \ \ Z	Al
	$\frac{3-\sqrt{2}}{1+\sqrt{2}} = (p+\sqrt{2})(q-\sqrt{2})$	
	$-5 + 4\sqrt{2} = (pq - 2) + (q - p)\sqrt{2}$	МІ
	By comparison,	mi .
	pq-2=-5	
	pq = -3 $q - p = 4$ (1)	
	$p = q - 4 \tag{2}$	
	Sub (2) into (1),	MI
4ii	q(q-4)=-3	
	$q^2 - 4q + 3 = 0$	
	(q-1)(q-3) = 0 $\therefore q = 1 \text{ or } q = 3$	
	When $q = 1$,	Al
	when $q = 1$, $p = -3$	Al
	When $q=3$,	AI _
	p = -1	AI
St.		A North Control of
	$y = \frac{x^3}{x^2 + 4}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x^2+4)(3x^2) - (x^3)(2x)}{(x^2+4)^2}$	MI
	$\frac{dx}{3x^4 + 12x^2 - 2x^4}$	WII
	$=\frac{3x^4+12x^2-2x^4}{(x^2+4)^2}$	
5a	$=\frac{x^4+12x^2}{(x^2+4)^2}$	A1
	$x^4 > 0$ and $12x^2 > 0$, $x^4 + 12x^2 > 0$. Also, $(x^2 + 4)^2 > 0$	MI
	Hence, $\frac{x^4+12x^2}{(x^2+4)^2} > 0$ and therefore y is an increasing function.	AI C
	W.14	100
	$y = 4x(x-2)^3$	\
	$\frac{dy}{dx} = 4x(3)(x-2)^2(1) + (x-2)^3(4)$	MI
	$\frac{dy}{dx} = (x-2)^2 [12x + 4(x-2)]$	(2002)
	$\frac{dy}{dx} = (x - 2)^2 (12x + 4x - 8)$	
	The state of the s	
5b	$\frac{dy}{dx} = 8(2x - 1)(x - 2)^2$	Al

Qn	Solutions	G Tell-win In Tells (Revue 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Marks	Here was
	$2\sin(A - B) = 3\cos(A + 2(\sin A \cos B - \cos A \sin B)$ $2\sin A \cos B - 2\cos A \sin B$	B) $B = 3(\cos A \cos B - \sin A \sin B)$ $B = 3\cos A \cos B - 3\sin A \sin B$	MI	
6i	Divide throughout by $\cos A$ 2 $\tan A - 2 \tan B = 3 - 3$ 2 $\tan A + 3 \tan A \tan B = 2$	an A tan B	MI	
	$\tan A(2+3\tan B)=2\tan$		MI	
	$\tan A = \frac{2 \tan B + 3}{3 \tan B + 2} \text{(shown}$)	Al	
611	Either $\tan A = \frac{2 \tan(\frac{\pi}{6}) + 3}{3 \tan(\frac{\pi}{6}) + 2}$ $= \frac{2 \left(\frac{\sqrt{5}}{3}\right) + 3}{3 \left(\frac{\sqrt{5}}{3}\right) + 2}$ $= \frac{2\sqrt{5} + 9}{3}$ $= \frac{3}{5}$	Or $\tan A = \frac{2 \tan(\frac{\pi}{6}) + 3}{3 \tan(\frac{\pi}{6}) + 2}$ $= \frac{2(\frac{1}{\sqrt{3}}) + 3}{3(\frac{1}{\sqrt{3}}) + 2}$ $= \frac{\frac{2 + 2\sqrt{3}}{\sqrt{3}}}{\frac{1}{2 + 2\sqrt{3}}}$	МІ	
	$=\frac{\sqrt{3}+2}{2\sqrt{3}+9}$ $=\frac{2\sqrt{3}+9}{3\sqrt{3}+6} \times \frac{3\sqrt{3}-6}{3\sqrt{3}-6}$ $=\frac{18-12\sqrt{3}+27\sqrt{3}-54}{27-36}$	$= \frac{2+3\sqrt{3}}{3+2\sqrt{3}} \times \frac{3-2\sqrt{3}}{3-2\sqrt{3}}$ $= \frac{6-4\sqrt{3}+9\sqrt{3}-18}{3-2\sqrt{3}}$	MI ·	
	36+15√3	$= \frac{9-12}{5\sqrt{3}-12}$		
	-9	-3	MI	
	$=4-\frac{5}{4}\sqrt{3}$	$=4-\frac{5}{3}\sqrt{3}$	AI	

 $\therefore x < \frac{1}{2}$

For y to be decreasing, $\frac{dy}{dx} < 0$ $8(2x-1)(x-2)^2 < 0$

(2x-1) < 0 since $8(x-2)^2 > 0$

Page 7

MI

Al

Qn Solutions bestfreepapers.comQn Solutions Marks OR - The BEST website to download FREE exam papers, notes and office relaterials from Singapore! Either Marks

Qn	Solutions	THE PROPERTY OF STREET	Marks
	Either	OR	372445
	$x^2 + y^2 - 6x - 8y = 0$	2. 2.4	
		$x^2 + y^2 - 6x - 8y = 0$	
2	$(x-3)^2 + 9 + (y-4)^2 + 16 = 0$		MI
	$(x-3)^2 + (y-4)^2 = 5^2$	g = -3, f = -4	MI
	Coordinates of the centre of circle	Coordinates of the centre of circle	
7i	= (3,4)	= (3,4)	Al
	Radius	Radius	
		$=\sqrt{(-3)^2+(-4)^2}$	
	= 5 units	= 5 units	Al
		unio	Ai
	Midpoint of $AB =$ coordinates of the	e centre of circle.	
	Let the coordinates of $B = (x, y)$		
	$\left(\frac{x+6}{2}, \frac{y+8}{2}\right) = (3,4)$		MI
	x + 6 = 6		2000
7ii	x = 0		
5.55	y + 8 = 8		
	y = 0		
	B(0,0)		Al
			Ai
	$x^2 + y^2 - 6x - 8y = 0 (1)$		
	$3x + 4y = 50 \tag{2}$		
	$y = \frac{50 - 3x}{4} \tag{3}$		MI
	Sub (3) into (1)		
	$x^{2} + \left(\frac{50 - 3x}{4}\right)^{2} - 6x - 8\left(\frac{50 - 3x}{4}\right) =$		
			MI
7iii	$x^2 + \frac{1}{16}(2500 - 300x + 9x^2) - 6x$		1//
/111	$16x^2 + 2500 - 300x + 9x^2 - 160$	00 = 0	Co
	$25x^2 - 300x + 900 = 0$		- 03
	$x^2 - 12x + 36 = 0$		Al
	Discriminant, b2 - 4ac		
	$=(-12)^2-4(1)(36)$		•
	= 0		
	$\therefore \text{ The line } 3x + 4y = 50 \text{ is a tan}$	ngent to the circle at C.	Al

Qn	Solutions	Marks
	Let $f(x) = x^3 + ax^2 - 9x - 9$	
	$f(-1) = (-1)^3 + a(-1)^2 - 9(-1) - 9$	MI
8i	0 = -1 + a	N. S.
	∴ a = 1	Al
	$x^3 + x^2 - 9x - 9 = (x + 1)(x^2 + bx - 9)$	MI
	Equating coefficients of x^2 ,	
	1 = 1 + b	
	$\therefore b = 0$	
	$x^3 + x^2 - 9x - 9 = (x + 1)(x^2 - 9)$	
8ii	=(x+1)(x+3)(x-3)	MI
	$x^3 + x^2 - 9x - 9 = 0$	
	(x+3)(x+1)(x-3)=0	
	x = -3, -1 or 3	Al
	Coordinates: $P(-3, 0)$, $Q(-1, 0)$ and $R(3, 0)$	Al
	Q(-1, 0), S(-2, 5)	Allow ECF
	Gradient $QS = \frac{5-0}{-2-(-1)} = -5$	MI
	Equation of line QS: $y - 0 = -5(x + 1)$	
	$\therefore y = -5x - 5$	Al
	Area of shaded region	Al
	$= \int_{-2}^{-1} (x^3 + x^2 - 9x - 9) - (-5x - 5) \mathrm{d}x$	MI
8iii	$= \int_{-2}^{-1} (x^3 + x^2 - 4x - 4) \mathrm{d}x$	
	$= \left[\frac{x^4}{4} + \frac{x^3}{3} - 2x^2 - 4x \right]^{-1}$	N/1
	3-2	MI
	$= \left(\frac{1}{4} - \frac{1}{3} - 2 + 4\right) - \left(4 - \frac{8}{3} - 8 + 8\right)$	
	$=\frac{7}{12}$ units ²	Al
	100,0	

Apply your past knowledge to new situations!

Page 9

Apply your past knowledge to new situations!

Page 10

Qn	Solutions	Marks
9ai	$2 \csc^{2} x + 7 \cot x = 4 \cot^{2} x + 5$ $2 (1 + \cot^{2} x) + 7 \cot x = 4 \cot^{2} x + 5$ $2 + 2 \cot^{2} x + 7 \cot x - 4 \cot^{2} x - 5 = 0$ $2 \cot^{2} x - 7 \cot x + 3 = 0$	Al
9aii	$2 \cot^{2} x - 7 \cot x + 3 = 0$ $(2 \cot x - 1)(\cot x - 3) = 0$ $\cot x = \frac{1}{2} \text{ or } \cot x = 3$ $\tan x = 2 \text{ or } \tan x = \frac{1}{2}$	MI Al
yan	$\alpha = 63.4349^{\circ}$ or $\alpha = 18.4349^{\circ}$ $x = 63.4349^{\circ}$ or $x = 18.4349^{\circ}$ $x = 63.4^{\circ}$ or $x = 18.4^{\circ}$ (1 dp)	Al Al
9bi	$4\cos\theta - 3\sin\theta$ $R = \sqrt{4^2 + 3^2}$ $R = 5$ $\tan\alpha = \frac{3}{4}$ $\alpha = 0.6435 \text{ rad}$ $4\cos\theta - 3\sin\theta = 5\cos(\theta + 0.644)$	MI MI AI
9bii	$h = 4\cos t - 3\sin t$ $h = 5\cos(t + 0.6435)$ When $h = 4$, $4 = 5\cos(t + 0.6435)$ $\cos(t + 0.643) = \frac{4}{5}$ $\alpha = 0.6435$ $t + 0.6435 = 2\pi - 0.6435$ $t = 4.996185$ $t = 5.00 \text{ seconds} (3sf)$	MI MI

EAST VIEW SECONDARY SCHOOL PRELIMINARY EXAMINATION 2016 SECONDARY FOUR NORMAL ACADEMIC

CANDIDATE NAME		
CLASS	INDEX NUMBER	

ADDITIONAL MATHEMATICS

4044/01

Paper 1

15 July 2016

Total Marks: 70

1 Hour 45 Minutes

Additional Materials: Writing Paper (7 sheets)

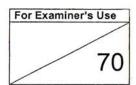
READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all your answer sheets to be handed in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the separate writing paper provided.


Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This paper consists of 5 printed pages (including the cover page).

Setter: Miss Kong T. X.

bestfreepapers.com

The function f is defined by $f(x) = ax^3$ The BEST we have a find from Singapore!

Since that f(x) is divisible by x + 3 but leaves a remainder of -12 when divided by x - 1.

6 Given that $\tan A = -\frac{1}{4}$ and $\cos B = -\frac{1}{13}$ such that both A and B lie in the same quadrant.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1) \dots (n-r+1)}{r!}$

2. TRIGONOMETRY

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

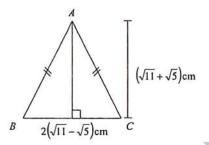
$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$


$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for AABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A.$$
$$\Delta = \frac{1}{2}bc \sin A.$$

3

- The function f is defined by $f(x) = ax^3 + 2ax^2 15x + b$, where a and b are constants. It is given that f(x) is divisible by x + 3 but leaves a remainder of -12 when divided by x 1.
 - Find the values of a and b.
 - (ii) Solve f(x) = 0. [4]
- 2 (i) Find $\int \left(2x^2 \frac{4}{x^3} + 3\right) dx$. [2]
 - (ii) Hence, evaluate $\int_{1}^{3} \left(2x^{2} \frac{4}{x^{3}} + 3\right) dx$. [2]

In the diagram, AB = AC, $AD = (\sqrt{11} + \sqrt{5})$ cm, $BC = 2(\sqrt{11} - \sqrt{5})$ cm and $\angle ADC = 90^{\circ}$.

Find,

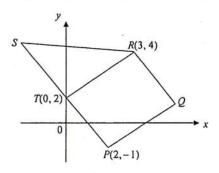
- (i) the length of AC in in the form $m\sqrt{n}$, where m and n are integers.
- (ii) Express $\tan \angle ACB$ in the form $a + b\sqrt{5}$ where a and b are integers.
- (a) Given the equation $9x^2 6mx + m^2 = 0$.
 - (i) Show that the equation has real and equal roots for all values of m.
 [2]
 (ii) Find the value of x when m = 2.
 - (b) Given that $Ax^3 5x^2 + 2x + 2 = (x+1)(x-2)(2x-B) + Cx + D$ for all values of x, where A, B, C and D are constants, find the values of A, B, C and D.
- 5 (i) Find the equation of the tangent to the curve $y = x^2 + 4x 5$ at the point (1, 0).
 - (ii) The term independent of x in the expansion of $\left(px \frac{1}{2x^2}\right)^9$ is -672. Find the value of p, where p > 0.

Given that $\tan A = -\frac{3}{4}$ and $\cos B = -\frac{5}{13}$ such that both A and B lie in the same quadrant.

Find the exact value of each of the following without the use of a calculator.

(i)
$$\sin(A+B)$$
, [3]

(ii)
$$\cos(B-30^{\circ})$$
. [2]


- 7 A circle, C_1 passes through the x- axis at two points (7, 0) and (-3, 0). Given that the line y + 5x = 11 passes through the centre of C_1 .
 - (i) Find the centre of C_1 . [2]
 - (ii) Hence, find the equation of C_I . [2]
- 8 A voltage V (in volts) varies with time t (in milliseconds) such that $V = 9\sin t + 2\cos t$, where $t \ge 0$.
 - (i) Express V in the form $R\cos(t-\alpha)$, where R>0 and $0<\alpha<\frac{\pi}{2}$. [3]
 - ii) Find the maximum voltage and state the time needed for the voltage to reach its first maximum value. [2]
 - (iii) Find the first instant, t_1 when V = 1. [2]
- 9 (a) Express $y = 4x^2 16x + 9$ in the form $y = a(x h)^2 + k$ where a, h and k are constants. Hence, state the minimum value of y. [4]
 - (b) The area, $A \text{ cm}^2$, of a quadrant is given by $A = \frac{\pi}{8}r^2$ where r cm is the radius of the quadrant. If the area of the quadrant is increasing at a constant rate of $9\pi \text{ cm}^2/\text{s}$, find the value of r when the radius is increasing at 0.5 cm/s. [4]
- 10 (i) Given that $y = \frac{4x}{x+3}$, find $\frac{dy}{dx}$. [2]
 - (ii) Hence find $\int \left(\frac{2}{x+3}\right)^2 dx$. [2]

[5]

[3]

[3]

The diagram shows a trapezium PQRS where the coordinates of P, T and R are (2, -1), (0,2) and (3,4) respectively. T is a point on the y-axis such that PQRT is a parallelogram.

- Show that the coordinates of Q are (5, 1).
- Find the equation of line TQ.
- Find the coordinates of S, given that ST: TP is 4:5.
- Stating your reason clearly, conclude if RS is parallel to the x-axis.
- (v) Find the area of parallelogram PQRT.

- [2]
- [2]
- [1]

[2]

End of Paper

PRELIMINARY EXAMINATION 2016 SECONDARY FOUR NORMAL ACADEMIC

CANDIDATE NAME		8 4	
CLASS	INDEX NUMBER		

ADDITIONAL MATHEMATICS

4044/01

Paper 1

XX Jul 2016

Total Marks: 70

1 Hour 45 Minutes

Additional Materials: Writing Paper (7 sheets)

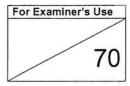
READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all your answer sheets to be handed in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the separate writing paper provided.


Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This paper consists of 5 printed pages (including the cover page).

Setter: Miss Kong T. X.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1) \dots (n-r+1)}{r!}$

2. TRIGONOMETRY

 $\sin^2 A + \cos^2 A = 1$ $\sec^2 A = 1 + \tan^2 A$ $\csc^2 A = 1 + \cot^2 A$ $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

 $\sin 2A = 2\sin A\cos A$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 + \frac{2}{1 + \frac{2}{$$

Formulae for AABC

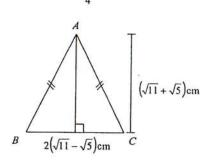
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A.$$
$$\Delta = \frac{1}{2}bc \sin A.$$

- The function f is defined by $f(x) = ax^3 + 2ax^2 15x + b$, where a and b are constants. It is given that f(x) is divisible by x + 3 but leaves a remainder of -12 when divided by x - 1.
 - (i) Find the values of a and b.

(ii) Solve f(x) = 0.

[4]

Solution	MS	Marker's Report
f(-3) = 0		
-27a + 18a + 45 + b = 0		
-9a+b=-45(1)	[M1]	
f(1) = -12		
a+2a-15+b=-12		
3a+b=3(2)	[M1]	
Solve (1)&(2) simultaneous equation	[A2]	
	[MI]	
(x+3)(4x-4x-3)=0	200 C 200 C	
WALL COLORS OF THE STATE OF THE	(Seminary Color)	
:	-27a+18a+45+b=0 $-9a+b=-45(1)$ $f(1) = -12$ $a+2a-15+b=-12$ $3a+b=3(2)$	$-27a + 18a + 45 + b = 0$ $-9a + b = -45 (1)$ $f(1) = -12$ $a + 2a - 15 + b = -12$ $3a + b = 3 (2)$ [M1] Solve (1)&(2) simultaneous equation $a = 4, b = -9$ By long division, $(x+3)(4x^2 - 4x - 3) = 0$ $(x+3)(2x+1)(2x-3) = 0$ [M1]


2	
	11

(i) Find $\int \left(2x^2 - \frac{4}{x^3} + 3\right) dx$. (ii) Hence, evaluate $\int_{1}^{3} \left(2x^2 - \frac{4}{x^3} + 3\right) dx$.

	- 4	Ρ		
	٨	L	à	Я
Ы	2	æ		
9	æ	а	7	

Qn	Solution	MS	Marker's Report
2(i)	$\frac{2x^3}{3} + \frac{2}{x^2} + 3x + C$	[B2]	O
2(ii)	$\int_{1}^{3} \left(2x^{2} - \frac{4}{x^{3}} + 3 \right) dx = \left[\frac{2x^{3}}{3} + \frac{2}{x^{2}} + 3x \right]_{1}^{3}$		
	$= \left(18 + \frac{2}{9} + 9\right) - \left(\frac{2}{3} + 2 + 3\right)$	[M1]	
	$=21\frac{5}{9}$	[AI]	

In the diagram, AB = AC, $AD = (\sqrt{11} + \sqrt{5})$ cm, $BC = 2(\sqrt{11} - \sqrt{5})$ cm and $\angle ADC = 90^{\circ}$. Find,

(i) the length of AC in in the form $m\sqrt{n}$, where m and n are integers.

[3]

(ii) Express $\tan \angle ACB$ in the form $a + b\sqrt{5}$ where a and b are integers.

[4]

Qn	Solution	MS	Marker's Report
3(i)	$AC^2 = (\sqrt{11} - \sqrt{5})^2 + (\sqrt{11} + \sqrt{5})^2$	[M1]	
0	$= (11 - 2\sqrt{11}\sqrt{5} + 5) + (11 + 2\sqrt{11}\sqrt{5} + 5)$		
	$= (16 - 2\sqrt{55}) + (16 + 2\sqrt{55})$		
	$=32 \text{ cm}^2$	[M1]	- +0
	$AC = 4\sqrt{2}$ cm	[A1]	
3(ii)	$\tan \angle ACB = \frac{\sqrt{11} + \sqrt{5}}{\sqrt{11} - \sqrt{5}}$	[M1]	
	$= \frac{\sqrt{11} + \sqrt{5}}{\sqrt{11} - \sqrt{5}} \times \frac{\sqrt{11} + \sqrt{5}}{\sqrt{11} + \sqrt{5}}$	[M1]	
	$=\frac{11+2\sqrt{55}+5}{11-5}$	[M1]	
	$=\frac{8}{3} + \frac{\sqrt{5}}{6}$	[A1]	

4 (a) Given the equation $9x^2 - 6mx + m^2 = 0$.

(i) Show that the equation has real and equal roots for all values of m.

(ii) Find the value of x when m = 2.

[2] [1]

(b) Given that $Ax^3 - 5x^2 + 2x + 2 = (x+1)(x-2)(2x-B) + Cx + D$ for all values of x, where A, B, C and D are constants, find the values of A, B, C and D.

[5]

Qn	Solution	MS	Marker's Report
4(a)(i)	$9x^{2} - 6mx + m^{2} = 0$ $b^{2} - 4ac$ $= (-6m)^{2} - 4(9)(m^{2})$ $= 36m^{2} - 36m^{2}$ $= 0$	[M1]	P
	Since $b^2 - 4ac = 0$, the roots are real and equal.	[A1]	
4(a)(ii)	$9x^2 - 12x + 4 = 0$		
- 8	$(3x-2)^2=0$		
	$x = \frac{2}{3}$	[B1]	
4(b)	By comparing coefficient	[M1]	
	A=2	[A1]	
	B=3	[A1]	0
	C = 3	[A1]	600
	D = -4	[A1]	

5 (i) Find the equation of the tangent to the curve $y = x^2 + 4x - 5$ at the point (1, 0).

(1)9

(ii) The term independent of x in the expansion of $\left(px - \frac{1}{2x^2}\right)^9$ is -672.

Find the value of p, where p > 0.

[3]

[3]

Qn	Solution	MS	Marker's Report	
5(i)	$y = x^2 + 4x - 5$			
	$\frac{dy}{dx} = 2x + 4$			
	When $x = 1$, $y = 0$			
	$\frac{dy}{dx} = 6$			
	At (1,0),			
	0 = 6(1) + c			
C	c=-6			
	Equation of tangent: $y = 6x - 6$			
5(ii)	$T_{r+1} = {}^{9}C_{r} p^{9-r} \left(-\frac{1}{2}\right)^{r} x^{9-3r}$	[M1]		
	When $r = 3$, $p = \pm 2$	[M1]		
	Since $p > 0$, $p = 2$	[A1]		

Given that $\tan A = -\frac{3}{4}$ and $\cos B = -\frac{5}{13}$ such that both A and B lie in the same quadrant. Find the exact value of each of the following without the use of a calculator.

(i) $\sin(A+B)$,

[3]

(ii) $\cos(B-30^{\circ})$.

[2]

Qn	Solution	MS	Marker's Report
5(i)	$\tan A = -\frac{3}{4}, \cos B = -\frac{5}{13}$ 3 4 12 13 8 -5	_	•

	$\sin(A+B) = \left(\frac{3}{5}\right)\left(-\frac{5}{13}\right) + \left(-\frac{4}{5}\right)\left(\frac{12}{13}\right)$ $= -\frac{63}{65}$		
6(ii)	$\cos(B-30^\circ) = \cos B \cos 30 + \sin B \sin 30$ $= \left(-\frac{5}{13}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{12}{13}\right) \left(\frac{1}{2}\right)$ $= \frac{12 - 5\sqrt{3}}{26}$	[M1] [A1] for either sin 30° or cos 30° [A1]	

- A circle, C_1 passes through the x- axis at two points (7, 0) and (-3, 0). Given that the line y + 5x = 11 passes through the centre of C_1 .
 - (i) Find the centre of C_1 .
 - (ii) Hence, find the equation of C_I.

[2]

[2]

Qn	Solution	MS	Marker's Report
7(i)	$\frac{-3+7}{2} = 2$ Perpendicular bisector of the chord formed by (7,0) and (-3,0) is $x = 2$ Solving $x = 2$ and $y + 5x = 11$ simultaneously, $y + 5(2) = 11$ $y = 1$	[M1]	
	Centre of the circle is (2, 1)	[A1]	
7(ii)	Radius = $\sqrt{(7-2)^2 + (0-1)^2}$ = $\sqrt{26}$ Equation of circle is $(x-2)^2 + (y-1)^2 = 26$ Or $x^2 + y^2 - 4x - 2x - 21 = 0$	[M1]	ige
	0 + y - 4x - 2x - 21 = 0	[A1]	5

- 8 A voltage V (in volts) varies with time t (in milliseconds) such that $V = 9\sin t + 2\cos t$, where $t \ge 0$.
 - (i) Express V in the form $R\cos(t-\alpha)$, where R>0 and $0<\alpha<\frac{\pi}{2}$. [3]
 - (ii) Find the maximum voltage and state the time needed for the voltage to reach its first maximum value. [2]
 - (iii) Find the first instant, t_1 when V = 1.

Qn	Solution	MS	Marker's Report
8(i)	9 sin t + 2 cos t = 2 cos t + 9 sin t Comparing 2 cos t + 9 sin t with $a \cos t + b \sin t$, a = 2 and $b = 9$.		
	From the right-angled triangle, $R = \sqrt{2^2 + 9^2}$ $= \sqrt{85}$ and $\tan \alpha = \frac{9}{2}$	[M1]	
	$\alpha \approx 1.352$	[MI]	
W)	Hence 9 sin t + 2 cos t = $\sqrt{85}$ cos (t - 1.35).	[A1]	
8(ii)	$9 \sin t + 2 \cos t = \sqrt{85} \cos (t - 1.35)$ $-1 \le \cos (t - 1.35) \le 1$ $-\sqrt{85} \le \sqrt{85} \cos (t - 1.35) \le \sqrt{85}$		
	Hence $9 \sin t + 2 \cos t$ has a maximum value of $\sqrt{85}$ when $\cos (t - 1.35) = 1,$ that is, when $t - 1.35 = 0$	[BI] [MI]	
	t = 1.35ms	[A1]	
8(iii)	$9 \sin t + 2 \cos t = 1$ $\sqrt{85} \cos (t - 1.35) = 1$ $\cos (t - 1.35) = \frac{\sqrt{85}}{85}$	[MI]	
	basic angle ≈ 1.462 t - 1.35 = 1.462 $t \approx 2.812$		
	Hence, first instance when V=1 is t= 2.81ms.	[A1]	

10

(a) Express $y = 4x^2 - 16x + 9$ in the form $y = a(x - h)^2 + k$ where a, h and k bestfree papers. com¹⁰ (i) Given that $y = \frac{4x}{x + 3}$, find $\frac{dy}{dx}$. are constants. Hence, state the minimum BEST website to download FREE exam papers, notes and other materials from Singapore!

[2]

- 9 (a) Express $y = 4x^2 16x + 9$ in the form $y = a(x-h)^2 + k$ where a, h and k are constants. Hence, state the minimum value of y.
 - [4] The area, $A \text{ cm}^2$, of a quadrant is given by $A = \frac{\pi}{8}r^2$ where r cm is the
 - radius of the quadrant. If the area of the quadrant is increasing at a constant rate of 9π cm²/s, find the value of r when the radius is increasing at 0.5 [4] cm/s.

Qn	Solution	MS	Marker's Report
9(a)	$y = 4x^{2} - 16x + 9$ $= 4\left(x^{2} - 4x + \frac{9}{4}\right)$ $= 4\left[(x - 2)^{2} - 4 + \frac{9}{4}\right]$ $= 4\left[(x - 2)^{2} - \frac{7}{4}\right]$ $= 4(x - 2)^{2} - 7$	Correct a,b,c 1 m each	
	Min value: -7	[B1]	
9(b)	$\frac{dr}{dr} = \frac{dr}{4}r$ Given $\frac{dA}{dt} = 9\pi$, $\frac{dr}{dt} = 0.5$	[M1]	
	$\frac{dA}{dr} = \frac{dA}{dt} \times \frac{dt}{dr}$	[M1]	
	$\frac{\pi r}{4} = 9\pi \times \frac{1}{0.5}$	[M1]	and the same of th
	r = 72	[A1]	

(i) Given that $y = \frac{4x}{x+3}$, find $\frac{dy}{dx}$.

[2]

(ii) Hence find $\int \left(\frac{2}{x+3}\right)^2 dx$.

[2]

Qn	Solution	MS	Marker's Report
10(i)	$\frac{dy}{dx} = \frac{(x+3)(4) - 4x(1)}{(x+3)^2}$	[M1]	14 91
	$=\frac{12}{\left(x+3\right)^2}$	[A1]	¥
10(II)	$\int \left(\frac{1}{x+3}\right) dx = \int \frac{1}{(x+3)^2} dx$		×
		[M1]	
C	$=\frac{1}{3}(\frac{4x}{x+3})$		
	$=\frac{4x}{3(x+3)}$	[A1]	

Solutions to this question by accurate drawing will not be accepted.

The diagram shows a trapezium PQRS where the coordinates of P, T and R are (2, -1), (0, 2) and (3, 4) respectively. T is a point on the y-axis such that PQRT is a parallelogram.

- Show that the coordinates of Q are (5, 1).
- (ii) Find the equation of line TQ.

[2] [2]

(iii)	Find	the coordinates	of	S, given	that S7	٠:	TP	is	4	:	5	
-------	------	-----------------	----	----------	---------	----	----	----	---	---	---	--

[2]

(iv) Stating your reason clearly, conclude if RS is parallel to the x-axis.

[1]

(v) Find the area of parallelogram PQRT.

[2]

Qn	Solution	MS	Marker's Report
11(i)	midpoint of PR		**************************************
	$=\left(\frac{3+2}{2},\frac{4-1}{2}\right)$		
	$=\left(\frac{5}{2},\frac{3}{2}\right)$	[M1]	
	Let Q be (x, y)		
	Let Q be (x, y)		
	$\left(\frac{0+x}{2},\frac{2+y}{2}\right) = \left(\frac{5}{2},\frac{3}{2}\right)$		
	The second secon	1	
	$\frac{x}{2} = \frac{5}{2}$ and $\frac{2+y}{2} = \frac{3}{2}$	1 1	
	$\begin{bmatrix} 2 & 2 & 2 & 2 \\ x=5 & \text{and} & y=1 \end{bmatrix}$		
	- C - COLOGE 959 W		
1100	: coordinates of Q(5, 1) (shown)	[A1]	
11(ii)	gradient of TQ		
	$=\frac{1-2}{5-0}$		
ľ	$=-\frac{1}{5}$	[M1]	
	5	[WII]	
	equation of line TQ is $y = -\frac{1}{5}x + 2$	[A1]	
11000			
11(iii)	S		7.40
	4 units		
		[M1]	6
	7(0,2)	[WII]	0,5
	3 S units		0
	3 Junits		~
	P(2,-1)		
	$S = \left(\left[0 + \frac{4}{5} (-2) \right], \left[2 + \frac{4}{5} (3) \right] \right)$		
	$=\left(-1\frac{3}{5},4\frac{2}{5}\right)$	20000000	
	$-(-1\frac{1}{5}, \frac{4}{5})$	[A1]	T.
11(iv)	No because		
	y-coordinate of S is not 4, so SR is not horizontal		
	OR ·		

	12		
	y-coordinate of R is not $4\frac{2}{5}$, so SR is not horizontal OR $4\frac{2}{5}-4$		
a.	gradient of $SR = \frac{4\frac{2}{5} - 4}{-1\frac{3}{5} - 3}$ $= -\frac{2}{23} \neq 0$; [BI]	
11(v)	area of parallelogram <i>PQRT</i> $= \frac{1}{2} \begin{vmatrix} 3 & 5 & 2 & 0 & 3 \\ 4 & 1 & -1 & 2 & 4 \end{vmatrix}$	[M1]	
	$= \frac{1}{2} [[(3-5+4+0)-(6+0+2+20)]]$ $= \frac{1}{2} [[2-(28)]]$		9
100	$= 2^{1-26}$ = 13 units ²	[AI]	

End of Paper

PRELIMINARY EXAMINATION 2016 SECONDARY FOUR NORMAL ACADEMIC

CANDIDATE NAME			
CLASS	7/2	INDEX NUMBER	

ADDITIONAL MATHEMATICS

4044/02

Paper 2

. 21 July 2016

Total Marks: 70

1 Hour 45 Minutes

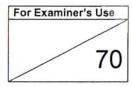
Additional Materials: Writing Paper (7 sheets)

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all your answer sheets to be handed in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.


Write your answers on the separate writing paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This paper consists of 4 printed pages (including the cover page).

Setter: Miss Kong T. X.

bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^2 + \dots + \binom{n}{r} a^{n-r}b^r + \dots + b^n ,$$

where
$$n$$
 is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

Formulae for AABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}bc \sin A$$

(ii) Find the set of values for which $(2x-9)(x+6) \le -34$.

2 Show that the equation $\cos^2 x - \cos x = 2\sin^2 x$ can be written in the form [1] $3\cos^2 x - \cos x - 2 = 0$

Hence solve the equation $\cos^2 x - \cos x = 2\sin^2 x$, for $0^{\circ} \le x \le 360^{\circ}$. [4]

Evaluate $\frac{4 \times 2^{n-2}}{2^n - 2^{n-1}}$. [2]

By using the substitution $u = 3^x$ or otherwise, find the values of x such that $9^x - 12(3^x) + 27 = 0$ [4]

The first three terms in the expansion of $(2+ax)^n$, where a < 0, in ascending powers of x, are $256 + px + 16128x^2 + ...$ Find the value of a, of p and of n

Hence find the x^2 term in the expansion of $(1+2x)^2(2+ax)^n$.

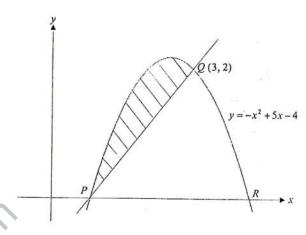
The equation of a circle is $x^2 + y^2 + 4x - 8y + 15 = 0$.

Find the radius and the coordinates of the centre of the circle. [2]

The circle is reflected in the y-axis. Find the equation of the new circle.

The temperature, T°C, in a greenhouse at time t hours after midnight on a certain day is modelled by the formula $T = 25 + 2\sin(\frac{\pi t}{12})$ for $0 \le t \le 24$.

(i) Calculate the temperature, $T \, ^{\circ}$ C, of the greenhouse when t = 6.


Explain why this model suggests that the range of temperature, T °C the greenhouse is $23 \le T \le 27$.

(iii) Tomato plants grow best when $T \le 24$. Find the length of time for which the temperature of the greenhouse is suitable for the growth of tomato [4] plants.

The equation of a curve is $y = \frac{2}{3}x^3 - x^2 - 4x + 5$.

Find the coordinates of the stationary points on the curve. [4]

Determine the nature of each of these stationary points. [3]

The diagram shows part of the curve $y = -x^2 + 5x - 4$. The normal to the curve at the point Q(3, 2) meets the x axis at the point P. The curve $y = -x^2 + 5x - 4$ cuts the x-axis at points P and R. Find

(i) the coordinates of P and R. [3]

(ii) the area of the shaded region. [4]

(i) Find the coordinates of the points where the line $y = \frac{1}{2}x$ cuts the curve [4]

(ii) Sketch the graphs of $y = \frac{1}{2}x$ and $y^2 = -4x$ on the same axes. Label your graphs and the points of intersection clearly. [3]

The roots of the equation $5x^2 - 2x + 4 = 0$ are α and β .

(i) State the value of $\alpha + \beta$ and $\alpha\beta$. [2]

Find the quadratic equation in x whose roots are α^2 and β^2 . [4]

(iii) Find the value of $\alpha^3 + \beta^3$. [2]

11 (a) Show that $\frac{1+\cos 2A+\cos A}{\sin 2A+\sin A}=\cot A.$ [3]

(b) Given that $\frac{d^2y}{dx^2} = 4x - 3$ and the curve has a stationary point at $A\left(1, \frac{1}{3}\right)$. [4] find the equation of the curve.

End of Paper

[3]

PRELIMINARY EXAMINATION 2016 SECONDARY FOUR NORMAL ACADEMIC

CANDIDATE NAME		i .	
CLASS	19	INDEX NUMBER	

ADDITIONAL MATHEMATICS

4044/02

Paper 2

XX Jul 2016

Total Marks: 70

1 Hour 45 Minutes

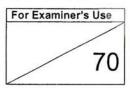
Additional Materials: Writing Paper (7 sheets)

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all your answer sheets to be handed in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.


Write your answers on the separate writing paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This paper consists of 5 printed pages (including the cover page).

Setter: Miss Kong T. X.

bestfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

End of Paper

Mathematical Formulae

ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Binomial Expansion

$$\left(a+b\right)^n = a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^2 + \dots + \binom{n}{r} a^{n-r}b^r + \dots + b^n \,,$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1) \dots (n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for AABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A.$$
$$\Delta = \frac{1}{2}bc \sin A.$$

(ii) Find the set of values for which $(2x-9)(x+6) \le -34$. [3]

[3]

[1]

Qn	Solution	MS	Marker's Report
1(i)	$mx - 2 = x^2 + 3x + 2$ $x^2 + (3 - m)x + 4 = 0$	[МІ]	
	$a = 1, b = 3 - m, c = 4$ $(3 - m)^{2} - 4(1)(4) > 0$ $m^{2} - 6m - 7 > 0$	[M1]	-
	(m-7)(m+1) > 0 m < -1, m > 7	[A1]	
1(ii)	$2x^2 + 12x - 9x - 54 + 34 \le 0$	[M1]	
	$2x^2 + 3x - 20 \le 0$ $(2x - 5)(x + 4) \le 0$	[MI]	
	$-4 \le x \le \frac{5}{2}$	[A1]	

Show that the equation $\cos^2 x - \cos x = 2\sin^2 x$ can be written in the form $3\cos^2 x - \cos x - 2 = 0$.

Hence solve the equation $\cos^2 x - \cos x = 2\sin^2 x$, for $0^{\circ} \le x \le 360^{\circ}$. [4]

Qn	Solution	MS	Marker's Report
2(i)	$\cos^2 x - \cos x = 2\sin^2 x$ $\cos^2 x - \cos x = 2(1 - \cos^2 x)$ $\cos^2 x - \cos x = 2 - 2\cos^2 x$	[M1]	
	$3\cos^2 x - \cos x - 2 = 0 \text{(shown)}$	[A1]	0.5
2(ii)	$\cos^{2} x - \cos x = 2\sin^{2} x$ $3\cos^{2} x - \cos x - 2 = 0$ $(3\cos x + 2)(\cos x - 1) = 0$ $\cos x = -\frac{2}{3} \qquad \text{or} \qquad \cos x = 1$	[M1] [A1]	Ó
	Basic $x = 48.19^{\circ}$ $x = 0^{\circ}$ or 360° $x = 180^{\circ} - 48.19^{\circ} = 131.81^{\circ}$ or $x = 180^{\circ} + 48.19^{\circ} = 228.19^{\circ}$ Ans: $x = 0^{\circ}$, 131.8° , 228.2° or 360° deduct if extra or short of angles	[A2]	

Evaluate $\frac{4\times 2^{n-2}}{2^n-2^{n-1}}$. [2]

By using the substitution $u = 3^x$ or otherwise, find the values of x such that [4] $9^x - 12(3^x) + 27 = 0$

Qn	Solution	MS	Marker's Report
3(i)	$\frac{4 \times 2^{n-2}}{2^n - 2^{n-1}}$		
	$=\frac{2^n}{2^n(1-2^{-1})}$	[M1]	
	$=\frac{1}{(1-\frac{1}{2})}$		
	=2	[A1]	
3(ii)	u=3		
	$9^x - 12(3^x) + 27 = 0$	200	
1	$u^2 - 12u + 27 = 0$	[M1]	
	(u-3)(u-9)=0		
	u=3 or $u=9$	[M1]	
	$3^x = 3$ or $3^x = 9$		
	x=1 or $x=2$	[A2]	

The first three terms in the expansion of $(2+ax)^n$, where a < 0, in ascending powers of x, are $256 + px + 16128x^2 + ...$ Find the value of a, of p and of n

Hence find the x^2 term in the expansion of $(1+2x)^2(2+ax)^n$.

[4] [2]

Qn	Solution	MS	Marker's Report
4(i)	$(2+ax)^n = 2^n + \binom{n}{1} 2^{n-1} (ax) + \binom{n}{2} 2^{n-2} (ax)^2 + \dots$		
	$= 2^{n} + na2^{n-1}x + \frac{n(n-1)}{2}a^{2}2^{n-2}x^{2} + \dots$		
	$= 2^{n} + na2^{n-1}x + n(n-1)a^{2}2^{n-3}x^{2} + \dots$	[M1]	
	Comparing with $256 + px + 16128x^2 +$		
	$2'' = 256 \implies n = 8$	[A1]	
	$8(8-1)a^22^{8-3} = 16128 \implies a^2 = 9 \implies a = -3$ (a is	[A1]	
	negative) $p = (8)(-3)2^{8-1} = -3072$	[A1]	

 $(1+2x)^2(2+ax)^n = (1+4x+4x^2)(256-3072x+16128x^2+...)$ The temperature, T °C, in a greenhouse at time t hours after midnight on a certain day best reepapers.com x^2 term is $16128x^2 + 4x(-3072x) + 4x^2(256) = 4864x^2$ [A1] best reepapers.com is modelled by the formula $T = 25 + 2\sin\frac{\pi t}{6}$ for $0 \le t \le 24$.

$$\begin{vmatrix} 4(ii) & (1+2x)^2(2+ax)'' = (1+4x+4x^2)(256-3072x+16128x^2+...) \\ x^2 \text{ term is } 16128x^2+4x(-3072x)+4x^2(256)=4864x^2 \end{vmatrix}$$
 [A1]

- 5 The equation of a circle is $x^2 + y^2 + 4x 8y + 15 = 0$.
 - (i) Find the radius and the coordinates of the centre of the circle.

[2]

(ii) The circle is reflected in the y-axis. Find the equation of the new circle.

[2]

Qn	Solution	MS	Marker's Report
5(i)	$x^{2} + y^{2} + 4x - 8y + 15 = 0$ $2g = 4 2f = -8$ $g = 2 f = -4$		
	Centre: $(-2, 4)$ Radius = $\sqrt{(2)^2 + (-4)^2 - 15}$	[M1] [A1]	
	$=\sqrt{5}$ units	[A1]	
5(ii)	After reflection: Centre (2,4) Radius = $\sqrt{5}$	[M1]	
	$\therefore \text{ Equation of new circle: } (x-2)^2 + (y-4)^2 = 5$	[A1]	100
	(-2,4) X (2,4) x		oesill

$$p = (8)(-3)2^{8-1} = -3072$$

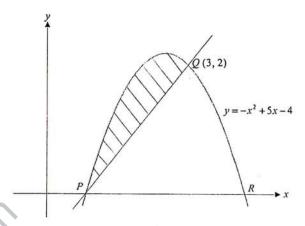
[A1]

[1]

- The temperature, T °C, in a greenhouse at time t hours after midnight on a certain day is modelled by the formula $T = 25 + 2\sin(\frac{\pi t}{12})$ for $0 \le t \le 24$.
 - (i) Calculate the temperature, T° C, of the greenhouse when t = 6.
 - (ii) Explain why this model suggests that the range of temperature, T °C, of the greenhouse is $23 \le T \le 27$.
 - (iii) Tomato plants grow best when $T \le 24$. Find the length of time for which the temperature of the greenhouse is suitable for the growth of tomato [4] plants.

Qn	Solution	MS	Marker's Report
6(i)	When $t = 6$,		
	$T = 25 + 2\sin\left(\frac{6\pi}{12}\right)$ $T = 27$		
	T=27	[B1]	
	20.		
6(ii)	Minimum temperature occurs when $\sin\left(\frac{\pi t}{12}\right) = -1$	[M1]	
C	T = 25 - 2 = 23		
	Maximum temperature occurs when $\sin\left(\frac{\pi t}{12}\right) = 1$	[M1]	
	T = 25 + 2 = 27		
	Hence range of temperature is $23 \le T \le 27$		
6(iii)	$25 + 2\sin\left(\frac{\pi t}{12}\right) = 24$	DAID	
	NAME.	[M1]	
	$2\sin\left(\frac{\pi t}{12}\right) = -1$	[M1]	
	$\sin\left(\frac{\pi t}{12}\right) = -\frac{1}{2}$	[M1]	
	$\frac{\pi t}{12} = \pi + \frac{\pi}{6}, 2\pi - \frac{\pi}{6}$		
	t = 14, 22	5413	
	V6	[A1]	
	Duration = 8 hours		

The equation of a curve is $y = \frac{2}{3}x^3 - x^2 - 4x + 5$.


(i) Find the coordinates of the stationary points on the curve.

[4]

(ii) Determine the nature of each of these stationary points.

[3]

Qn	Solution	MS	Marker's Report
7(i)	$y = \frac{2}{3}x^3 - x^2 - 4x + 5$ $\frac{dy}{dx} = 2x^2 - 2x - 4$ $\frac{dy}{dx} = 0$	[MI]	
	$2x^{2}-2x-4=0$ $x^{2}-x-2=0$ $(x-2)(x+1)=0$ $x=2,-1$ When $x=-1$, $y=\frac{22}{3}$	[M1]	
3	When $x = 2$, $y = -\frac{5}{3}$ $\therefore \left(-1, \frac{22}{3}\right) \text{ and } \left(2, -\frac{5}{3}\right)$	[A1]	
7(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4x - 2$	[M1]	
	$\frac{d^2 y}{dx^2} = 4x - 2$ At $x = -1$, $\frac{d^2 y}{dx^2} = 4(-1) - 2 < 0$ Hence, $\left(-1, \frac{22}{3}\right)$ is a max. point.	[A1]	bestille.
	At $x = 2$, $\frac{d^2 y}{dx^2} = 8 - 2$ $= 6 < 0$ Hence, $\left(2, -\frac{5}{3}\right)$ is a min. point.	[A1]	

The diagram shows part of the curve $y = -x^2 + 5x - 4$. The normal to the curve at the point Q(3, 2) meets the x axis at the point P. The curve $y = -x^2 + 5x - 4$ cuts the x-axis at points P and R.

Find

(i) the coordinates of P and R,

[3]

(ii) the area of the shaded region.

[4]

Qn	Solution	MS	Marker's Report
8(i)	$-x^2 + 5x - 4 = 0$		
	(x-1)(x-4)=0		
	x=1, x=4		
	∴ P(1,0)		
	∴ R(4,0)		
8(ii)	area under graph $y = -x^2 + 5x - 4$		•
	$\int_{1}^{3} (-x^{2} + 5x - 4) dx = \left[-\frac{1}{3}x^{3} + \frac{5}{2}x^{2} - 4x \right]_{1}^{3}$		
	$= (-9 + \frac{45}{2} - 12) - (-\frac{1}{3} + \frac{5}{2} - 4)$		
	$=3\frac{1}{3}units^2$		
	area of shaded region = $3\frac{1}{3} - \frac{1}{2}(2 \times 2) = 1\frac{1}{3} units^2$	8	

bestfreepapers.com

The roots of the equation $5x^2 - 2x + 4 = 0$ are α and β .

[2]

Find the coordinates of the points where the line $y = \frac{1}{2}x$ cuts the curve bestfree papers. com bestfree papers. The roots of the equation 3x - 2x + 4 = 0 and $\alpha \beta$.

- The BEST website to download FREE exam papers, notes and other materials from Singapore α^2 and α^2 .

[4]

[4]

(ii) Sketch the graphs of $y = \frac{1}{2}x$ and $y^2 = -4x$ on the same axes. Label your graphs and the points of intersection clearly.

[3]

Qn	Solution	MS	Marker's Report
9(i)	$y^2 = -4x$		
	$\left(\frac{1}{2}x\right)^2 = -4x$	[M1]	
	$x^2 = -16x$ $x(x+16) = 0$	[M1]	
	x = 0 $x = -16$		
	y = 0 y = -8		
	(0,0)	[A1]	
	(-16, -8)	[A1]	
9(ii) אַ	$y = -4x$ $y = \frac{1}{2}x$		
	(0,0) x		Cille
	[GI each for graph and label] [GI for intersection point and label]		10°

10 The roots of the equation $5x^2 - 2x + 4 = 0$ are α and β .

(i) State the value of $\alpha + \beta$ and $\alpha\beta$.

[2]

(ii) Find the quadratic equation in x whose roots are α^2 and β^2 .

[4]

(iii) Find the value of $\alpha^3 + \beta^3$.

[2]

Qn	Solution	MS	Marker's Report
10(i)	$x^2 - \frac{2}{5}x + \frac{4}{5} = 0$		
	$\alpha + \beta = \frac{2}{5}, \alpha\beta = \frac{4}{5}$	[B2]	
10(ii)	The second secon		
	$\alpha^2 + \beta^2 = \left(\frac{2}{5}\right)^2 - 2\left(\frac{4}{5}\right)$	[MI]	
	$\alpha^2 + \beta^2 = -\frac{36}{25}$	[AI]	
C	$\alpha^2 \beta^2 = (\alpha \beta)^2$		
	$=\left(\frac{4}{5}\right)^2$		
	$=\frac{16}{25}$	[B1]	
	/		
	$x^2 - \left(-\frac{36}{25}\right)x + \frac{16}{25} = 0$		
	$25x^2 + 36x + 16 = 0$	[A1]	
10(iii)	$\alpha^3 + \beta^3$		
	$=(\alpha+\beta)(\alpha^2-\alpha\beta+\beta^2)$		
	$=\left(\frac{2}{5}\right)\left(-\frac{36}{25}-\frac{4}{5}\right)$	[M1]	
	$=-\frac{112}{125}$	[A1]	
	125		

11	(a)	Show that $\frac{1 + \cos 2A + \cos A}{\sin 2A + \sin A} = \cot A.$	[3]
		3111 271 1 3111 71	

(b) Given that
$$\frac{d^2y}{dx^2} = 4x - 3$$
 and the curve has a stationary point at $A\left(1, \frac{1}{3}\right)$, find the equation of the curve. [4]

Qn	Solution	MS	Marker's Report	
11(i)	$LHS = \frac{1 + \cos 2A + \cos A}{\sin 2A + \sin A}$			
	$=\frac{1+2\cos^2 A-1+\cos A}{2\sin A\cos A+\sin A}$	[M1]		
	$= \frac{2\cos A(\cos A + 1)}{2\sin A(\cos A + 1)}$	[M1]		
	=cot A = RHS	[A1]		
l 1(ii)				
	$dx^2 = 4x^2$			G
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^2 - 3x + c$	[M1]		
	0 = 2 - 3 + c $c = 1$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^2 - 3x + 1$	[M1]		
	$y = \frac{2}{3}x^3 - \frac{3}{2}x^2 + x + c_1$		(8)	
	$\frac{1}{3} = \frac{2}{3} - \frac{3}{2} + 1 + c_1$	[M1]		
	•		0,5	
	$c_1 = \frac{1}{6}$		0	
	$y = \frac{2}{3}x^3 - \frac{3}{2}x^2 + x + \frac{1}{6}$		*	
	3 2 6	[A1]	1	

End of Paper

FUHUA SECONDARY SCHOOL

Secondary Four Normal Academic

4NA

Preliminary Examination 2016

Tuhna Secondary Tuhna Secondary Tuhna Secondary Tuhna Secondary Tuhna Secondary Tuhna Secondary Tuhna Secondary
Tuhna Secondary Tuhna Secondary Tuhna Secondary Tuhna Secondary Tuhna Secondary
Tuhna Secondary Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary
Tuhna Secondary

ADDITIONAL MATHEMATICS PAPER 1

4044/1

Additional Materials: Writing paper & Electronic calculator

DATE

17 Aug 2016 1005 - 1150

DURATION

1 h 45 min

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Write your answers and working on the separate writing paper provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 70.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

PARENT'S SIGNATURE	FOR EXAMINER'S USE
	/70

Setter:

Mr Chen Hong Ming

Vetter:

Ms Winnifred Lim

This question paper consists of 5 printed pages including this page.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$
where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab \sin C$$

- 1 (i) State the values of x for which $\cos^{-1} x$ is defined. [1]
 - (ii) Express the principal value of $\tan^{-1} \left(-\frac{\sqrt{3}-1}{\sqrt{3}+1} \right)$ in terms of π . [1]
 - (iii) Given that P denotes the principal value of $\cos^{-1} x$, state the maximum value of P. [1]
- Find the set of values of k for which the equation $y = 8x^2 3kx + 18$ lies strictly above the x-axis. [3]
- The volume of water in a container, $V \text{ cm}^3$, varies with the depth of water, h cm. Given that $V = \frac{2}{3}\pi h^3$ and that water is poured into the container at $90\text{cm}^3/\text{s}$, find the rate of increase of the depth of water when h = 1.5cm.
- Given that $\tan A = p$, p > 0, and angle A is reflex, express in terms of p,
 - (i) cot 2*A*,
 - (ii) cos A, [1]
 - (iii) sin 2 A .
- 5 Integrate with respect to x
 - (i) $\frac{\sqrt{x}-x}{x}$,
 - (ii) $\sqrt[3]{(1-4x)^2}$.
- 6 (i) Find, in ascending powers of x, the first 4 terms of $(2-3x)^7$.
 - (ii) Hence, determine the coefficient of x^3 in the expansion $\left(1+\frac{x}{2}\right)^2(2-3x)^3$. [2]
- By using the substitution $p = 2^x$, or otherwise, find the values of x such that

$$4^{x+1} + 2^{x+3} = 2^x + 2$$
 [5]

- The line y + 2x = 3 intersects the curve $y^2 = 8x$ at points A and B.
 - Find the coordinates of points A and B.[3]
 - Sketch, on the same axis, the graphs of y + 2x = 3 and $y^2 = 8x$, labelling clearly points A and B.
- 9 Show that $\frac{3^{2n+1}-3^{2n-1}}{9^{n+1}-9^{n-1}} = \frac{3}{10}$. [3]
- 10 (i) Differentiate $x^3 \sqrt{3x^2 + 1}$, leaving your answer in the form $\frac{Ax^4 + Bx^2}{\sqrt{3x^2 + 1}}$. [3]
 - (ii) Hence, evaluate $\int_0^4 \frac{x^2(4x^2+1)}{7\sqrt{3x^2+1}} dx$. [3]
- 11 Given the equation, $f(x) = \frac{1+x^2}{2x^2-3}, x > 0$.
 - Find f'(x). [3]
 - (ii) Find the equation of the tangent to the curve, y = f(x) at the point x = 2. [3]
 - (iii) Show that f is a decreasing function for x > 0. [2]
- 12 The equation of a circle is $x^2 + y^2 12x + 6y + 11 = 0$
 - (i) Find the radius and coordinates of the centre of the circle. [3]
 - (ii) Show that the circle does not cut the y-axis. [1]
 - (iii) Show that the point A(3, 2) lies on the circle. [2]
 - (iv) Find the equation of the tangent to the circle at A. [3]
 - (v) Find the equation of the tangent to the circle that is parallel to the tangent at A. [2]

6

An underwater locator beacon is installed in the aircraft's flight recorder for retrieval and use in the investigation of aeronautical accidents. A flight recorder's beacon emits a regular ultrasonic pulse that is described by the equation

$$P = 45 \sin 40t + 35 \cos 40t + 100$$

where t (measured in degrees) is the time in milliseconds after the crash and P is the intensity of the pulse, measured in decibels (dB).

- (i) Express P in the form $A \sin(40t + B) + C$. [3]
- (ii) State the maximum intensity of the pulse and the time when it first occurs after the crash.
 [2]

For the flight recorder to be detected, the intensity of the pulse must be above 120dB.

(iii) Calculate the duration within the first 9 milliseconds when the flight recorder was detectable. [4]

- End of Paper -

No	Solution	Remarks
li	$\cos^{-1} x$ is defined for $-1 \le x \le 1$	B1
lii	Principal value of $\tan^{-1} \left(-\frac{\sqrt{3}-1}{\sqrt{3}+1} \right) = -\frac{\pi}{12}$	В1
liii	Maximum principal value of $\cos^{-1} x = 180^{\circ}$	B1
2	$y = 8x^2 - 3kx + 18$	522
	$b^2 - 4ac < 0$	M1
	$9k^2 - 4(8)(18) < 0$	
	$k^2 - 64 < 0$	
	(k-8)(k+8)<0	M1
	sketch	A1
	-8 < k < 8	
3	$V = \frac{2}{3}\pi h^3$	
$\mathcal{L}(\mathbf{O})$	The state of the s	M1
	$\frac{dV}{dh} = 2\pi h^2$	
	$\frac{dV}{dh} = 2\pi (1.5)^2 = \frac{9}{2}\pi$	
	$\frac{dh}{dh} = 2h(1.5) = \frac{\pi}{2}h$	M1
	$\frac{dV}{dt} = 90 cm^3 / s$	
	$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$	M1
	1 000 Julius Julius 1000	
	$90 = \frac{9}{2}\pi \times \frac{dh}{dt}$	
	dh 20 / 22610 / 637	
	$\frac{dh}{dt} = \frac{20}{\pi} cm / s = 6.36619 cm / s \approx 6.37 cm / s$	A1
4i	tan A = p	
	$\cot 2A = \frac{1}{\tan 2A} = \frac{1 - \tan^2 A}{2 \tan A} = \frac{1 - p^2}{2p}$	D1
		B1
4ii	$\cos A = -\frac{1}{\sqrt{1+p^2}}$	B1
	$\sqrt{1+p^2}$	
4iii	$\sin 2A = 2\sin A\cos A$	M1
	$=2\times\frac{-p}{\sqrt{1+p^2}}\times\frac{-1}{\sqrt{1+p^2}}$	
	$\sqrt{1+p^2} \sqrt{1+p^2}$	
	$=\frac{2p}{1+p^2}$	A1
	1+ p2	
5i	$\int \frac{\sqrt{x} - x}{x} dx$	
		1-5
	$= \int x^{-\frac{1}{2}} - 1 dx$ $= 2x^{\frac{1}{2}} - x + c$	
	2 1 2 2 2	
	= 2x - x + c	B1

5ii	$\int \sqrt[3]{(1-4x)^2} dx$	T
	$=\int \left(1-4x\right)^{\frac{2}{3}}dx$	
	$=\frac{3(1-4x)^{\frac{5}{3}}}{5(-4)}+c$	
	$= -\frac{3(1-4x)^{\frac{5}{3}}}{20} + c$ $(2-3x)^{\frac{7}{3}}$	
	= - + c	В3
6i	$(2-3x)^7$	
	$=2^{7}-7(2^{6})(3x)+21(2^{5})(3x)^{2}-35(2^{4})(3x)^{3}+$	
	$= 128 - 1344 x + 6048 x^{2} - 15120 x^{3} + \dots$	B2
6ii	$\left(1+\frac{x}{2}\right)^2(2-3x)^7$	
	$= \left(1 + x + \frac{x^2}{4}\right) \left(128 - 1344 x + 6048 x^2 - 15120 x^3 + \ldots\right)$	М1
	$= 15120 x^3 + 6048 x^3 - 336 x^3 +$	
	$= 9408 x^3 +$	
	Coefficien $t = -9408$	A1
7	$4^{x+1} + 2^{x+3} = 2^x + 2$	
	$2^{2x+2} + 8(2^x) = 2^x + 2$	
	$4(2^x)^2 + 7(2^x) - 2 = 0$	M1
	$4p^2 + 7p - 2 = 0$	M1
	(4p-1)(p+2)=0	M1
	$2^* = -2(rej)$	A1
	$2^x = \frac{1}{4} = 2^{-2}$	Ai
	x = -2	
8i	y+2x=3	A1
25000	y=3-2x	0,3
	$y^2 = 8x$	
	$(3-2x)^2=8x$	V
	$9 - 12x + 4x^2 = 8x$	
	$4x^2 - 20x + 9 = 0$	M1
	(2x-9)(2x-1) = 0	
	$x = \frac{1}{2}, \frac{9}{2}$	
	y = 2, -6	
	$(\frac{1}{2}, 2) \& (\frac{9}{2}, -6)$	
	$(\frac{1}{2}, \frac{2}{2}) \propto (\frac{1}{2}, -6)$	A2

8ii	T.A	
011		
	4n· (1/2)·	
	1 1 2000-00	B1 (line)
		1
	7	B2 (Parabola)
1		
	\$ \$0.030	
9i	3 ²ⁿ⁺¹ - 3 ²ⁿ⁻¹	
71	$\frac{3}{9^{n+1}-9^{n-1}}$	
	$=\frac{3^{2n+1}-3^{2n-1}}{3^{2n+2}-3^{2n-2}}$	M1
	$=\frac{3^{2n}(3-3^{-1})}{3^{2n}(3^2-3^{-2})}$	M1
	(8)	
	$=\frac{\left(\frac{8}{3}\right)}{\left(\frac{80}{9}\right)}=\frac{3}{10}$	
	$=\frac{80}{10}$	A1
	(9)	1
10i	$\frac{d}{dx}x^3\sqrt{3x^2+1}$	1
	MA.	
	$=3x^2\sqrt{3x^2+1}+x^3\times\frac{1}{2}\times\frac{6x}{\sqrt{3x^2+1}}$	M2
	$= \frac{3x^2(3x^2+1)}{\sqrt{3x^2+1}} + \frac{3x^4}{\sqrt{3x^2+1}}$	
	V3.1 +1 V3.1 +1	
	$=\frac{12x^4+3x^2}{\sqrt{3x^2+1}}$	A1
	$\sqrt{3x^2+1}$	1
10ii	$\frac{\sqrt{3}x^2 + 1}{\frac{d}{dx}x^3\sqrt{3}x^2 + 1} = \frac{12x^4 + 3x^2}{\sqrt{3}x^2 + 1}$	
		M1
	$\frac{d}{dx}x^3\sqrt{3x^2+1} = \frac{3x^2(4x^2+1)}{\sqrt{3x^2+1}}$	
	V37 +1	
	$\frac{d}{dx} \frac{1}{3(7)} x^3 \sqrt{3x^2 + 1} = \frac{x^2 (4x^2 + 1)}{7 \sqrt{3x^2 + 1}}$	M1
	// // // //	1000000
	$\int_0^4 \frac{x^2(4x^2+1)}{7\sqrt{3x^2+1}} dx$	
	$\sqrt{3x^2+1}$	
-	[1, , ,]	
	$= \left[\frac{1}{3(7)} x^3 \sqrt{3x^2 + 1} \right]^4$	
	(1	
	$= \left(\frac{1}{3(7)} \times 4^3 \sqrt{3(4)^2 + 1}\right) - \left(\frac{1}{3(7)} \times 0^3 \sqrt{3(0)^2 + 1}\right)$	
	$=\frac{64}{3}$	A1
	3	

9

11i f'(x)

10

bestfreepapers.com
- The BEST website to download FREE exam papers, notes and other materials singapore!

11i	f'(x)	
	$=\frac{d}{dx}\left(\frac{1+x^2}{2x^2-3}\right)$	
	$=\frac{(2x^2-3)(2x)-(1+x^2)(4x)}{(2x^2-3)^2}$	M2 -
	$=\frac{4x^3-6x-4x-4x^3}{(2x^2-3)^2}$	
	$=\frac{-10x}{(2x^2-3)^2}$	A1
11ii	When $x = 2$	
	$f(2) = \frac{1+2^2}{2(2)^2 - 3} = \frac{5}{5} = 1$	M1
	$f'(2) = \frac{-10(2)}{[2(2)^2 - 3]^2} = \frac{-20}{25} = -\frac{4}{5}$	М1
	Subst (2, 1), $m = -\frac{4}{5}$ in $y = mx + c$	
	$1 = \left(-\frac{4}{5}\right)(2) + c$	
	$c = \frac{13}{5}$	
	Equation of Tangent: $y = -\frac{4}{5}x + \frac{13}{5}$	A1
Hiii	$\therefore x > 0$	
	-10x < 0	CA
		В1
	$(2x^2-3)^2>0\forall x$	6
	$\therefore \frac{-10x}{(2x^2-3)^2} < 0$	0.
	$\therefore \frac{dy}{dx} < 0$	P
	Hence it will be a decreasing function.	B1
12i	$x^2 + y^2 - 12x + 6y + 11 = 0$	
	$(x-6)^2 + (y+3)^2 = 36+9-11 = 34$	
	Centre = $(6, -3)$	P2
	Radius = $\sqrt{34} \approx 5.83095$ units	В3
12ii	The x-coordinate of the centre is 6 which is greater than the radius of 5.83 hence, the circle will not touch the y-axis.	В1
(1705.011)		
12iii	When $x = 3$,	

	$9 + y^2 - 36 + 6y + 11 = 0$	
	$y^2 + 6y - 16 = 0$	M1
1	(y-2)(y+8)=0	
1	(y-2)(y+3)=0 y=2,-8	
	y = 2,-8 Therefore (3, 2) lies on the circle.	A1
12iv	Gradient of radius from centre to A	
1211		M1
	$=\frac{2-(-3)}{3-6}=-\frac{5}{3}$	100.000
	Condicate of tangent 3	M1
- 1	Gradient of tangent = $\frac{3}{5}$	
	Subst (3, 2), $m = \frac{3}{5}$ in $y = mx + c$	1
-0	$2 = \frac{3}{5}(3) + c$	
O,	$c = \frac{1}{5}$	
	$y = \frac{3}{5}x + \frac{1}{5}$	Al
	5y = 3x + 1	Ai
12v	Let B(x,y)	
	$\left(\frac{x+3}{2}, \frac{y+2}{2}\right) = (6,-3)$	
	x = 9, y = -8	M1
	Subst (9, -8), $m = \frac{3}{5}$ in $y = mx + c$	
	$-8 = \frac{3}{5}(9) + c$	
	$c = -\frac{67}{5}$	
	$y = \frac{3}{5}x - \frac{67}{5}$	
	5 y = 3x - 67	A1
13i	$5y = 3x - 67$ $P = 45 \sin 40t + 35 \cos 40t + 100$	
	$= \sqrt{45^2 + 35^2} \sin(40t + \tan^{-1}\frac{35}{45}) + 100$	
	$= 5\sqrt{130}\sin(40t + 37.8749) + 100$	
	$A = 5\sqrt{130} = 57.008 \approx 57.0$	
1	B = 37.9°	В3
	C = 100 .	
13ii	Maximum intensity = $5\sqrt{130} + 100 = 157dB$	B1
	40t + 37.8749 = 90	
	t = 1.303125ms	

	It occurs when t = 1.30 milliseconds	B1
13iii	$P = 5\sqrt{130} \sin(40t + 37.8749) + 100$	
	P > 120	
	$5\sqrt{130}\sin(40t+37.8749) > 20$	
	sin(40t + 37.8749) > 0.350823	M1
	0 ≤ t ≤ 9	
	0 ≤ 40 t ≤ 360	
	$37.8749 \le 40t + 37.8749 \le 397.8749$	
	$B.A, \alpha = 20.5376$	М1
	40t + 37.8749 = 20.5376 (rej),180 - 20.5376,360 + 20.5376	
	401 + 37.8749 = 159.4623,380.5376	
	40 t = 121 .5873 ,342 .6626	
	t = 3.03968 ,8.5665	M1
	Duration	
	= (9 - 8.566) + 3.039	
	= 3.4731	A1
	≈ 3.47 ms	AI

Candidate Name:

FUHUA SECONDARY SCHOOL

Secondary Four Normal Academic

4044/2

Preliminary Examination 2016

Fuhua Secondary Fuhua Secondary

ADDITIONAL MATHEMATICS PAPER 2

Additional Materials: Writing paper & Electronic calculator

Writing paper & Electronic co

DATE 18 Aug 2016 TIME 0750 – 0935

DURATION 1 h 45 min

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Write your answers and working on the separate writing paper provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 70.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

FOR EXAMINER'S USE
/ 70

Setter:

Mr Chen Hong Ming

Vetter:

Ms Winnifred Lim

This question paper consists of 5 printed pages including this page.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$
where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \frac{n(n-1) \dots (n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

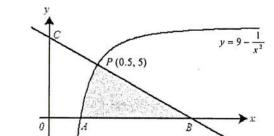
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

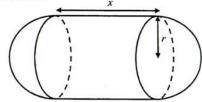

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab \sin C$$

- It is given that $2(x-2) = \sqrt{3}(x-3)$. Without using a calculator, find x in the form of $a + b\sqrt{3}$.
- 2 Divide $x^4 + x^3 5x^2 + 13x 6$ by $x^2 + 3x 2$. [3]
- The first three terms in the binomial expansion of $\left(2 + \frac{x}{p}\right)^n$ are $256 + 256x + qx^2$. Find the values of n, p and q.
- The function f is given by $f(x) = 23 + 8x + x^2 2x^3$.
 - (i) Find the range of values of x for which f is a decreasing function. [4]
 - (ii) Represent this set of values on a number line. [1]
- 5 (i) Show that $(\tan \theta + \sec \theta)^2 = \frac{1 + \sin \theta}{1 \sin \theta}$. [3]
 - (ii) Hence, solve the equation $(\tan \theta + \sec \theta)^2 = 2$ for $0^\circ < x < 360^\circ$. [3]
- 6 It is given that f''(x) = 12x 4 and that f'(2) = 11 and f(-1) = -7. Find f(x) in terms of x. [5]
- 7 The roots of the equation $3x^2 + 5x 4 = 0$ are α and β .
 - (i) Evaluate $\alpha^2 + \beta^2$.
 - (ii) Find, in the form $ax^2 + bx + c = 0$, where a, b and c are integers, the equation whose roots are $\alpha^2 \frac{1}{\beta}$ and $\beta^2 \frac{1}{\alpha}$. [3]
- The polynomial f is given by $f(x) = 2x^3 + ax^2 + bx + 6 = 0$.
 - (i) Given that x + 2 is a factor of f(x) and f(x) gives a remainder of 7.5 when divided by 2x + 1, find the value of a and of b.
 [4]
 - (ii) Hence, show that f(x) = 0 has only one real root. [3]



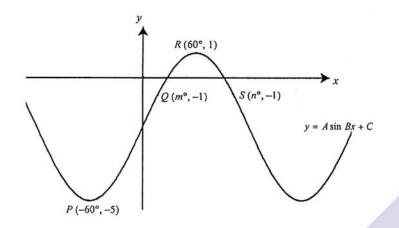
The diagram shows the graph $y = 9 - \frac{1}{r^2}$ which crosses the x-axis at A.

- (i) Find the coordinate of A. [1]
- (ii) Find $\frac{dy}{dx}$. [1]

The normal to the curve at P(0.5, 5) cuts the x-axis at B and the y-axis at C.

- (iii) Find the coordinates of B. [4]
- (iv) Find the area of the shaded region. [4]
- Matherone is a new drug developed by ChenCorp[©] to enhance memory and problem solving skills. This drug comes in a capsule which consist of a cylinder capped by 2 hemispheres on each end.

Given that the cylinder has a length of x mm and a radius of r mm and that the total volume of the capsule is 150mm^3 ,


- (i) form an equation for x in terms of r.
- ii) Hence, show that the surface area of the capsule, A, is given by $A = \frac{4}{3}\pi r^2 + \frac{300}{r}$ [3]

For the drug to be most effective, the capsule must be designed with the least possible surface area to delay the absorption over a length of time.

(iii) Find the least surface area possible for the drug capsule.

(Show your working clearly that your answer is indeed the least area)

The curve below shows the graph $y = A \sin Bx + C$. P, Q, R and S are 4 points that lie on the curve such that R is a maximum point and P is a minimum point.

- (i) Find the value of A, B and C.

[3]

- (ii) Form an equation connecting m and n.
- (b) Solve, for angles between 0 and 2π ,
 - (i) $2\cos 2x = 2\sin x 1$,
 - (ii) $\sin(y+4) = 3\cos y$.

- End of Paper -

No	Solution	Remarks
1	$2(x-2) = \sqrt{3}(x-3)$	
	$2x - 4 = x\sqrt{3} - 3\sqrt{3}$	
	$x(2 - \sqrt{3}) = 4 - 3\sqrt{3}$	
	$x = \frac{4 - 3\sqrt{3}}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$	
	2-45 2+45	M1 M1
	$= \frac{8 - 6\sqrt{3} + 4\sqrt{3} - 9}{4 - 3}$	
2	$=-1-2\sqrt{3}$	A1
2	$= -1 - 2\sqrt{3}$ $\frac{x^4 + x^3 - 5x^2 + 13x - 6}{x^2 - 3x + 2} = x^2 - 2x + 3$	В3
3	$(n)(2^{n-1})x n(n-1)(2^{n-2})x^2$	
($\left(2 + \frac{x}{p}\right)^n = 2^n + \frac{(n)(2^{n-1})x}{p} + \frac{n(n-1)(2^{n-2})x^2}{2p^2} + \dots$	
	$2^{n} + \frac{(n)(2^{n-1})x}{p} + \frac{n(n-1)(2^{n-2})x^{2}}{2p^{2}} = 256 + 256x + qx^{2}$	
	$p = 2p^2 = 250 + 250 x + qx$	1
	8	
	$2'' = 256 = 2^8$	A1
	n = 8	152784
	8(128)	
	$\frac{8(128)}{p} = 256$	
	p=4	A1
	$\frac{(8)(7)(64)}{2(4^2)} = q$	
	2(42)	
	q = 112	A1
4i	$f(x) = 8x + x^2 - 2x^3$	MI
	$f'(x) = 8 + 2x - 6x^2$	WII
	: Decrea sin g	M1
	$\begin{array}{l} \therefore 8 + 2x - 6x^2 < 0 \\ 4 + x - 3x^2 < 0 \end{array}$	
	$4 + x - 3x^{*} < 0$ $3x^{2} - x - 4 > 0$	
	$3x^2 - x - 4 > 0$ (3x - 4)(x + 1) > 0	MI
	Sketch	
	$x < -1, x > \frac{4}{3}$	A1
4ii	Drawing of Number Line	B1

5i	$L.H.S = (\tan\theta + \sec\theta)^2$	
	$= \left(\frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}\right)^2$	M1
		1144
	$=\left(\frac{\sin\theta+1}{\cos\theta}\right)^2$	
	,	
	$=\frac{(\sin\theta+1)^2}{\cos^2\theta}$	
	$=\frac{(\sin\theta+1)^2}{1-\sin^2\theta}$	M1
	150 St. 150 St	IVII
	$=\frac{(\sin\theta+1)^2}{(1-\sin\theta)(1+\sin\theta)}$	
		A1
	$=\frac{1+\sin\theta}{1-\sin\theta}$	Ai
5ii	$(\tan\theta + \sec\theta)^2 = 2$	
	$\frac{1+\sin\theta}{1-\sin\theta}=2$	223
	- 10 m 10 N	M1
	$1 + \sin \theta = 2 - 2\sin \theta$	
	$3\sin\theta = 1$	
	$\sin \theta = \frac{1}{3}$	M1
	$B.A, \alpha = 19.471$	
	$\theta = 19.471,180 - 19.471$	
	= 19.471,160.528	
	≈ 19.5°,160.5°	A1
6	$f^{\prime\prime}(x) = 12x - 4$	
	$f'(x) = \int 12 x - 4 dx$	M1
	$=6x^2-4x+c$	1741
	f'(2) = 11	5
	$6(2)^2 - 4(2) + c = 11$	
	24 - 8 + c = 11	10
	c = -5	MI
	$f'(x) = 6x^2 - 4x - 5$	
	$f(x) = 2x^3 - 2x^2 - 5x + k$	M1
	f(-1) = -7	28
	$2(-1)^3 - 2(-1)^2 - 5(-1) + k = -7$	M1
	-2-2+5+k=-7	
	k = -8	
	$f(x) = 2x^3 - 2x^2 - 5x - 8$	A1
	$\int (\lambda) - 2\lambda = 2\lambda = 3\lambda - 8$	A1

7i	$3x^2 + 5x - 4 = 0$	
71	2555 February 2 (See 1920)	
	$\alpha + \beta = -\frac{5}{3}$	М1
	$\alpha\beta = -\frac{4}{3}$	M1
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{25}{9} + \frac{8}{3} = \frac{25}{9} + \frac{24}{9} = \frac{49}{9}$	A1
7ii	$\alpha^2 - \frac{1}{\beta} + \beta^2 - \frac{1}{\alpha}$	
	$\alpha - \frac{1}{\beta} + \beta - \frac{1}{\alpha}$	
	$=\frac{49}{9}-\frac{\alpha+\beta}{\alpha\beta}$	
	$=\frac{49}{9}+\frac{5}{3}+\left(-\frac{4}{3}\right)=\frac{49}{9}-\frac{5}{4}=\frac{151}{36}$	М1
C	$\left(\alpha^2 - \frac{1}{\beta}\right)\left(\beta^2 - \frac{1}{\alpha}\right)$	
C	$=\alpha^2\beta^2-\alpha-\beta+\frac{1}{\alpha\beta}$	
	$=\left(-\frac{4}{3}\right)^2 + \frac{5}{3} - \frac{3}{4} = \frac{97}{36}$	
	$= \left(-\frac{1}{3}\right) + \frac{1}{3} - \frac{1}{4} = \frac{1}{36}$	M1
	New equation	
		A1
8i	$36x^{2} - 151x + 97 = 0$ $f(x) = 2x^{3} + ax^{2} + bx + 6 = 0$	
	f(-2) = -16 + 4a - 2b + 6 = 0	M1
	4a - 2b = 10	21
	2a - b = 5	
	CONTRACT OF CONTRA	
	$f(-\frac{1}{2}) = -\frac{1}{4} + \frac{a}{4} - \frac{b}{2} + 6 = 7.5$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1
	a-2b=7	
	a = 2b + 7	
	4b + 14 - b = 5	
	3b = -9	
	The state of the s	A2
8ii	$a = 1, b = -3$ $f(x) = 2x^3 + x^2 - 3x + 6$	177
	$=(x+2)(2x^2-3x+3)$	M1
	x = -2	222
	The suppose of the su	M1
	$2x^2 - 3x + 3 = 0$	
	$b^2 - 4ac = 9 - 4(2)(3) = -15 < 0$	
	\therefore x = -2 is the only real root.	A1

9i	$y = 9 - \frac{1}{x^2}$	Tax and the same of the same o	
	$y = 0$ $9 - \frac{1}{x^2} = 0$		
	$\frac{1}{x^2} = 9$		
	$x = \frac{1}{3}, -\frac{1}{3}(rej)$	8	
	$A\left(\frac{1}{3},0\right)$		B1
9ii	$y = 9 - \frac{1}{x^2}$		
	$\frac{dy}{dx} = -\frac{(-2)}{x^3} = \frac{2}{x^3}$ When $x = 0.5$	2 10 34	B1
9iii	$\frac{dy}{dx} = \frac{2}{(0.5)^3} = 16$		M1
	$m_1 m_2 = -1 (16) m_2 = -1$. • 🚄
	$m_2 = -\frac{1}{16}$	en til ska sig	M1
	1	$x - \frac{1}{16}$ in y = mx + c	
	$5 = -\frac{1}{16}(0.5) + c$		
	$c = 5\frac{1}{32}$		2.5
	$y = -\frac{1}{16}x + 5\frac{1}{32}$		
	$y = -\frac{1}{16}x + \frac{161}{32}$		() A1
	32y = -2x + 161		
	When $y = 0$ x = 80.5	6	A1
	B(80.5, 0)		AI

9iv Are	$ea = \int_{\frac{1}{2}}^{\frac{1}{2}} 9 - \frac{1}{x^2} dx + \frac{1}{2} \times 80 \times 5$	M2
=[$9x + \frac{1}{x} \Big]_{\frac{1}{3}}^{\frac{1}{2}} + 200$	
1	$9 \times \frac{1}{2} + 2$) - $(9 \times \frac{1}{3} + 3) + 200$	М1
	.5 - 6 + 200	
	00.5units ²	A1
$10i \frac{4}{3}$	$r^{1} + \pi r^{2} x = 150$	M1
	$\frac{150 - \frac{4}{3}\pi r^3}{\pi r^2}$	
= 1	$\frac{50}{rr^2} - \frac{4}{3}r$	A1
10ii A :	$\frac{\pi^2}{3} = 4\pi r^2 + 2\pi r x$	M1
	$= 4\pi r^2 + 2\pi r \left(\frac{150}{\pi r^2} - \frac{4}{3}r\right)$	M1
= 4	$mr^2 + \frac{300}{r} - \frac{8}{3}mr^2$	
= -	$\frac{1}{r}\pi r^2 + \frac{300}{r}$	A1
10iii A	$=\frac{4}{3}\pi r^2 + \frac{300}{r}$	
6207	$= \frac{8}{3}\pi r - \frac{300}{r^2}$	М1
8 7	$r - \frac{300}{r^2} = 0$	M1
	$r = \frac{300}{1}$	
, , , , , , , , , , , , , , , , , , ,	$=\frac{900}{8\pi}=35.809$	M1
	3.2961	
A:	$= \frac{4}{3}\pi (3.2961)^2 + \frac{300}{(3.2961)} = 227.54 \approx 228 mm^2$	A1
$\frac{d^2}{dr}$	$\frac{A}{2} = \frac{8}{3}\pi + \frac{600}{r^3} = 25.13 > 0$	В1
2.1	nin Area	

j)
gle)
)

Geylang Methodist School (Secondary) **Preliminary Examination 2016**

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n},$$
where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

ADDITIONAL MATHEMATICS

Paper 1

4 Normal (Academic)

Additional Materials provided: Writing Paper

Cover Sheet

Setter: Ms Nainee Ismail

Thursday, 11 August 2016

4044 / 01

1 hour 45 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the writing papers provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total score for this paper is 70.

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1' + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for AABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

This document consists of 5 printed pages including the cover page and 1 blank page.

[3]

[4]

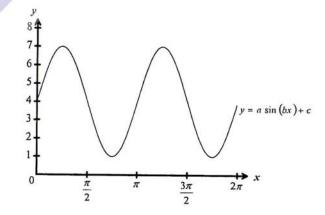
- Find the set of values of p for which the equation $-3x^2 + px 12 = 0$ has real roots. [3]
- 2 Solve the simultaneous equations

$$3^{y} \times 9^{-x} = \frac{1}{3}$$
,

$$x+2y-3=0$$
.

[4]

- The coordinates of the points A and B are (-1,2) and (3,10). Find the equation of the perpendicular bisector of AB.
- 4 (i) Factorise $x^3 8$.


[2]

- (ii) Explain why the curve $y = x^3 8$ only has one x intercept at x = 2.
 - [2]

[2]

- The volume, $V \text{ cm}^3$, of a spherical ball is given by $V = \frac{4}{3}\pi r^3$, where r cm is the radius of the ball. The ball is deflated such that its volume decreases at a rate of 294 cm³s⁻¹. Find the value of r when the radius is decreasing at a rate of $\frac{3}{2\pi}$ cms⁻¹. [4]
- 6 (i) Write down the first four terms in the expansion, in ascending powers of x, of $(1+ax)^8$, where a is a positive constant.
 - (ii) Given that the coefficients of x and x^3 in the expansion of $(1+ax)^8$ are equal, find the value of the constant a, leaving your answer in surd form. [3]
- Given that $y = (2x+1)^3 x^{-2}$, find $\frac{dy}{dx}$, giving your answer in the form $\frac{(px+q)(2x+1)^2}{x^3}$ where p and q are integers. [5]

- 8 (i) Given that $y = (2x^2 1)^4$, show that $\frac{dy}{dx} = 16x(2x^2 1)^3$.
 - (ii) Hence, find $\int_0^2 x (2x^2 1)^3 dx$.
- The function $f(x) = ax^3 3x^2 + b$, where x is a real number and that f(2) = 3, has a stationary value at x = 1.
 - i) Find the value of the constants a and b.
 - (ii) Explain, with justification, why the stationary point at x = 1 is a minimum. [3]
- 10 (a) The diagram shows part of the graph $y = a \sin(bx) + c$.

State

(i) the period and amplitude of y,

[2]

(ii) the value of a, b and c.

[3]

(b) On a separate diagram, sketch the graph of $y = 1 - \cos 2x$ for $0^{\circ} \le x \le 180^{\circ}$.

[Turn over

[3]

[2]

[2]

[4]

[2]

- 11 The function f(x) is defined as $f(x) = x^3 kx^2 + 3x + 6$, for all real values of x.
 - Find the range of values of x for which f(x) is an increasing function.
 - (ii) For the case k = 2, find the equation of the normal to the curve
 - y = f(x) where x = 1. [4]

Sketch the parabola $y^2 = 2x$.

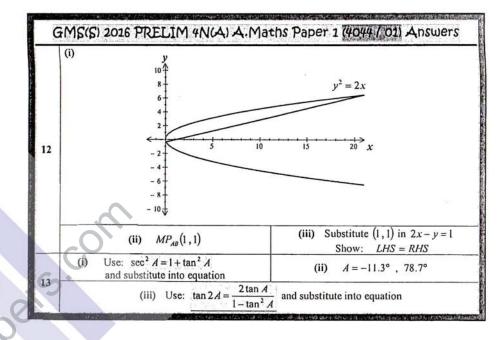
The line y = x intersects the parabola at the points A and B.

- (ii) Find the midpoint of AB.
- (iii) Show that the midpoint of AB lies on the line 2x y = 1.

Show that the equation

 $24 \tan A - 2 \tan^2 A = 3 \sec^2 A - 8$

may be written in the form


$$5 \tan^2 A - 24 \tan A - 5 = 0$$
.

(ii) Find, in degrees, the two principal values of A for which

$$24 \tan A - 2 \tan^2 A = 3 \sec^2 A - 8$$
.

- (iii) By using a suitable identity, explain why the values of A found in (ii) satisfy the equation $\tan 2A = -\frac{3}{12}$.

Ç	GMS(S) 2016 PRELIM 4N(A) A. Maths Paper 1 4044 (6) Answers			
1	p ≤ -12	or p≥12		
2	(x=1)	, y = 1)		
3	y = -	$\frac{1}{2}x + \frac{13}{2}$		
4	(i) $(x-2)(x^2+2x+4)$	(ii) $y = \underbrace{(x-2)}_{\text{cuts } x - \text{axis}} \underbrace{(x^2 + 2x + 4)}_{\text{does not cut } x - \text{axis}}_{\text{(x^2 - anc-ct)}}$		
5	r =	- 7 cm		
6	(i) $1 + 8ax + 28a^2x^2 + 56a^3x^3 + \dots$	(ii) $a = \frac{1}{\sqrt{7}}$ or $\frac{\sqrt{7}}{7}$		
7	$\frac{dy}{dx} = \frac{(2x-2)(2x+1)^2}{x^3}$ $(p=2, q=-2)$			
8	(i) Use Chain Rule	(ii) 150		
9	(i) $a=2$, $b=-1$	(ii) $f''(1) = 6$ (> 0) stationary point at $x = 1$ is a minimum.		
	(a)(i) Period = π radians Amplitude = 3 units	(a)(ii) $a=3$, $b=2$, $c=4$		
10	(b) $y = 1 - \cos 2x$ $y = -\cos 2x$ $y = \cos 2x$ $y = \cos 2x$ $y = \cos 2x$ $y = \cos 2x$			
11	(i) −3 < k < 3	(ii) $y = -\frac{1}{2}x + \frac{17}{2}$		

Geylang Methodist School (Secondary) Preliminary Examination 2016

ADDITIONAL MATHEMATICS

Paper 1

Additional Materials provided:

Setter: Ms Nainee Smail

Normal (Academic) dur 45 minutes

hursday, 11 August 2016

THESE INSTRUCTIONS FIR

ame, class and index number on all the work you hand in.

dark blue of black per on both sides of the paper.

may lise a soft pencil for any diagrams or graphs.

Do not use stables paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the writing papers provided

Give non-exact numerical answers correct to significant figures, or illustration angles in degrees, unless a different level of accuracy is spedfied in

The use of a scientific calculator is expected, where appropria

You are reminded of the need for olear presentation in your answ

The number of marker is given in brackets [1 at the end of each question or part question.

The total score for this paper is 70

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

Find the set of values of p for which the equation $-3x^2 + px - 12 = 0$ has real roots. [3]

1
$$-3x^2 + px - 12 = 0$$

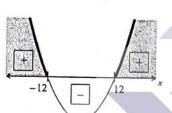
[$a = -3$; $b = p$; $c = -12$]
[real roots $\rightarrow b^2 - 4ac \ge 0$]

$$b^{2} - 4ac \ge 0$$
$$(p)^{2} - 4(-3)(-12) \ge 0$$

$$p^2-144\geq 0$$

$$p^2-12^2\geq 0$$

 $(p+12)(p-12) \ge 0$


[Leading to critical points: p = -12, p = 12]

 $(p+12)(p-12) \ge 0$

From graph:

$$\Rightarrow p \le -12$$
 or $p \ge 12$

[A1]

$$3^{y}\times 9^{-x}=\frac{1}{3},$$

$$x+2y-3=0.$$

[4]

$$x + 2y - 3 = 0 \qquad \rightarrow (2)$$

(1):
$$3^{y} \times 9^{-x} =$$

$$(3)^{\nu} \times (3^{2})^{-x} = (3)^{-1}$$

$$3^{y} \times 3^{-2x} = 3^{-1}$$

$$3^{y+(-2x)} = 3^{-1}$$

$$y-2x=-1$$
$$y=2x-1 \longrightarrow (3)$$

[M1]

Substitute (3) into (2):

(2):
$$x+2y-3=0$$

$$x+2(2x-1)-3=0$$

$$x+2(2x-1)-3=0$$

 $x+4x-2-3=0$

$$5x - 5 = 0$$

$$5x - 5 = 0$$

$$5x = 5$$

[+(5) on both sides]

[M1]

$$x = 1$$

Substitute x = 1 into (3):

(3):
$$y = 2x - 1$$

$$y=2(1)-1$$

$$y = 2 - 1$$

$$\Rightarrow$$
 $y=1$

$$\therefore \qquad (x=1, y=1)$$

GMS(S)/AMath/P1/PRELIM2016/4N(A)/Answer Scheme

GMS(S)/AMath/P1/PRELIM2016/4N(A)/Answer Scheme

(ii) Explain why the curve $y = x^3 - 8$ only has one x - intercept at x = 2. [2]

Given: A(-1,2), B(3,10)

 $MP_{AB} = \left(\frac{x_1 + x_1}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-1 + 3}{2}, \frac{2 + 10}{2}\right)$ Mid-point of AB:

 $MP_{AB} = \left(\frac{2}{2}, \frac{12}{2}\right) = (1, 6)$

 $m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{10 - 2}{3 - (-1)} = \frac{8}{4} = 2$ Gradient of AB:

 $m_{AB} = \frac{8}{4} = 2$

 $(m_{1AB})(m_{AB}) = -1$ Gradient of \bot bisector of AB:

 $m_{\perp AB} = \frac{-1}{m_{\perp AB}} = \frac{-1}{2} = -\frac{1}{2}$

 $(x_1, y_1) = (1, 6)$; $m_{\perp AB} = -\frac{1}{2}$ Equation of \perp bisector of AB:

 $y - y_1 = m_{\perp AB} \left(x - x_1 \right)$

 $y-6=-\frac{1}{2}(x-1)$

 $y = -\frac{1}{2}x + \frac{1}{2} + 6$

5

 \Rightarrow $y = -\frac{1}{2}x + \frac{13}{2}$

[A1]

[Turn over

Difference of cubes:

Factorise $x^3 - 8$.

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

$$x^3 - 8 = x^3 - 2^3$$

MI

121

$$x^3 - 2^3 = (x-2)(x^2 + x(2) + 2^2)$$

$$x^3 - 2^3 = (x-2)(x^2 + 2x + 4)$$

[A1]

$$y = (x-2)(x^2+2x+4)$$

x – intercept: y = 0

$$= x^3 - 8 \qquad \longrightarrow \qquad 0 = x^3 - 8$$

$$y = (x-2)(x^2+2x+4) \rightarrow 0 = (x-2)(x^2+2x+4)$$

 \Rightarrow $x^2 + 2x + 4 = 0$

$$\Rightarrow x=2$$

⇒ No solution $\left(b^2 - 4ac < 0\right)$

$$(x^2 + 2x + 4) \implies a = 1, b = 2, c = 4$$

Discriminant $= b^2 - 4ac$

$$=2^2-4(1)(4)$$

$$=4-16$$

Discriminant =-12 (< 0)

[M1]

$$y = \underbrace{(x-2)}_{\text{cuts } x-\text{axis}} \underbrace{(x^2+2x+4)}_{\text{does not cut } x-\text{axis}}$$

Hence, $y = x^3 - 8$ has only one x - intercept at x = 2.

$$V = \frac{4}{3}\pi r^{-3}$$

$$\frac{dV}{dr} = \frac{4}{3}(3)\pi r^{-3-1}$$

$$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$$

$$\frac{dt}{dt} = \frac{dr}{dr} \times \frac{dt}{dt}$$

$$-294 = 4\pi r^2 \times \left(-\frac{3}{2\pi}\right)$$

$$-294 = 2r^2 \times (-3)$$

$$-294 = -6r^2$$

$$\frac{-294}{-6} = r^2$$

$$r^2 = 49$$

$$r = \pm \sqrt{49}$$

$$r = \pm 7$$

$$\therefore r = 7 \text{ cm}$$

[A1]

(Reject r = -7 cm, radius is positive)

- Write down the first four terms in the expansion, in ascending powers of x, of $(1+ax)^8$, where a is a positive constant. [2]
 - (ii) Given that the coefficients of x and x^3 in the expansion of $(1+ax)^8$ are equal, find the value of the constant a, leaving your answer in surd form. [3]

6 (i)
$$(1+ax)^8 = {8 \choose 0} 1^{8-0} (ax)^0 + {8 \choose 1} 1^{8-1} (ax)^1 + {8 \choose 2} 1^{8-2} (ax)^2 + {8 \choose 3} 1^{8-3} (ax)^3 + \dots$$

$$= (1) 1^8 (1) + (8) 1^7 (ax) + (28) 1^6 (a^2x^2) + (56) 1^5 (a^3x^3) + \dots$$

$$\therefore (1+ax)^8 = 1 + 8ax + 28a^2x^2 + 56a^3x^3 + \dots$$
[A1]

Coefficients of x and x^3 are equal: Term containing x = 8axTerm containing $x^3 = 56a^3x^3$

$$8a = 56a^{3}$$

$$0 = 56a^{3} - 8a$$

$$8a (7a^{2} - 1) = 0$$

$$\Rightarrow 8a = 0 \qquad \Rightarrow (7a^{2} - 1) = 0$$

$$a = 0 \qquad 7a^{2} = 1$$

$$a^{2} = \frac{1}{7}$$

$$a = \pm \sqrt{\frac{1}{7}} = \pm \frac{\sqrt{1}}{\sqrt{7}} = \pm \frac{1}{\sqrt{7}}$$

$$\therefore \qquad a = \frac{1}{\sqrt{7}} \quad (a \text{ is a positive constant})$$

$$OR \qquad a = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$$

$$\therefore \qquad a = \frac{\sqrt{7}}{7}$$

-[A1] (For answers in decimal)

(Reject $a = -\frac{1}{\sqrt{7}}$ or 0 or $-\frac{\sqrt{7}}{7} \rightarrow a$ is a positive constant.)

[Turn over

GMS(S)/AMathyP1/PRELIM2016/4N(A)/Answer Scheme

[A1]

7 Given:
$$y = (2x+1)^3 x^{-2}$$
 Let: $u = (2x+1)^3$

$$\frac{dy}{dx} = u \, dv + v \, du$$

$$\frac{du}{dx} = (2x+1)^3 \left(\frac{-2}{x^3}\right) + (x^{-2}) \, 6 \, (2x+1)^2$$

$$\frac{dy}{dx} = \frac{-2 \, (2x+1)^3}{x^3} + \frac{6 \, (2x+1)^2}{x^2}$$

$$[Extract common factor]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{-(2x+1)}{x} + \frac{3}{1}\right]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{-(2x+1)}{x} + \frac{3}{1}\left(\frac{1}{1}\right)\right]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{-(2x+1)}{x} + \frac{3}{1}\left(\frac{x}{x}\right)\right]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{-2x-1}{x} + \frac{3x}{x}\right]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{-2x-1+3x}{x}\right]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{-2x-1+3x}{x}\right]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{x-1}{x}\right]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{x-1}{x}\right]$$

$$\frac{dy}{dx} = \frac{2 \, (2x+1)^2}{x^2} \left[\frac{x-1}{x}\right]$$

8 (i) Given that
$$y = (2x^2 - 1)^4$$
, show that $\frac{dy}{dx} = 16x(2x^2 - 1)^4$.

¥==

(ii) Hence, find
$$\int_0^2 x (2x^2 - 1)^3 dx$$
.

121

8 (i)
$$y = (2x^2 - 1)^4$$

$$\frac{dy}{dx} = 4(2x^2 - 1)^{4-1}(4x)$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 16x \left(2x^2 - 1\right)^3 \qquad \text{(Shown)}$$

$$\int 16x (2x^2 - 1)^3 dx = (2x^2 - 1)^4 + c$$

$$16 \int x (2x^2 - 1)^3 dx = (2x^2 - 1)^4 + c$$

$$\int x (2x^2 - 1)^3 dx = \left[\frac{1}{16} (2x^2 - 1)^4 \right] + c \quad [+ (16) \text{ on both sides}]$$

$$\int_0^2 x (2x^2 - 1)^3 dx = \frac{1}{16} \left[(2x^2 - 1)^4 \right]_0^2$$

$$\int_0^2 x (2x^2 - 1)^3 dx = \frac{1}{16} \left[(2(2)^2 - 1)^4 - (2(0)^2 - 1)^4 \right]$$
 [M1]

$$= \frac{1}{16} \left[(7)^4 - (-1)^4 \right]$$

$$= \frac{1}{16} [2401 - 1]$$

$$=\frac{1}{16} \cdot [2400]$$

$$\therefore \int_0^2 x (2x^2 - 1)^3 dx = 150$$

[A1]

9

 $\frac{dy}{dx} = \frac{(2x-2)(2x+1)^2}{x^3}$ (Shown) [A1]

 $\frac{dy}{dx} = \frac{(px+q)(2x+1)^2}{x^3}$ (p=2, q=-2)

 $y = a \sin(bx) + c$

(a) The diagram shows part of the graph $y = a \sin(bx) + c$.

the period and amplitude of y,

On a separate diagram, sketch the graph of $y = 1 - \cos 2x$ for $0^{\circ} \le x \le 180^{\circ}$.

the value of a, b and c.

Amplitude = 3 units

10 (a) (i) Period = π radians

a = 3b=2

c = 4

 $y = 3\sin 2x + 4$

 $y = 1 - \cos 2x$ for $0^{\circ} \le x \le 180^{\circ}$.

 $y = \cos 2x$

 $v = 1 - \cos 2x$

135

 $y = \cos x$

180 x (degrees)

- The function $f(x) = ax^3 3x^2 + b$, where x is a real number and that f(2) = 3, has a stationary value at x=1.
 - Find the value of the constants a and b.

[4]

- Explain, with justification, why the stationary point at x = 1 is a minimum.
 - [3]

Equation (1): $f(x) = ax^3 - 3x^2 + b$; f(2) = 3

$$f(2) = a(2)^3 - 3(2)^2 + b$$
 [M1]

$$3 = 8a - 12 + b$$

$$3+12=8a+b$$

$$8a + b = 15$$

 \rightarrow (1)

 $f(x) = ax^3 - 3x^2 + b$ has a stationary value at $x = 1 \implies f'(1) = 0$ Equation (2):

$$f'(x) = 3ax^2 - 6x$$

[M1]

$$f'(1) = 3a(1)^2 - 6(1)$$

$$0 = 3a - 6$$

6 = 3a

$$\therefore a = 2$$

[A1]

Substitute a = 2 into (1):

8a + b = 15

$$8(2) + b = 15$$

$$16 + b = 15$$

$$b = 15 - 16$$

$$b = -1$$

[A1]

(ii) $a = 2, b = -1 \implies f(x) = 2x^3 - 3x^2 - 1$

$$f'(x) = 6x^2 - 6x$$
 [M1]

$$f''(x) = 12x - 6$$

At x=1

$$\Rightarrow f''(1) = 12(1) - 6$$

$$f''(1) = 12 - 6$$

$$f''(1) = 6$$
 (> 0) [A1]

11

 $f''(1) = 6 \quad (> 0),$

- Second Derivative is positive at x = 1,
- Hence stationary point at x = 1 is a minimum.

[Turn over

bestfreepapers.com

Shape

· Period/Range

· Max/Min point

x, y - intercepts

· Label graph/axes

- [A1] (For each missing point)

[A2]

[2]

[3]

2 cycles: 2π

- Find the range of values of k for which f(x) is an increasing function.
- For the case k = 2, find the equation of the normal to the curve y = f(x) where x = 1.
- [4]

[3]

11 (i)
$$f(x) = x^3 - kx^2 + 3x + 6$$

 $f'(x) = 3x^2 - 2kx + 3$

f(x) is increasing:

$$\Rightarrow$$
 f'(x) > 0

$$\Rightarrow$$
 3x²-2kx+3>0 [a = 3; b = -2k; c = 3]

[M1]

$$[a>0; 3x^2-2kx+3>0]$$

 \rightarrow a > 0, minimum curve

 \rightarrow 3x² - 2kx + 3 > 0, always positive (above x - axis)

 $b^2 - 4ac < 0$, does not cut x - axis (no real roots)

$$\Rightarrow b^2 - 4ac < 0$$

$$(-2k)^2 - 4(3)(3) < 0$$
 [$a = 3$; $b = -2k$; $c = 3$] [M1]

$$4k^2 - 36 < 0$$
 [+ (4) on both sides]

$$k^2 - 9 < 0$$

 $k^2 - 3^2 < 0$

$$(k+3)(k-3)<0$$

[Leading to critical points: k = -3, k = 3]

From graph:

$$\therefore -3 < k < 3$$
 [A]

∴ -3<k<3

[A1]

(ii)
$$y = f(x) = x^3 - kx^2 + 3x + 6$$

Given: k=2, x=1

$$y = f(1) = (1)^3 - (2)(1)^2 + 3(1) + 6$$

y=1-2+3+6

$$y = 8$$
 (1,8)

Gradient of tangent at x = 1: $m_{tan} = f'(1) = 3(1)^2 - 2(2)(1) + 3 = 3 - 4 + 3$

$$[f'(x) = 3x^2 - 2kx + 3]$$

$$m_{\text{tan}} = 6 - 4 = 2$$

Gradient of normal at x = 1: $(m_{tan})(m_{nor}) = -1$ [M1]

Equation of normal to the curve at (1,8):

$$y - y_1 = m_{\text{nor}} \left(x - x_1 \right)$$

$$(x_1, y_1) = (1, 8)$$
 ; $m_{\text{nor}} = -\frac{1}{2}$

$$y-8=-\frac{1}{2}\left(x-1\right)$$

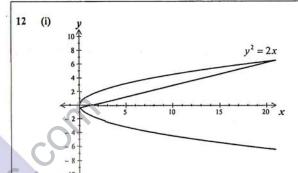
$$y = -\frac{1}{2}x + \frac{1}{2} + 8$$

$$\Rightarrow \qquad y = -\frac{1}{2}x + \frac{17}{2}$$

[A1]

Sketch the parabola $y^2 = 2x$.

121


The line y = x intersects the parabola at the points A and B.

[4]

(iii) Show that the midpoint of AB lies on the line
$$2x - y = 1$$
.

[1]

[A2]

- · Shape of parabola
- x, y intercepts
- · Label graph/axes

- [A1] (For each missing point)

Scale is not necessary

Points of intersection - Solve equations simultaneously:

$$y^2 = 2x \qquad \rightarrow (1)$$

$$y = x \longrightarrow (2)$$

Substitute (2) into (1):

(1):
$$y^2 = 2x$$

$$(x)^2 = 2x \qquad [M1]$$

$$x^2 - 2x = 0$$

$$x(x-2)=0$$

$$\Rightarrow \qquad x = 0 \qquad \Rightarrow \qquad x - 2 = 0$$

$$\Rightarrow x=2$$

Substitute x = 0, x = 2 into (2):

(2):
$$y = x \quad (x = 0)$$

(2):
$$y = x \quad (x = 2)$$

$$y = 0 \quad (0, 0)$$

$$\Rightarrow A(0,0)$$
 [M1]

$$\Rightarrow B(2,2)$$
 [M

$$MP_{AB} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{0 + 2}{2}, \frac{0 + 2}{2}\right) = \left(\frac{2}{2}, \frac{2}{2}\right) = (1, 1)$$

(iii)
$$(1,1)$$
 \Rightarrow $x=1$, $y=1$ \Rightarrow Substitute in $2x-y=1$
 $LHS = 2x-y=2(1)-(1)=1$

$$RHS = 1$$

Since LHS = RHS, (1,1) satisfies 2x-y=1 [(1,1) lies on 2x-y=1] (Shown) [B1]

13

[Turn oberstfreepapers.com

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

13 (i) Show that the equation

$$24 \tan A - 2 \tan^2 A = 3 \sec^2 A - 8$$

may be written in the form

$$5 \tan^2 A - 24 \tan A - 5 = 0$$
. [2]

Hence, find, in degrees, the two principal values of A for which

$$24 \tan A - 2 \tan^2 A = 3 \sec^2 A - 8.$$
 [4]

(iii) By using a suitable identity, explain why the values of A found in (ii)

satisfy the equation
$$\tan 2A = -\frac{5}{12}$$
.

[2]

- 25 tan A

+ tan A

- 24 tan A

 $24 \tan A - 2 \tan^2 A = 3 \sec^2 A - 8$ [From: $\sec^2 A = 1 + \tan^2 A$] $24 \tan A - 2 \tan^2 A = 3 (1 + \tan^2 A) - 8$ [M1] $24 \tan A - 2 \tan^2 A = 3 + 3 \tan^2 A - 8$

 $0 = 3 + 3 \tan^2 A - 8 + 2 \tan^2 A - 24 \tan A$

 $0 = 5 \tan^2 A - 24 \tan A - 5$

 $5 \tan^2 A - 24 \tan A - 5 = 0$ (Shown)

[A1]

5 tan A

5 tan2 A

(ii) $24 \tan A - 2 \tan^2 A = 3 \sec^2 A - 8$ (Principal values) [From (i)]:

 $5 \tan^2 A - 24 \tan A - 5 = 0$ [M1] (Principal value of tangent: $-90^{\circ} < \tan^{-1} A < -90^{\circ}$)

 $(\tan A - 5)(5 \tan A + 1) = 0$

 $\tan A - 5 = 0$

 $\tan A = 5$ $A = \tan^{-1}(5)$

 $A = 78.69007^{\circ} \approx 78.7^{\circ}$

[A1]

 $5 \tan A + 1 = 0$ $5 \tan A = -1$

 $A = -11.30993^{\circ} \approx -11.3^{\circ}$

 $A = -11.3^{\circ}$, 78.7°

[From: tan 2A =1-tan2 A

2 tan A 5 $1 - \tan^2 A = -12$

 $(2 \tan A)(-12) = (5)(1 - \tan^2 A)$

 $(-24 \tan A) = 5 - 5 \tan^2 A$

 $5 \tan^2 A - 24 \tan A - 5 = 0$

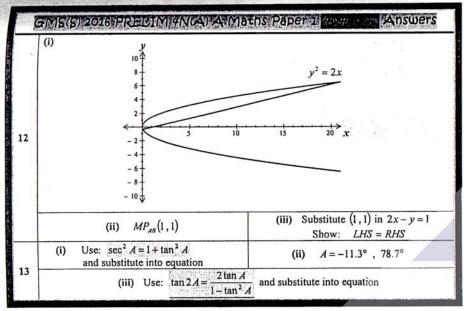
[A1]

 $24 \tan A - 2 \tan^2 A = 3 \sec^2 A - 8$ [From (i)]

 $\tan 2A = -\frac{5}{12}$ is equivalent to

 $5 \tan^2 A - 24 \tan A - 5 = 0$; $24 \tan A - 2 \tan^2 A = 3 \sec^2 A - 8$

End Of Pap


[Turn over

1	$p \le -12$ or $p \ge 12$		
2	(x =	=1, y=1	
3		$-\frac{1}{2}x + \frac{13}{2}$	
4	(i) $(x-2)(x^2+2x+4)$ (ii) $y = (x-2)(x^2+2x+4)$ cuts x-axis does not cut x-axis at $x = 2$ (x^2+2x+4) $(x-2)(x^2+2x+4)$		
5	r	= 7 cm	
6	(i) $1 + 8ax + 28a^2x^2 + 56a^3x^3 + \dots$	(ii) $a = \frac{1}{\sqrt{7}}$ or $\frac{\sqrt{7}}{7}$	
7	$\frac{dy}{dx} = \frac{(2x-2)(2x+1)^2}{x^3} \qquad (p=2, q=-2)$		
8	(i) Use Chain Rule	(ii) 150	
9	(i) $a=2$, $b=-1$	(ii) $f''(1) = 6$ (> 0) stationary point at $x = 1$ is a minimum.	
	(a)(i) Period = π radians Amplitude = 3 units	(a)(ii) $a=3$, $b=2$, $c=4$	
10	(b) $y = 1 - \cos 2x$ $y = -\cos 2x$ $y = \cos 2x$ $y = \cos 2x$ $y = \cos 2x$ $y = \cos 2x$		
11	(i) -3 < k < 3	(ii) $y = -\frac{1}{2}x + \frac{17}{2}$	

GMS(S)/AMath/P1/PRELIM2016/4N(A)/Answer Schemebestfreepapers.com

GMS(S)/AMath/P1/PRELIM2016/4N(A)/Answer Scheme

Geylang Methodist School (Secondary) **Preliminary Examination 2016**

4044 / 02

Additional Materials provided: Writing Paper

Cover Sheet

1 hour 45 minutes

Setter: Ms Nainee Ismail

Monday, 15 August 2016

4 Normal (Academic)

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the writing papers provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total score for this paper is 70.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{r} a^{n-r} b^{r} + \dots + b^{n},$$
where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1) \dots (n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$an 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for AABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

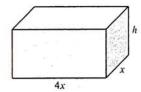
This document consists of 5 printed pages including the cover page and 1 blank page.

GMS(S)/AMaih/P2/PRELIM2016/4N(A) bestfreepapers.com

GMS(S)/AMaIN/P2/PRELIM2016/4N(A)

Answer all the questions.

Answer all the questions.


- 1 Find the remainder when $x^4 2x^3 + 6x^2 4x + 9$ is divided by $x^2 3x + 1$. [3]
- 2 (i) Find the set of values of c for which the quadratic expression $-x^2 + 4x + c$ is always negative. [3]
 - (ii) Explain why the quadratic expression $-x^2 + 4x 8$ is always negative. [1]
- 3 (i) Express $\sqrt{3}\cos\theta + \sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ radians. [3]
 - (ii) Hence, or otherwise, state in radians, the principal value of $\sqrt{3}\cos\theta + \sin\theta = 0$. [2]
- 4 The roots of a quadratic equation are α and β , where $\alpha + \beta = -\frac{1}{2}$ and $\alpha\beta = 1$.
 - (i) Find this quadratic equation in the form $2x^2 + bx + c = 0$, where b and c are integers.

The roots of the quadratic equation $x^2 + px + q = 0$ are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

- (ii) Find the value of each of the constants p and q.
- 5 (i) Prove that $\frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x} = 2\sec x.$ [3]
 - (ii) Hence, state the exact value of $\tan (90^{\circ} x)$ such that x is an acute angle which satisfies

$$\frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} = \frac{9}{4}.$$
 [3]

- In triangle ABC, the length, in cm, of AB is $1+4\sqrt{2}$, of BC is $2\sqrt{2}-2$ and of AC is $3\sqrt{5}$. Without using a calculator,
 - (i) explain why triangle ABC is right-angled and state which angle is 90°, [4]
 - (ii) show that $\tan B\hat{C}A = \frac{a+b\sqrt{2}}{2}$, where a and b are integers to be found. [4]
- The diagram shows a closed cuboid box. A contractor wants to use metal sheet of negligible thickness to make a cuboid box that holds exactly 500 cm^3 of sand. The cost is minimum if the box has the smallest possible surface area. The dimensions of the box is such that the sides of its base are of length 4x cm, width x cm and height h cm. The total surface area is A cm².

- (i) Express h in terms of x and show that $A = 8x^2 + \frac{1250}{x}$.
- (ii) Given that x can vary, find the value of the surface area for which the cost is least. [4]
- (iii) Calculate the minimum cost, to the nearest cent,
 of producing 1 box if a metal sheet costs 25 cents per 1000 cm². [1]
- 8 A circle C_1 has centre (3, -4) and radius 5.
 - (i) State the equation of C_1 . [2]

The equation of circle C_2 is $x^2 + y^2 - 10x = 0$.

- (ii) Find the coordinates of the centre of C_1 , and the radius of C_2 . [4]
- (iii) Justify with suitable calculations, if the centre of the circle C_1 lies within the circle C_2 . [2]

3

[Turn over

bestfreepapers.com

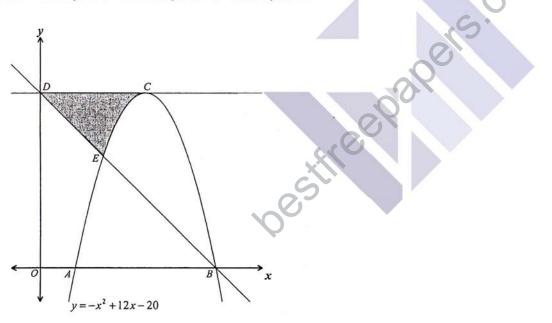
- The BEST website to download FREE exam papers, notes and other materials from Singapore!

- BLANK PAGE -

[5]

A polynomial f(x) is such that f''(x) = 12x + 10, f'(1) = 12 and f(-1) = 4.

Using integration, show that $f(x) = 2x^3 + 5x^2 - 4x - 3$.


- (ii) Show that x-1 is a factor of f(x), and solve the equation f(x)=0. [5]
- 10 The diagram shows part of the curve $y = -x^2 + 12x 20$.

The curve crosses the x – axis at the points A and B.

The tangent to the curve at the point C is parallel to the x-axis.

The straight line BD passes through the curve at points B and E.

The tangent to the curve at the point C and the straight line BD meets at point D.

Find the coordinates of A, B, C, D and E.

[7]

(ii) Find the area of the shaded region CDE.

[5]

	GMBKPI 2018 PROBLEM KINKA) A MINHID PROBLEM			
1	193	r+1		
2.	(i) c < -4	(ii) $-x^2 + 4x - 8$ $(c = -8 \rightarrow c < -4)$ $-x^2 + 4x - 8$ is always negative		
3	(i) $(\sqrt{3}\cos\theta + \sin\theta) = 2\cos\left(\theta - \frac{\pi}{6}\right)$	(ii) Principal value: $\frac{2\pi}{3}$		
4	(i) $2x^2 + x + 2 = 0 \implies b = 1, c = 2$ (ii) $p = \frac{7}{4}$; $q = 1$			
5	(ii) $\frac{8}{\sqrt{17}}$ OR $\frac{8}{17}\sqrt{17}$			
6	(i) $\Rightarrow (AB)^2 + (BC)^2 = (AC)^2$ \Rightarrow Obeys Pythagoras' Theorem $\Rightarrow \triangle ABC$ is a right – angled triangle with $AC \rightarrow$ hypotenuse $\therefore \angle ABC$ is right – angled, 90° (angle opposite the hypotenuse side) (ii) $\frac{9+5\sqrt{2}}{2}$ [$a=9$, $b=5$]			
7	(i) $h = \frac{125}{x^2}$, $A = 8x^2 + \frac{1250}{x}$ (ii) 439	cm ² (3sf) (iii) 11 cents		
8	(i) $(x-3)^2 + (y+4)^2 = 25$ $OR x^2 + y^2 - 6x + 8y = 0$ (ii) $C(5,0)$	lies within Circle C ₂		
9	(ii) Show $f(1) = 0 \Rightarrow (x-1)$ is a factor of $f(x) = 2x^3 + 5x^2 - 4x - 3$ $f(x) = 0 \rightarrow x = -3, -\frac{1}{2}, 1$			
10		square units (3.6, 10.24)		

Paper 2

Additional Materials provided:

Setter: Ms Nainee Ismail

Normal (Academic) Monday, 15 August 2016

READ THESE INSTRUCTIONS FIRE

our name, class and index number on all the work you hand in. Write in dark blue of black pen on both sides of the paper.

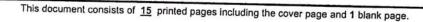
You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the writing papers provided

Give non-exact numerical answers correct lossignificant figures. angles in degrees, unless a different level diaccuracy is specified in


The use of a scientific calculator is expected where appropri

You are reminded of the need for clear presentation to you

At the endronthe examination, faster all your work securely together.

The number of marks is given in brackets [] therend of each question or part question.

The total score for this paper is 70

[Turn over

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

Formulae for A ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

Since
$$\frac{x^4 - 2x^3 + 6x^2 - 4x + 9}{x^2 - 3x + 1} = x^2 + x + 8 + \frac{19x + 1}{x^2 - 3x + 1}$$

Remainder = 19x + 1

[A1]

3

GMS(S)/AMBIN/PZ/PRELIMZ016/4N(A)/Answer Scheme

- Find the set of values of c for which the quadratic expression $-x^2 + 4x + c$ [3] is always negative.
 - (ii) Explain why the quadratic expression $-x^2 + 4x 8$ is always negative. [1]
- Given: Quadratic expression $-x^2 + 4x + c$ is always negative [M1] $\Rightarrow -x^2+4x+c<0$ $[a=-1;b=4;c \neq c]$ $[a<0; -x^2+4x+c<0]$ → a < 0, maximum curve
 </p> $-x^2 + 4x + c < 0$, always negative (below x - axis) $b^2 - 4ac < 0$, does not cut x - axis (no real roots) [M1]

$$b^{2}-4ac < 0$$

$$(4)^{2}-4(-1)(c) < 0 [a=-1;b=4;c=c]$$

$$16+4c < 0$$

$$4c < -16 [÷(4) on both sides]$$

$$\therefore c < -4$$
[A1]

(ii) For: Quadratic expression $-x^2 + 4x + c$ to be always negative $\Rightarrow c < -4$ [From (i)] Quadratic expression $-x^2 + 4x - 8$ $(c = -8 \rightarrow c < -4)$ [A1] Hence, $-x^2 + 4x - 8$ is always negative.

- Express $\sqrt{3}\cos\theta + \sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ radians.
- [3]
- (ii) Hence, or otherwise, state in radians, the principal value of $\sqrt{3}\cos\theta + \sin\theta = 0$. [2]
- The R-Formula:

$$(a\cos\theta + b\sin\theta) = R\cos(\theta - \alpha)$$
, $R = \sqrt{a^2 + b^2}$ and $\tan\alpha = \frac{b}{a}$

$$(\sqrt{3}\cos\theta + \sin\theta) \Rightarrow a = \sqrt{3}, b = 1$$

$$R = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = \sqrt{4} = 2$$

[M1]

$$\tan \alpha = \frac{b}{a} = \frac{1}{\sqrt{3}} \implies \alpha = \tan^{-1} \left(\frac{1}{\sqrt{3}}\right) \implies \alpha = \frac{\pi}{6} \text{ radians}$$

$$\therefore \qquad \left(\sqrt{3}\cos\theta + \sin\theta\right) = 2\cos\left(\theta - \frac{\pi}{6}\right)$$

 $\sqrt{3}\cos\theta + \sin\theta = 0$ (ii)

$$2\cos\left(\theta - \frac{\pi}{6}\right) = 0$$
 [From (i)]

 $\cos\left(\theta - \frac{\pi}{6}\right) = 0$ (Principal value of cosine: $0 \le \cos^{-1} x \le \pi$)

$$\left(\theta - \frac{\pi}{6}\right) = \cos^{-1} 0$$

$$\theta - \frac{\pi}{6} = \frac{\pi}{2}$$

$$\theta = \frac{\pi}{2} + \frac{\pi}{6}$$

$$\theta = \frac{3\pi}{6} + \frac{\pi}{6}$$

 \therefore Principal value: $\theta = \frac{4\pi}{6} = \frac{2\pi}{3}$

- The roots of a quadratic equation are α and β , where $\alpha + \beta = -\frac{1}{2}$ and $\alpha\beta = 1$.
 - Find this quadratic equation in the form $2x^2 + bx + c = 0$, where b and c are integers.

[2]

The roots of the quadratic equation $x^2 + px + q = 0$ are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

Find the value of each of the constants p and q.

[4]

Given: Sum of Roots (SOR):

Product of Roots (POR): $\alpha\beta = 1$

Quadratic Equation: $x^2 - (SOR)x + (POR) = 0$

$$x^2 - (\alpha + \beta) x + (\alpha \beta) = 0$$

$$x^2 - \left(-\frac{1}{2}\right)x + (1) = 0$$

$$x^2 + \frac{1}{2}x + 1 = 0$$
 [x (2) throughout]

$$2x^2 + x + 2 = 0$$

[A1]

M1

$$2x^2 + bx + c = 0 \implies b = 1, c = 2$$

(ii) Given: Roots of $x^2 + px + q = 0$ are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

Sum of Roots (SOR)

Product of Roots (POR)

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

 $= \left(\frac{\alpha}{\beta}\right) + \left(\frac{\beta}{\alpha}\right)$

$$=\frac{\alpha^2}{\alpha\beta}+\frac{\beta^2}{\alpha\beta}$$

$$= \frac{\alpha}{\alpha\beta} + \frac{\beta}{\alpha\beta}$$

$$\alpha^2 + \beta^2$$

Quadratic Equation:

$$=\frac{(\alpha+\beta)^2-2\alpha\beta}{\alpha\beta}$$

 $x^2 - (SOR)x + (POR) = 0$ $x^2 - \left(-\frac{7}{4}\right)x + (1) = 0$

$$=\frac{\left(-\frac{1}{2}\right)^2-2\left(1\right)}{\left(1\right)}$$

 $x^2 + \frac{7}{4}x + 1 = 0$

$$=\frac{1}{4}-2$$

 $x^2 + px + q = 0$

$$=\frac{1}{4}-\frac{8}{4}$$

Constants: $p = \frac{7}{4}$

$$=-\frac{7}{4}$$

[M1

[Turn over

Hence, state the exact value of $\tan (90^{\circ} - x)$ such that x is an acute angle which satisfies

$$\frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} = \frac{9}{4} \,. \tag{3}$$

5 (i)
$$\frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x} = 2\sec x$$
 $LHS = \frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x}$
 $= \frac{\cos x}{1-\sin x} \left(\frac{\cos x}{\cos x}\right) + \frac{1-\sin x}{\cos x} \left(\frac{1-\sin x}{1-\sin x}\right)$
 $= \frac{\cos^2 x}{(\cos x)(1-\sin x)} + \frac{(1-\sin x)(1-\sin x)}{(\cos x)(1-\sin x)}$
 $= \frac{\cos^2 x + (1-\sin x)(1-\sin x)}{(\cos x)(1-\sin x)}$
 $= \frac{\cos^2 x + (1-\sin x) \sin x}{(\cos x)(1-\sin x)}$
 $= \frac{\cos^2 x + (1-\sin x) \sin x}{(\cos x)(1-\sin x)}$

[From: $\frac{\sin^2 x + \cos^2 x}{(\cos x)(1-\sin x)}$
 $= \frac{1+1-2\sin x}{(\cos x)(1-\sin x)} = \frac{2-2\sin x}{(\cos x)(1-\sin x)}$
 $= \frac{1+1-2\sin x}{(\cos x)(1-\sin x)} = \frac{2-2\sin x}{(\cos x)(1-\sin x)}$
 $= \frac{2}{\cos x}$
 $= 2\sec x$
 $= RHS$ (Shown)

(ii) $\frac{\cos x}{1-\sin x} + \frac{1-\sin x}{\cos x} = \frac{9}{4}$, x is an acute angle \rightarrow Quadrant 1

 $2\sec x = \frac{9}{4}$ [From (i)]

 $\frac{2}{\cos x} = \frac{9}{4}$
 $8 = 9\cos x$
 $\cos x = \frac{8}{9}$

M11

By Pythagoras' Theorem, 9² = 8² + opp²
 $\cos^2 x + \cos^2 x + \cos^$

[A1]

 $\therefore \tan (90^{\circ} - x) = \frac{8}{17} \sqrt{17}$

- In triangle ABC, the length, in cm, of AB is $1+4\sqrt{2}$, of BC is $2\sqrt{2}-2$ and of AC is $3\sqrt{5}$. Without using a calculator,
 - (i) explain why triangle ABC is right-angled and state which angle is 90°,
 - (ii) show that $\tan B\hat{C}A = \frac{a+b\sqrt{2}}{2}$, where a and b are integers to be found.

6 (i)
$$(AB)^2 = (1+4\sqrt{2})^2$$
 $(BC)^2 = (2\sqrt{2}-2)^2$ $= (1)^2 + 2(1)(4\sqrt{2}) + (4\sqrt{2})^2$ $= (2\sqrt{2})^2 - 2(2\sqrt{2})(2) + (-2)^2$ $= 1+8\sqrt{2}+(4)^2(\sqrt{2})^2$ $= (2)^2(\sqrt{2})^2 - 8\sqrt{2} + 4$ $= 1+8\sqrt{2}+(16)(2)$ $= (4)(2)-8\sqrt{2}+4$ $= 1+8\sqrt{2}+32$ $= 8-8\sqrt{2}+4$ $(AB)^2 = 33+8\sqrt{2}$ $(BC)^2 = 12-8\sqrt{2}$ $(AC)^2 = (3\sqrt{5})^2$ $(AB)^2 = 33+8\sqrt{2}$, $(BC)^2 = 12-8\sqrt{2}$ $(AB)^2 + (BC)^2 = (33+8\sqrt{2}) + (12-8\sqrt{2})$ $= (3)^2(\sqrt{5})^2$ $= (9)(5)$ $= 33+12+8\sqrt{2}-8\sqrt{2}$ [M1]

From above, $(AC)^2 = 45$ and $(AB)^2 + (BC)^2 = 45$

 $(AB)^2 + (BC)^2 = (AC)^2$

[A1] ⇒ Obeys Pythagoras' Theorem

 $\Rightarrow \triangle ABC$ is a right – angled triangle with $AC \rightarrow$ hypotenuse

[A1] :. ∠ABC is right – angled, 90° (angle opposite the hypotenuse side)

(ii)
$$\tan B\hat{C}A = \frac{AB}{BC}$$

$$= \frac{1+4\sqrt{2}}{2\sqrt{2}-2}$$

$$= \frac{1+4\sqrt{2}}{2\sqrt{2}-2} \times \frac{2\sqrt{2}+2}{2\sqrt{2}+2} \quad \text{(Rationalize)}$$

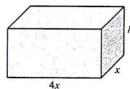
$$= \frac{(1+4\sqrt{2})(2\sqrt{2}+2)}{(2\sqrt{2}-2)(2\sqrt{2}+2)}$$

$$= \frac{(1)(2\sqrt{2})+(1)(2)+(4\sqrt{2})(2\sqrt{2})+(4\sqrt{2})(2)}{(2\sqrt{2})^2-(2)^2}$$

$$= \frac{2\sqrt{2}+2+(8)(2)+8\sqrt{2}}{(2)^2(\sqrt{2})^2-4} = \frac{2+16+10\sqrt{2}}{(4)(2)-4} = \frac{18+10\sqrt{2}}{8-4}$$

$$= \frac{18+10\sqrt{2}}{4} = \frac{2(9+5\sqrt{2})}{2}$$

$$\therefore \tan B\hat{C}A = \frac{9+5\sqrt{2}}{2}$$


$$\tan B\hat{C}A = \frac{a+b\sqrt{2}}{2} \quad [a=9][A1], [b=5][A1]$$

[Turn over bestfreepapers.com

[M1]

 $opp = \sqrt{17}$

The diagram shows a closed cuboid box. A contractor wants to use metal sheet of negligible thickness to make a cuboid box that holds exactly 500 cm3 of sand. The cost is minimum if the box has the smallest possible surface area. The dimensions of the box is such that the sides of its base are of length 4x cm, width x cm and height h cm. The total surface area is A cm².

- Express h in terms of x and show that $A = 8x^2 + \frac{1250}{x}$. [3]
- Given that x can vary, find the value of the surface area for which the cost is least. [4]
- (iii) Calculate the minimum cost, to the nearest cent, of producing 1 box if a metal sheet costs 25 cents per 1000 cm².

(i) Given: $V = 500 \,\mathrm{cm}^3$ (ii) $A = 8x^2 + \frac{1250}{x} = 8x^2 + 1250x^{-1}$ $V = L \times B \times H = 500 \text{ cm}^3$ $V = (4x) \times (x) \times (h) = 500 \text{ cm}^3$ $\Rightarrow 4x^2h = 500$ Total Surface Area (A) = (Top + Bottom) + (Front + Back) + (Left + Right) = 2 (4x)(x) +2(4x)(h) +2(x)(h) $A = 8x^2 + 8xh + 2xh$ [M1] $= 8x^2 + 10xh$

[Substitute (1)] $= 8x^2 + 10x \left(\frac{125}{x^2}\right)$ $\therefore A = 8x^2 + \frac{1250}{x}$

 $\frac{dA}{dx} = 16x - 1250x^{-2}$ [M1] [Stationary Value] \Rightarrow $16x - 1250x^{-2} = 0$ [M1] $16x = 1250x^{-2}$ $16x = \frac{1250}{x^2}$ $16x^3 = 1250$ $x^3 = \frac{1250}{16}$ x = 4.274939867...cm[M1] $A = 8x^2 + \frac{1250}{r}$

[1]

(Shown) (iii) 1000 cm2 25 cents 1 cm2 0.025 cents 438.6026607... cm² 0.025 cents × 438.60266 07 =10.96506652 cents ≈ 11 cents (nearest cent) [A1]

9

A circle C_1 has centre (3, -4) and radius 5. (i) State the equation of C₁.

[2]

121

[M1]

The equation of circle C_2 is $x^2 + y^2 - 10x = 0$.

- (ii) Find the coordinates of the centre of C_2 , and the radius of C_2 . [4]
- (iii) Justify with suitable calculations, if the centre of the circle C, lies within the circle C_1 .

(i) Centre $C_1: C_1(3, -4)$ Radius C.: 5 Standard Equation of a circle: $(x-a)^2 + (y-b)^2 = r^2$ $(x-3)^2 + (y-(-4))^2 = 5^2$ MI $(x-3)^2 + (y+4)^2 = 25$ General Equation of a circle: $(x-3)^2 + (y+4)^2 = 25$ $x^2 - 6x + 9 + y^2 + 8y + 16 - 25 = 0$ $OR \quad x^2 + y^2 - 6x + 8y = 0$ [A1]

Method 1: Using the "General Form" equation $x^2 + y^2 - 10x = 0$ $x^2 + y^2 - 10x + 0y + 0 = 0$ $(x^2 + y^2 + 2gx + 2fy + c = 0)$ c = 0 $2g = -10 \Rightarrow g = -5$ $2f = 0 \Rightarrow f = 0$

Centre of Circle C,: $C(-g,-f)=C_2(5,0)$ Radius of Circle C₂:

 $\sqrt{g^2+f^2-c}$ $=\sqrt{(-5)^2+(0)^2-(0)}$ $=\sqrt{25}$

= 5 units

(iii) Centre of Circle C₁: C₁(3, -4) Centre of Circle C,: C,(5,0) Distance from (3, -4) to (5,0):

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$= \sqrt{(3 - 5)^2 + (-4 - 0)^2}$$

$$= \sqrt{(-2)^2 + (-4)^2}$$

$$= \sqrt{4 + 16}$$

$$= \sqrt{20}$$

= 4.472135955 (< 5 units) [M1]

Method 2:

Using the "Standard Form" equation [By using "Completing the Square"] $x^2 + y^2 - 10x = 0$

$$(x^2 - 10x) + (y^2) = 0$$

$$\left(x^2 - 10x + \left(\frac{-10}{2}\right)^2\right) + (y - 0)^2 = +\left(\frac{-10}{2}\right)^2 [M1]$$

$$(x^2 - 10x + (-5)^2) + (y - 0)^2 = (-5)^2$$
$$(x - 5)^2 + (y - 0)^2 = 5^2$$

$$(x-a)^2 + (y-b)^2 = r^2$$

⇒ Centre of Circle C, : $C(a,b) \rightarrow C_2(5,0)$ [A1]

Radius of Circle C,: r = 5 units [A1]

- Distance is less than Radius of C, Radius of Circle C_1 : r = 5 units
 - Centre of Circle C, lies within Circle C. [A1]

 $A = 8(4.275...)^2 + \frac{1250}{(4.275...)}$

 $A = 438.60266... \approx 439 \text{ cm}^2(3\text{sf})$ [A1]

10

[Turn over

GMS(S)/AMath/P2/PRELIM2016/4N(A)/Answersenem

- A polynomial f(x) is such that f''(x) = 12x + 10, f'(1) = 12 and f(-1) = 4. (i) Using integration, show that $f(x) = 2x^3 + 5x^2 - 4x - 3$.
- [5] [5]
- (ii) Show that x-1 is a factor of f(x), and solve the equation f(x)=0.
- $f'(x) = \int f''(x) dx$

Given:
$$f''(x) = 12x + 10$$
, $f'(1) = 12$ Since: $f'(x) = 6x^2 + 10x - 4$, $f(-1) = 4$

$$f(x) = \int f'(x) dx$$

$$f'(x) = \int (12x + 10) dx$$

$$f(x) = \int (6x^2 + 10x - 4) dx$$

$$= 12 \left[\frac{x^{1+1}}{1+1} \right] + 10 \left[\frac{x^{0+1}}{0+1} \right] + c$$

$$= 12 \left[\frac{x^{1+1}}{1+1} \right] + 10 \left[\frac{x^{0+1}}{0+1} \right] + c \qquad \qquad = 6 \left[\frac{x^{2+1}}{2+1} \right] + 10 \left[\frac{x^{1+1}}{1+1} \right] - 4 \left[\frac{x^{0+1}}{0+1} \right] + c$$

$$= 6 \left[\frac{x^3}{3} \right] + 10 \left[\frac{x^2}{2} \right] - 4 \left[\frac{x^1}{1} \right] + c$$

$$f'(x) = 12 \left\lfloor \frac{x}{2} \right\rfloor + 10 \left\lfloor \frac{x}{1} \right\rfloor$$

$$\begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

$$[M1] \quad f(x) = 2x^3 + 5x^2 - 4x + c$$

$$f'(x) = 6x^2 + 10x + c$$

 $f'(1) = 12$,

$$f(-1) = 4$$

$$f'(1) = 6(1)^2 + 10(1) + c$$

$$f(-1)=4$$

$$1(1) = 6(1) + 10(1)$$

 $12 = 6 + 10 + c$

$$f(-1) = 2(-1)^3 + 5(-1)^2 - 4(-1) + c$$

$$12 = 6 + 10 + c$$

$$4 = -2 + 5 + 4 + c$$

$$c = 12 - 6 - 10$$

$$c = 4 + 2 - 5 - 4$$

$$c = -4$$

$$c = -3$$

$$\Rightarrow f'(x) = 6x^2 + 10x - 4$$

$$f(x) = 2x^3 + 5x^2 - 4x - 3$$
 (Shown) [A1]

Show: (x-1) is a factor of $f(x) = 2x^3 + 5x^2 - 4x - 3$. $=2(1)^3+5(1)^2-4(1)-3$ Try: f(1) =2+5-4-3

 \Rightarrow (x-1) is a factor of $f(x) = 2x^3 + 5x^2 - 4x - 3$

[B1]

$$f(x) = 2x^3 + 5x^2 - 4x - 3 = 0$$

$$\Rightarrow 2x^3 + 5x^2 - 4x - 3 = 0$$

$$\begin{array}{c|cccc}
2x & +1 & +x \\
x & +3 & +6x \\
\hline
2x^2 & +3 & +7x
\end{array}$$

$$2x^{2} + 7x + 3$$

$$-1)2x^{3} + 5x^{2} - 4x - 3$$

$$\Rightarrow (x-1)(ax^2 + bx + c) = 0$$

(x-1)(2x² + 7x + 3) = 0

$$\frac{-(2x^3 - 2x^2)}{7x^2 - 4x} \downarrow
-(7x^2 - 7x) \downarrow$$

$$(x-1)(2x+1)(x+3) = 0$$

$$\Rightarrow (x-1) = 0 \quad \therefore x = 1$$

$$3x-3$$

$$\Rightarrow (2x+1)=0 \quad \therefore x=-\frac{1}{2} \quad \boxed{[A1]}$$

$$\frac{-(3x-3)}{0}$$

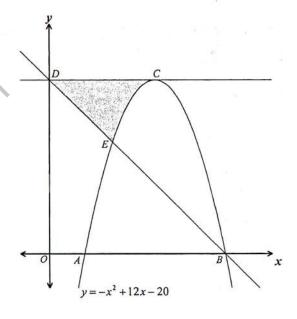
$$\Rightarrow (x+3) = 0 \quad \therefore x = -3$$

\therefore f(x) = 0 \to x = -3, \quad \frac{1}{2}, 1

OR By Synthetic Division: [M1]

	ربد	x2	x ^l	x0
	2	5	-4	-3
1		2	7	3
	2	7	3	0
	. x2	\hat{x}^{l}	x.0	

GMS(S)/AMath/P2/PRELIM2016/4N(A)/Answer Sohome


The diagram shows part of the curve $y = -x^2 + 12x - 20$.

The curve crosses the x - axis at the points A and B.

The tangent to the curve at the point C is parallel to the x - axis.

The straight line BD passes through the curve at points B and E.

The tangent to the curve at the point C and the straight line BD meets at point D.

- Find the coordinates of A, B, C, D and E.
- (ii) Find the area of the shaded region CDE. [5]

[7]

10 (i)

Coordinates of A and B:

x - intercepts of $y = -x^2 + 12x - 20$

x - intercept: y = 0

 $0 = -x^2 + 12x - 20$

 $x^2 - 12x + 20 = 0$

$$\begin{array}{c|ccc}
x & -2 & -2x \\
x & -10 & -10x \\
x^2 & +20 & -12x
\end{array}$$

$$(x-2)(x-10)=0$$

 $\Rightarrow (x-2)=0$

 $\rightarrow x = 2$, y = 0

: 1(2,0) $\Rightarrow (x-10)=0$

 $\rightarrow x = 10$, y = 0

B(10,0)

[A1]

[A1]

Coordinates of C:

Maximum point of $y = -x^2 + 12x - 20$

 $y = -x^2 + 12x - 20$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = -2x + 12$

[M1]

Stationary value (Maximum point):

$$\Rightarrow \frac{dy}{dx} = 0$$

$$\Rightarrow -2x + 12 = 0$$

$$-2x = -12$$

$$\Rightarrow x = 6$$

Substitute into $y = -x^2 + 12x - 20$

 $\rightarrow v = 16$

: C(6,16)

[A1]

Alternative method:

- Find the average of x = 2.10
- · And substitute answer in $y = -x^2 + 12x - 20$

Coordinates of D:

Equation of $CD \rightarrow y = 16$ (CD is parallel to x - axis)

D is a y-intercept of CD: x = 0

D(0,16)

[A1]

Coordinates of E:

E is the point of intersection of

(1): Line BD

- (2): Curve $y = -x^2 + 12x 20$
- (1): BD passes through points B(10,0), D(0,16)

 $m_{BD} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{16 - 0}{0 - 10} = \frac{16}{-10} = -1.6$

Equation of Line BD: m = -1.6, c = 16

y = mx + cy = -1.6x + 16

 $\Rightarrow y = -1.6x + 16$

 \rightarrow (2)

 $\Rightarrow y = -x^2 + 12x - 20$ Substitute (1) into (2):

(2): $(-1.6x+16) = -x^2 + 12x - 20$ [M1]

 $x^2 - 12x - 1.6x + 16 + 20 = 0$

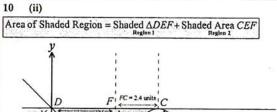
 $x^2 - 13.6x + 36 = 0$

$$\begin{array}{c|cccc} x & -3.6 & -3.6x \\ x & -10 & -10x \\ \hline x^2 & +36 & -13.6x \end{array}$$

(x-3.6)(x-10)=0

 $\Rightarrow (x-10)=0$ $\Rightarrow (x-3.6)=0$ $\rightarrow x = 3.6$ $\rightarrow x = 10$

 $\rightarrow B(10,0)$


Substitute x = 3.6 in $y = -x^2 + 12x - 20$

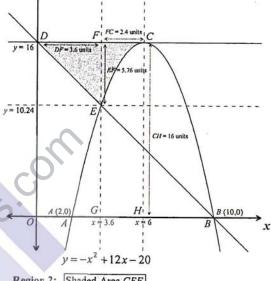
 $\rightarrow y = -(3.6)^2 + 12(3.6) - 20$ =-12.96+43.2-20

 $\rightarrow y = 10.24$

E(3.6, 10.24)

[A1]

Region 1: Shaded \(\DEF \)


DF = 3.6 - 0 = 3.6 units EF = 16 - 10.24 = 5.76 units

Area of ΔDEF $=\frac{1}{2} \times DF \times EF$

 $=\frac{1}{2}\times 3.6\times 5.76$

 $=\frac{1}{2} \times 3.6 \times 5.76$

= 10.368 square units

Region 2: Shaded Area CEF

CH = 16 - 0 = 16 units

FC = 6 - 3.6 = 2.4 units

Shaded Area CEF

= Area of Rectangle $FCHG - \int_{16}^{6} (y) dx = (CH \times FC) - \int_{16}^{6} (-x^2 + 12x - 20) dx$

 $= (16 \times 2.4) - \left[-\left(\frac{x^{2+1}}{2+1}\right) + 12\left(\frac{x^{1+1}}{1+1}\right) - 20\left(\frac{x^{0+1}}{0+1}\right) \right]^{6}$

 $= (38.4) - \left[-\left(\frac{x^3}{3}\right) + 12\left(\frac{x^2}{2}\right) - 20\left(\frac{x^1}{1}\right) \right]_{16}^{6} = (38.4) - \left[-\frac{1}{3}x^3 + 6x^2 - 20x \right]_{16}^{6}$

 $= \overline{(38.4)} - \left[\left(-\frac{1}{3}(6)^3 + 6(6)^2 - 20(6) \right) - \left(-\frac{1}{3}(3.6)^3 + 6(3.6)^2 - 20(3.6) \right) \right]$

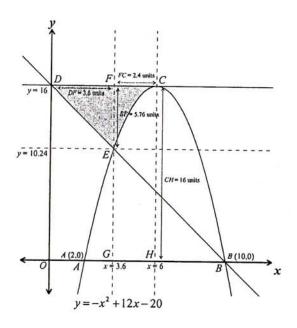
= (38.4) - [(24) - (-9.792)] = (38.4) - [24 + 9.792] = 38.4 - 33.792

= 4.608 square units

 \therefore Area of Shaded Region = Shaded $\triangle DEF$ + Shaded Area CEF Region 1

=10.368+4.608

- End Of Paper


: Area of Shaded Region = 14.976 square units

[A1]

[Turn over

- BLANK PAGE -

į	GMS(S) 2016 PRELIM 4N(A) A.Math	s Paper 2 40## 404 Answers
1	19x+	1
2	(i) c < -4	ii) $-x^2 + 4x - 8$ $(c = -8 \rightarrow c < -4)$ $-x^2 + 4x - 8$ is always negative
3	(i) $\left(\sqrt{3}\cos\theta + \sin\theta\right) = 2\cos\left(\theta - \frac{\pi}{6}\right)$	(ii) Principal value: $\frac{2\pi}{3}$
4	(i) $2x^2 + x + 2 = 0 \implies b = 1, c = 2$	(ii) $p = \frac{7}{4}$; $q = 1$
5	(ii) $\frac{8}{\sqrt{17}}$ O.	$R = \frac{8}{17}\sqrt{17}$
6	(i) $\Rightarrow (AB)^2 + (BC)^2 = (AC)^2$ \Rightarrow Obeys Pythagoras' Theorem $\Rightarrow \triangle ABC$ is a right – angled triangl $\therefore \angle ABC$ is right – angled, 90° (angle) (ii) $\frac{9+5\sqrt{2}}{2}$ [gle opposite the hypotenuse side)
7	(i) $h = \frac{125}{x^2}$, $A = 8x^2 + \frac{1250}{x}$ (ii) 439 cm	n ² (3sf) (iii) 11 cents
8	(i) $(x-3)^2 + (y+4)^2 = 25$ $OR \ x^2 + y^2 - 6x + 8y = 0$ (ii) $C(5,0)$,	iles within Circle C ₂
9	(ii) Show $f(1) = 0 \Rightarrow (x-1)$ is a fa $f(x) = 0 \rightarrow x =$	
10	(i) $A(2,0)$, $B(10,0)$, $C(6,1)$	(6) , D(0,16) , E(3.6,10.24)

17

Index Number:

Class:

HUA YI SECONDARY SCHOOL

4NA

Preliminary Examination 2016

4NA

ADDITIONAL MATHEMATICS

4044/01

Paper 1

15 August 2016

1 h 45 min

Additional materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your Name, Class and Index Number on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 70.

For Examiner's Use

This document consists of 5 printed pages including the cover page.

© HYSS 2016

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

Mathematical Formulae

ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$
where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

Identities

2. TRIGONOMETRY

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$

$$\cos ec^2 \Lambda = 1 + \cot^2 \Lambda$$

$$\cos ec^{-}A = 1 + \cot^{-}A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}bc\sin A$$

Setter: Mr Tan Yong Hwa

- In the expansion of $(3 + ax)^5$, where a > 0, the sum of the coefficients of x and x^2 is 270.
 - (i) Find the value of a.

- [4]
- (ii) Using the value of a found in part (i), find the coefficient of x^2 in the expansion of $(1-5x)(3+ax)^5$.
- [2]

- 2 Given that $f(x) = 2x^3 11x^2 + 10x + 8$.
 - (i) show that (x-2) is a factor of f(x).

[2]

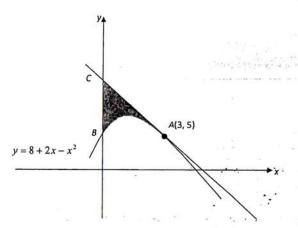
(ii) solve the equation f(x)=0.

- [3]
- Without using a calculator, express $\frac{1}{1+\sqrt{3}} \frac{3}{1-\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b and integers. [3]
- The volume, V cm³, of a spherical ice is given by $V = \frac{4}{3}\pi r^3$, where r cm is the radius of the ice.
 - When the ice is placed in a glass, the volume of the ice decreases at a constant rate of 2.94 cm³/s. Find the value of r when the radius is decreasing at $\frac{1}{6\pi}$ cm/s.
- The function f is defined by $f(x) = ax^3 + 5x^2 + bx + 4$, where a and b are constants. It is given that f(2) = 48 and that when f(x) is divided by x+1, the remainder is 15. Find the value of a and of b.
- 6 (i) Find the range of values of p for which the equation $x^2 px + 2p = 3$ has real roots. [3]
 - (ii) Find the range of values of k for which the curve $y = x^2 2x + 3k 2$ is always positive. [3]
- 7 Given that $\sin(A+B) = 2\sin(A-B)$, show that $\tan A = 3\tan B$. [4]

- 8 It is given that $f(x) = 3\cos 2x + 1$ and $0 \le x \le 2\pi$.
 - State the amplitude and period of f.
 - (ii) Sketch the graph of y = f(x). [3]

[2]

- (iii) State the number of solutions for $3\cos 2x = 2$. [2]
- Solve the inequality 4x(4-x) > 15. [3]
- The parabola $y^2 = \frac{1}{2}kx$, where k is a constant, passes through the point P(6, 3).
 - (i) Find the value of k. [2]
 - (ii) Sketch the graph of this parabola. [1]
 - A line x = 6 passes through the curve at the points P and Q.
 - (iii) Find the coordinates of the point Q.
 - (iv) Hence, find the area of triangle OPQ. [1]
- By using a suitable substitution or otherwise, solve $2^{2x+3} 33(2^x) + 4 = 0$. [5]
- The equation of the curve is $y = 2x^2 kx 1$, where k is a constant.


Given that the tangent at x=2 passes through the point (4, 3),

- (i) show that the value of k is 5, [4]
- (ii) find the equation of the normal at the point where the curve crosses the y-axis. [3]

4NA Preliminary Examination 2016 Additional Mathematics Paper 1

4NA Preliminary Examination 2016 Additional Mathematics Paper 1

The diagram shows part of the curve $y = 8 + 2x - x^2$ which crosses the y-axis at B. The tangent to the curve at A(3, 5) meets the y-axis at C.

- (i) Find the coordinates of the points B.
- (ii) Find the coordinates of the points C.
- (iii) Find the area of the shaded region.
- 14 Write down the principal value, in radians as a multiple of π , of
 - (i) $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$
 - (ii) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$

- [1]
- [3]
- [5]

[1]

. . [1

END OF PAPER

2016 Sec 4NA Additional Mathematics Paper 1 Prelim Marking Scheme

Question	Solution	Mark Allocation
1 (i)	$\binom{5}{1}$ 3 ⁴ $(a) + \binom{5}{2}$ 3 ³ $(a^2) = 270$ M1	M1
		M1
	$5(81)a + 10(27)a^2 - 270 = 0$	1000
	Divided by 135,	
	$3a + 2a^2 - 2 = 0$	
	$2a^{2} + 3a - 2 = 0$ $(2a - 1)(a + 2) = 0$	
	10 to 100 to 120	M1
	Since $a > 0$, $a = \frac{1}{2}$	A1
(ii)	$(1-5x)(3+\frac{1}{2}x)^5 = (1-5x)(243+202.5x+67.5x^2+)$	
	coefficient of $x^2 = 67.5 - 5(202.5)$	M1
	= -945	A1
2 (i)	$f(2) = 2(2)^3 - 11(2)^2 + 10(2) + 8$	M1
100	= 0 [shown] $f(x)=(x-2)(2x^2-7x-4)$	A1
2 (ii)	$f(x)=(x-2)(2x^2-7x-4)$	M1(long
	f(x)=(x-2)(2x+1)(x-4)	division)
	1000 10 000 1000 1000	M1
	$x=2,-\frac{1}{2},4$	A1
3		
	$\frac{1}{1+\sqrt{3}} - \frac{3}{1-\sqrt{3}}$	
	$1-\sqrt{3}-3(1+\sqrt{3})$	
	$= \frac{1 - \sqrt{3} - 3(1 + \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})}$	MI
	V V V	CA
	$= \frac{1 - \sqrt{3} - 3 - 3\sqrt{3}}{1 - 3}$	M1
		C
	$=\frac{-2-4\sqrt{3}}{-2}$	0.9
	_	
	$= 1 + 2\sqrt{3}$	A1
	$V = \frac{4}{3}\pi r^3$	
	3	9
	$\frac{dV}{dt} = 4\pi r^2$	
	$\frac{dV}{dr} = 4\pi r^2 - 2.94 = 4\pi r^2 \times -\frac{1}{6\pi}$	M1
	$-2.94 = 4\pi r^2 \times -\frac{1}{r}$	M2(1 mark
	6π	for -ve sign)
	$2.94 = \frac{2r^2}{3}$	
] 3	
	$2r^2 = 8.82$	

2016 Sec 4NA AM_MYE Paper 1_Marking Scheme	1

Question	Solution	Mark Allocation
	$r^2 = 4.41$	
	$r = \sqrt{4.41}$	
	r=2.1	A1
5		
15	$f(2) = a(2)^3 + 5(2)^2 + b(2) + 4 = 48$	M1
	8a + 20 + 2b + 4 = 48	
	4a + b = 12 Equation (1)	
	$f(-1) = a(-1)^3 + 5(-1)^2 + b(-1) + 4 = 15$	M1
	-a+5-b+4=15	1000
	a+b=-6 Equation (2)	
	4	31 9
	(1) - (2)	
	$ \begin{array}{l} 3a = 18 \\ a = 6 \end{array} $	
		A2
	6+b=-6	
Cal	b = -12	1.00
6 (i)	1	
(1)	$x^2 - px + 2p = 3$	
	$x^2 - px + 2p - 3 = 0$	
	$b^2 - 4ac \ge 0$	
	$(-p)^2 - 4(1)(2p-3) \ge 0$	M1
	$p^2 - 8p + 12 \ge 0$	
	$(p-2)(p-6) \ge 0$	M1
	$p \le 2$ or $p \ge 6$	A1
(ii)		Control Market
6 (ii)	$y = x^2 - 2x + 3k - 2$	
	$b^2 - 4ac < 0$	
	$(-2)^2 - 4(1)(3k - 2) < 0$	M1
	4-12k+8<0	
	12k > 12	M1
	k > 1	A1
		*
	$\sin(A+B)=2\sin(A-B)$	
	$\sin A \cos B + \cos A \sin B = 2 \sin A \cos B - 2 \cos A \sin B$	M1
	$\sin A \cos B = 3 \cos A \sin B$	M1
	$\frac{\sin A}{a} = \frac{3\sin B}{\sin B}$	
	$\frac{1}{\cos A} = \frac{1}{\cos A}$	MI
	$\tan A = 3 \tan B $ (shown)	A1

2016 Sec 4NA AM_MYE Paper I_Marking Scheme 2

HUA YI SECONDARY SCHOOL MATHEMATICS DEPARTMENT

	estion	Solution	Mark Allocation
8	(i)	Amplitude = 3 Period= π	B1 B1
8	(ii)(iii)	$f(x) = 3\cos 2x + 1$ $y = 3$	ii) B1- correct no. of cycles B1- shape B1- max, min iii) B1- draw y=3
		4 solutions	B1
9		$4x(4-x) > 15$ $16x-4x^{2} > 15$ $-4x^{2}+16x-15 > 0$ $4x^{2}-16x+15 < 0$ $(2x-5)(2x-3) < 0$ $1.5 < x < 2.5$	MI AI
10	(i)	$y^{2} = \frac{1}{2}kx$ Sub $P(6,3)$ $3^{2} = \frac{1}{2}k(6)$ $k = 3$	MO
10	(ii)	$y^{2} = \frac{3}{2}x$ y $P(6,3)$ 0 x	B1

2016 Sec 4NA AM_MYE Paper 1_Marking Scheme 3

HUA YI SECONDARY SCHOOL MATHEMATICS DEPARTMENT

Q	uestion	Solution	Mark Allocation
10	(iii)	Coordinates of Q is $(6, -3)$.	B1
10	(iv)	Area of $\triangle OPQ = \frac{1}{2} \times 6 \times 6$ = 18 units ²	B1
11		$2^{2x+3} - 33(2^x) + 4 = 0$	
		$2^{3}(2^{2x}) - 33(2^{x}) + 4 = 0$ $2^{3}(2^{2x}) - 33(2^{x}) + 4 = 0$	
		Let $y = 2^x$	M1
		$8y^2 - 33y + 4 = 0$	
		$\begin{cases} 8y^2 - 33y + 4 = 0 \\ (8y - 1)(y - 4) = 0 \end{cases}$	
			M1
		$y = \frac{1}{8}$ or $y = 4$	M1
		$2^x = 2^{-3}$ or $2^x = 2^2$	382
		x = -3 or $x = 2$	A2
12	(i)	$y = 2x^2 - kx - 1$	7.2
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - k$	M1
			M1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 8 - k$	M1
1		$\begin{array}{l} \alpha x _{x=2} \\ x=2, y=7-2k \end{array}$	
			M1
	ac d	$8-k=\frac{7-2k-3}{2-4} \qquad . \qquad .$	
	-	-16+2k=4-2k	
	26	4k = 20 k = 5	A1
12	(ii)	Crosses y-axis, $x = 0$, $y = -1$	M1
		$\left \frac{\mathrm{d}y}{\mathrm{d}x}\right _{x=0} = -5$, $m_N = \frac{1}{5}$	na:
		$y - (-1) = \frac{1}{5}x$	M1
		$y = \frac{1}{5}x - 1$	
		5y = x - 5	A1
13	(i)	Sub $x = 0$, $B = (0.8)$	BI
13	(ii)	dy 2 2	D1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 - 2x$	M1
		At $x = 3$, $\frac{dy}{dx} = -4$	791
		dx .	

2016 Sec 4NA AM_MYE Paper 1_Marking Scheme 4

HUA YI SECONDARY SCHOOL MATHEMATICS DEPARTMENT

Question	Solution	Mark Allocation
	5 = -4(3) + c $c = 17$	M1
34	C = (0,17)	AI
13 (iii)	area of the shaded region = area of trapezium – area under curve	
	$= \frac{1}{2} (17+5)(3) - \int_0^3 8+2x-x^2 dx$	M2
	$= 33 - \left[8x + x^2 - \frac{x^3}{3} \right]_0^3$	MI
	= 33-[24+9-9]	MI
	= 9 square units	A1
14 (i)	$\frac{\pi}{3}$	B1
14 (ii)	$\frac{\pi}{4}$	B1

Index Number:

Class:

HUA YI SECONDARY SCHOOL

4NA

Preliminary Examination 2016

4NA

ADDITIONAL MATHEMATICS

4044/02

Paper 2

18 August 2016

1 h 45 min

Additional materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your Name, Class and Index Number on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 70.

For Examiner's Use

This document consists of 5 printed pages including the cover page.

© HYSS 2016

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

Setter: Mr Tan Yong Hwa

Mathematical Formulae

I. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$

Identities

2. TRIGONOMETRY

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\cos ec^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

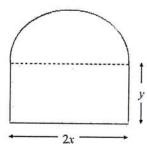
$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}bc\sin A$$


- Find the range of values of k for which $2x^2 + kx + 2 > 0$ for all real values of x. [3]
- Integrate $(3x + 4)^8$ with respect to x. [2]
- The equation $x^2 2x + a = 0$ has roots α and β . Another equation $x^2 + bx + 9 = 0$ has roots α^2 and β^2 . Calculate the possible values of α and of β .
- 4 (i) Given that $y = \frac{x^2}{(1+x^2)}$, find $\frac{dy}{dx}$. [2]
 - (ii) Hence, find $\int_3^7 \frac{5x}{(1+x^2)^2} dx$. [3]
- A circle passes through the points P(-2,0) and Q(4,0) and has its centre lying on the line y = x + 4.
 - (i) Show that the equation of the perpendicular bisector of PQ is x=1. [3]
 - (ii) Find the coordinate of the centre of the circle. [2]
 - (iii) Find the equation of the circle. [3]
 - (iv) Find the coordinates of a point R such that PR is the diameter of the circle. [3]
- 6 (i) Express $3\cos x 5\sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ radians.
 - (ii) The height, h centimetres, of a wave of water in a tank being used for a physics experiment is given by

$$h = 3\cos t - 5\sin t$$
,

where t is the time in seconds after the start of the experiment. After how many seconds does the wave first reach a height of 3.5 centimetres?

- 7 A curve has the equation $y = x^3 x^2 5x + 4$.
 - (i) Find the coordinates of the stationary points of the curve. [4]
 - (ii) Determine the nature of these stationary points. [4]
 - (iii) Find the set of values of x for which y is increasing. [2]

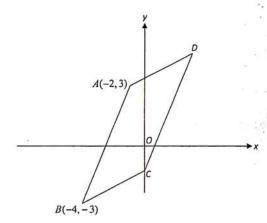
- 8 Solve the equation $8 \cot x = 3 \sin x$ for $0^{\circ} \le x \le 360^{\circ}$
- The diagram shows a window pane which is formed by a rectangle with sides 2x metres and y metres and a semicircle of radius x metres. The perimeter of the window is 12 metres.

- (i) Show that $y = \frac{1}{2}(12 2x \pi x)$. [2]
- (ii) Hence, show that the area, A square metres, of the window pane is given by

$$A = 12x - 2x^2 - \frac{\pi x^2}{2} . [2]$$

[5]

Given that x and y can vary, find


- (iii) the value of x for which A is a maximum, [3]
- Given that $\tan A = \frac{3}{4}$ and $\sin A$ is negative, without using a calculator, find the value of

(i)
$$\sin 2A$$
, [4]

(ii)
$$\tan(-A)$$
, [1]

(iii)

[4]

In the figure above, the coordinates of A and B are (-2,3) and (-4,-3) respectively.

Find

- (i) the equation of the perpendicular bisector of AB,
- (ii) the area of triangle ABC if the perpendicular bisector of AB meets the y-axis at C,
- (iii) the coordinates of D if ABCD is a parallelogram.

~ END OF PAPER ~

Question	Solution	Mark Allocation
1	$2x^2 + kx + 2 > 0$	
*	$b^2 - 4ac < 0$	
	$k^2 - 4(2)(2) < 0$	
	$k^2 - 16 < 0$	M1
	(k+4)(k-4) < 0	M1
	-4 < k < 4	M1
2	$(3x+4)^9$	
	$\int (3x+4)^8 dx = \frac{(3x+4)^9}{9(3)} + c$	M1
		A1
	$=\frac{(3x+4)^9}{27}+c$	A1
3	$x^2 - 2x + a = 0$	
	$\alpha + \beta = 2$	V2040
	$\alpha\beta = a$ $x^2 + bx + 9 = 0$	B1
	$\alpha^2 + \beta^2 = -b$	
		8 8 7
	$\alpha^2 \beta^2 = 9$	B1
	$(\alpha\beta)^2 = 9$	
	$\alpha\beta = \pm 3$	A1
	$\therefore a = \pm 3$	
	$(\alpha + \beta)^2 - 2\alpha\beta = -b$	M1
	$(2)^2 - 2(\pm 3) = -b$	
	$(2) - 2(\pm 5) = -6$ $4 \pm 6 = -6$	L X
	b = -10, b = 2	A1
4 (i)	$y = \frac{x^2}{(1+x^2)}$	
		V
	$\frac{dy}{dx} = \frac{(1+x^2)(2x) - x^2(2x)}{(1+x^2)^2}$	M1
		1
	$=\frac{2x(1+x^2-x^2)}{(1+x^2)^2}$	
	$=\frac{2x}{(1+x^2)^2}$	224
	$(1+x^{2})^{\frac{1}{2}}$	A1

Question		Mark Allocation
4 (ii)	$\int_{3}^{7} \frac{5x}{(1+x^{2})^{2}} dx$	
	$=\frac{5}{2}\int_{3}^{7}\frac{2x}{(1+x^{2})^{2}}dx$	
*	$=\frac{5}{2}\left[\frac{x^2}{(1+x^2)}\right]^7$	M1
	$= \frac{5}{2} \left[\frac{7^2}{(1+7^2)} - \frac{3^2}{(1+3^2)} \right]$	M1
	$=\frac{1}{5}$	A1
5 (i)	Midpoint $PQ = \left(\frac{-2+4}{2}, 0\right) = (1, 0)$	MI
	Gradient $PQ = 0$ Equation of \perp bisector of PQ :	M1
19	x = 1[shown]	A1
5 (ii)	Sub $x = 1$ into $y = x + 4$: y = 5	M1
	Centre of circle: (1, 5)	B1
5 (iii)	Radius $= \sqrt{(5-0)^2 + (1-4)^2}$	M1
	$=\sqrt{34}$ units	M1
	Equation of circle: $(x-1)^2 + (y-5)^2 = 34$	A1
5 (iv)	Let $R = (x, y)$ $\left(\frac{-2+x}{2}, \frac{0+y}{2}\right) = (1,5)$ x = 4, y = 10	M1
	R = (4,10)	A1,A1
6 (i)	$3\cos\theta - 5\sin\theta = R\cos\left(\theta + \alpha\right)$	
	$R^2 = 3^2 + 5^2$	M1
	$= 34$ $R = \sqrt{34}$ $\tan \alpha = \frac{5}{3}$ $\alpha = 1.030$	МІ

2016 Sec 4NA AM_Prelims Paper 2_Marking Scheme 1

2016 Sec 4NA AM_Prelims Paper 2_Marking Scheme 2

HUA YI SECONDARY SCHOOL MATHEMATICS DEPARTMENT

Qu	estion	Solution	Mark Allocation
		$\therefore 3\cos\theta - 5\sin\theta = \sqrt{34}\cos(\theta + 1.03)$	A1
6	(ii)	$\therefore 3\cos\theta - 5\sin\theta = \sqrt{34}\cos(t+1.03)$ When h = 3.5	
		$3.5 = \sqrt{34}\cos(t + 1.03)$	M1
		$\cos(t+1.03) = \frac{3.5}{\sqrt{24}}$	M1
		$t+1.03 = 0.9269, 2\pi - 0.9626,$	M1
		t = -0.1031, 5.356, $\therefore time = 5.37s(3S.f)$	A1
		(20 - 50 - 40) ACC ACC (40 - 40)	A1
7	(i)	$\frac{dy}{dx} = 3x^2 - 2x - 5$	M1
		when $\frac{dy}{dx} = 0$,	
		(3x-5)(x+1)=0	
		$x = \frac{5}{3}$ or $x = -1$	M1
		$y = -\frac{67}{27}$ or $y = 7$	M1
		The coordinates of the stationary points are	
		$\left(\frac{5}{3}, -\frac{67}{27}\right)$ and $(-1,7)$	A1
7	(ii)	$\frac{d^2y}{dy^2} = 6x - 2$	65
		when $x = \frac{5}{3}$, $\frac{d^2y}{dx^2} = 6\left(\frac{5}{3}\right) - 2 = 8 > 0$	0
		$\therefore \left(\frac{5}{3}, -\frac{67}{27}\right) \text{ is a minimum point.}$	M1
		(3 21)	A1
		when $x = -1$, $\frac{d^2y}{dx^2} = 6(-1) - 2 = -8 < 0$	M1
		∴ (-1,7) is a maximum point.	A1
7	(iii)	For y to be increasing, $\frac{dy}{dx} > 0$,	•
		(3x-5)(x+1) > 0	M1
		$x < -1 \text{ or } x > \frac{5}{3}$	A1

HUA YI SECONDARY SCHOOL MATHEMATICS DEPARTMENT

Question	Solution	Mark Allocation
8	$8\cot x = 3\sin x$	
	$\frac{8\cos}{\sin x} = 3\sin x$	
	Sili X	
	$3\sin^2 x - 8\cos x = 0$	M1
9	$3(1-\cos^2 x) - 8\cos x = 0$	
	$3-3\cos^2 x-8\cos x=0$	MI
	$3\cos^2 x + 8\cos x - 3 = 0$	11-2-75
	$(3\cos x - 1)(\cos x + 3) = 0$	M1
	$3\cos x - 1 = 0$ or $\cos x = -3$ (no solution)	
	$\cos x = \frac{1}{3}$	M1
	$x = 70.5^{\circ} (1 \text{ d.p.}), 289.5^{\circ} (1 \text{ d.p.})$	A1
9 (i)	π(2 r)	
G	$2x + 2y + \frac{\pi(2x)}{2} = 12$	M1
	$2x + 2y + \pi x = 12$	
	$y = \frac{12 - 2x - \pi x}{2}$ $A = 2xy + \frac{\pi x^2}{2}$	A1
9 (ii)	mr ²	-
	$A = 2xy + \frac{xy}{2}$	
	$=2x\left(\frac{12-2x-\pi x}{2}\right)+\frac{\pi x^{2}}{2}$	M1
	$=12x-2x^2-\pi x^2+\frac{\pi x^2}{2}$	
	$=12x-2x^2-\frac{\pi x^2}{2}$ (shown)	A1
9 (iii)	$\frac{dA}{dx} = 12 - 4x - \pi x$	M1
		1411
	$\frac{dA}{dx} = 0$	
	$12 - 4x - \pi x = 0$	
	$x = \frac{12}{4+\pi} \approx 1.68$	M1
	Check:	
	$\frac{d^2A}{dx^2} = -4 - \pi < 0$	
	$\therefore x = \frac{12}{4+\pi} \approx 1.68, \text{ when } A \text{ is a max.}$	A1

2016 Sec 4NA AM_Prelims Paper 2_Marking Scheme 3

2016 Sec 4NA AM_Prelims Paper 2_Marking Scheme 4

bestfreepapers.com *

- The BEST website to download FREE exam papers, notes and other materials from Singapore!

HUA YI SECONDARY SCHOOL MATHEMATICS DEPARTMENT

Question		Solution	Mark Allocation
10 ((i)	$\tan A = \frac{3}{4}$ and $\sin A$ is negative $\Rightarrow 180^{\circ} < \theta < 270^{\circ}$ $\tan \theta = \frac{3}{4} \Rightarrow \frac{\text{opp}}{\text{adj}}$ $\text{hyp} = \sqrt{3^2 + 4^2}$	
		= 5	M1
		$\sin 2\theta = 2\sin\theta\cos\theta$ $\cos(-3)(-4)$	M1
		$=2\left(\frac{-3}{5}\right)\left(\frac{-4}{5}\right)$	M1
		$=\frac{24}{25}$	A1
10 (ii)	$-\frac{3}{4}$	B1
10 (iii)	$-\frac{5}{4}$	B1
11 (i)	Mid - point of $AB = \left(\frac{-2 + (-4)}{2}, \frac{3 + (-3)}{2}\right)$ = (-3,0)	M1
		Gradient of $AB = \frac{3 - (-3)}{-2 + 4}$	
		$=\frac{6}{2}$ $=3$	M1
		Gradient of \perp bisector of $AB = -\frac{1}{3}$	мі
		Equation of perpendicular bisector of AB,	100
		$y - 0 = -\frac{1}{3}(x+3)$	
		$y = -\frac{1}{3}x - 1$	A1
11 (i	ii)	At C , $x = 0$, $y = -1$	
	I		

2016 Sec 4NA AM_Prelims Paper 2_Marking Scheme 5

HUA YI SECONDARY SCHOOL MATHEMATICS DEPARTMENT

Question	Solution	Mark Allocation
	Area of $\triangle ABC = \frac{1}{2} \begin{vmatrix} -2 & -4 & 0 & -2 \\ 3 & -3 & -1 & 3 \end{vmatrix}$	MI
	$= \frac{1}{2} (6+4+0) - (-12+0+2) $ = 10 sq units	A1
11 (iii)	Let the coordinates of D be (a, b).	-
	Mid - point AC = Mid - point BD	
	$\left(\frac{-2+0}{2}, \frac{3-1}{2}\right) = \left(\frac{-4+a}{2}, \frac{-3+b}{2}\right)$	
	$(-1,1) = \left(\frac{-4+a}{2}, \frac{-3+b}{2}\right)$	M1
	$\begin{vmatrix} -4+a \\ 2 \end{vmatrix} = -1$ $a = 2$	
	Or	
(3)	$\frac{-3+b}{2} = 1$	
	b = 5	
	Therefore coordinates of D is (2, 5)	A1

2016 Sec 4NA AM_Prelims Paper 2_Marking Scheme 6

Jurong West Secondary School

Preliminary Examinations 2016

ADDITIONAL MATHEMATICS

4044/01

Secondary Four Normal Academic

22 August 2016

Paper 1

1100 - 1245

1 hour 45 minutes

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 70.

After che	ecking of answe	er script
Checked	Signature	Date
Student		

For Examiner's Use			J
			1
			I
			ı
			ı
		20	
	40		

This document consists of 7 printed pages.

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

118

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \ .$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$$
.

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

 $sin(A \pm B) = sin A cos B \pm cos A sin B$ $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for \(ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2} ab \sin C$$

(i) Factorise
$$a^3 + b^3$$
.

2 Find
$$\int 2(4x-3)^{-7} dx$$
. [3]

Given that cosec $A = \frac{5}{3}$, where A is acute, without the use of calculator, find the values of the following.

4 (i) Show that $27^{x+1} \times 3^{3x}$ may be written as 3^{6x+3} . [2]

(ii) Hence find the value of
$$\frac{27^{x+1} \times 3^{3x}}{5(3^3) \times 3^{6x}}$$
. [2]

The volume, $V \text{ cm}^3$, of liquid in a container is given by $V = 4x^3$, where x cm is the depth of the liquid. Liquid is poured into the container at a constant rate of 24 cm³/s. Determine the rate of increase of x when x = 3.

(i) The curve
$$y^2 = -4x$$
 and the line $y = 3x + 1$ intersect at points A and B . Find the coordinates of A and B . [3]

(ii) Sketch, on the same diagram, the graphs of
$$y^2 = -4x$$
 and $y = 3x + 1$, marking the points A and B on your diagram. [3]

The points A, B and C have coordinates (2, 10), (15,8) and (13,1) respectively. D is the point on the x-axis such that CD is parallel to AB.

Find the coordinates of D.

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

JWSS Preliminary Examinations 2016

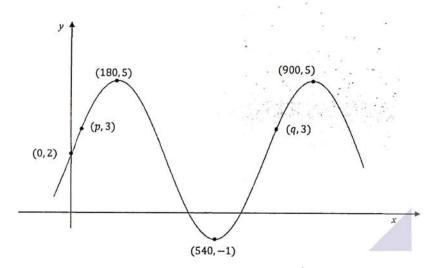
(ii)

Additional Mathematics 4044/01

Sec 4 Normal Academic

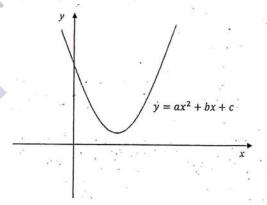
[1]

[2]


[4]

[3]

[1]


[2]

The sketch below shows part of the graph of $y = a \sin \frac{x}{b} + c$, where x is in degrees.

- (i) Write down the values of the integers a, b and c.
- (ii) When x = 60, y = 3.5. Use the sketch to write down two further values of x between 0 and 900 for which y = 3.5.
- Find an equation connecting p and q.
- The equation of a curve is $y = \frac{x-5}{x+3}$. 9
 - By using the quotient rule, find $\frac{dy}{dx}$. (i)
 - (ii) Find the equation of the normal to the curve at the point (1, -1).
 - (iii)
 - Given that y = f(x) for $x \ge 0$, show that f is an increasing function. [1]

- Differentiate $(3x^2 5x)^4$ with respect to x. 10
 - Hence evaluate $\int_{\sqrt{2}}^{3} (6x 5)(3x^2 5x)^3 dx$.
- Show that $\frac{\cos 2A}{1-\cos^2 A} = \csc^2 A 2$. [3]
 - Hence, solve the equations $\frac{\cos 2A}{1-\cos^2 A} = 0$, for $0 \le x \le \pi$.
- 12 The sketch below shows part of the graph of $y = ax^2 + bx + c$. For each of the following expressions state, with a reason, whether it is positive, zero or negative.

- [2]
- [2]

[2]

[4]

[3]

[2]

[2]

[2]

[3]

- Without using a calculator, express $\frac{5-\sqrt{3}}{2+\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b are 13
 - Hence or otherwise, find the values of the integers p and q for which

 $\frac{5-\sqrt{3}}{2+\sqrt{3}}=(p-\sqrt{3})(2q-\sqrt{3}).$ [5]

End of Paper

[3]

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

Marked Scheme

Class Index no.

Jurong West Secondary School

Preliminary Examinations 2016

ADDITIONAL MATHEMATICS

Secondary Four Normal Academic

Paper 1

2

4044/01

22 August 2016

1100 - 1245

1 hour 45 minutes

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 70.

After chec	king of answer	script
Checked by	Signature	Date
Student		

For Exa	miner's U	lse

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where n is a positive integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$$
.

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$sec^2 A = 1 + tan^2 A$$

$$\cos ec^2 A = 1 + \cot^2 A$$

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\operatorname{an}(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

 $\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
 [B1]

(ii) Express $2^3 + 27$ as a product of two integers.

$$2^{3} + 27 = 2^{3} + 3^{3}$$
= $(2 + 3)(2^{2} - 2(3) + 3^{2})$ [M1]
= $(5)(7)$ [A1]

2 Find $\int 2(4x-3)^{-7} dx$.

$$\int 2(4x-3)^{-7} dx = \frac{2(4x-3)^{-6}}{-6(4)} + c \text{ [M1 for denominator, M1 for numerator]}$$
$$= -\frac{1}{12}(4x-3)^{-6} + c \text{ [A1]}$$

Given that cosec $A = \frac{5}{3}$, where A is acute, find the value of the following.

(i) tan A

$$\sin A = \frac{3}{5}$$
 [M1 for reciprocal]
 $\tan A = \frac{3}{4}$ [A1]

(ii) sin 2A

$$\sin 2A = 2 \sin A \cos A$$

$$= 2 \left(\frac{3}{5}\right) \left(\frac{4}{5}\right) [M1 \text{ for } \cos A]$$

$$= \frac{24}{25} [A1]$$

(i) Show that $27^{x+1} \times 3^{3x}$ may be written as 3^{6x+3} .

$$27^{x+1} \times 3^{3x} = 3^{3x+3} \cdot 3^{3x}$$
 [M1 for 3^{3x+3}]
= 3^{6x+3} (shown) [A1]

(ii) Hence or otherwise, find the value of $\frac{27^{x+1} \times 3^{3x}}{5(3^3) \times 3^{6x}}$.

$$\frac{\frac{27^{x+1} \times 3^{3x}}{5(3^3) \times 3^{6x}} = \frac{3^{6x+3}}{5 \times 3^{6x+3}} [M1 \text{ for } 5 \times 3^{6x+3}]$$
$$= \frac{1}{5} [A1]$$

[1]

[2]

[3]

[2]

The volume, $V \text{ cm}^3$, of liquid in a container is given by $V = 4x^3$, where x cm is the depth of the liquid. Liquid is poured into the container at a constant rate of 24 cm³/s. Determine the rate of increase of x when x = 3.

$$\frac{dv}{dx} = 12x^2 \text{ [M1 for differentiation]}$$

$$\frac{dv}{dt} = 24$$

$$\frac{dx}{dt} = \frac{dx}{dv} \times \frac{dv}{dt} \text{ [M1 for chain rule]}$$

$$= \frac{1}{12(3^2)} \times 24 \text{ [M1 for substitution]}$$

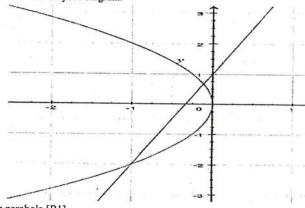
$$= \frac{2}{9} \text{ cm/s [A1]}$$

(i) Find the coordinates of the intersection points A and B for $y^2 = -4x$ and y = 3x + 1.

$$(3x+1)^2 = -4x \text{ [M1 for substitution]}$$

$$9x^2 + 6x + 1 = -4x$$

$$9x^2 + 10x + 1 = 0$$


$$(9x+1)(x+1) = 0$$

$$x = -\frac{1}{9} \text{ or } x = -1$$

$$y = \frac{2}{3} \quad y = -2$$

$$A\left(-\frac{1}{9}, \frac{2}{3}\right), B(-1, -2) \text{ or } B\left(-\frac{1}{9}, \frac{2}{3}\right), A(-1, -2) \text{ [A1, A1]}$$

(ii) Sketch, on the same diagram, the graphs of $y^2 = -4x$ and y = 3x + 1, marking the points A and B on your diagram.

Correct negative parabola [B1]

Correct line [B1]

Correct intersections [B1]

JWSS Mid-Year Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

JWSS Mid-Year Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

[4]

[3]

bestfreepapers.com

6

The points A, B and C have coordinates (2, 10), (15, 8) and (13, 1) respectively. D is the point on the x-axis such that CD is parallel to AB.

Find the equation of CD.

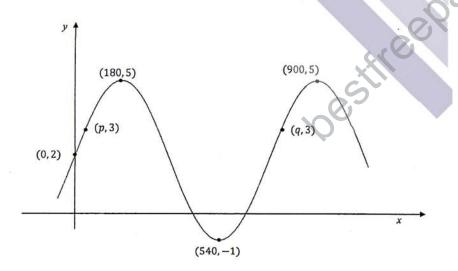
7

$$\frac{10-8}{2-15} = -\frac{2}{13} [M1 \text{ for gradient } AB]$$

$$1 = \left(-\frac{2}{13}\right) (13) + c [M1 \text{ for attempting to find c}]$$

$$c = 3$$

$$y = -\frac{2}{13}x + 3 [A1]$$


(ii) Find the coordinates of D.

$$D\left(19\frac{1}{2},0\right)$$
 [B1]

(iii) Hence, find the area of quadrilateral ABCD.

Area =
$$\frac{1}{2}\begin{vmatrix} 2 & 13 & 19.5 & 15 & 2\\ 10 & 1 & 0 & 8 & 10 \end{vmatrix}$$
 [MI for attempting to use area formula]
= $\frac{1}{2}(308 - 165.5)$
= $\frac{285}{4}$ = 71.25 units² [AI]

The sketch below shows part of the graph of $y = a \sin \frac{x}{b} + c$, where x is in degrees.

i) Write down the values of the integers a, b and c.

$$a = 3, b = 2, c = 2$$
 [B1, B1, B1]

(ii) When x = 60, y = 3.5. Use the sketch to write down two further values of x between 0 and 900 for which y = 3.5.

(iii) Find an equation connecting p and q.

$$q = p + 720^{\circ}$$
 [B1]

The equation of a curve is $y = \frac{x-5}{x+3}$.

(i) By using the quotient rule, find $\frac{dy}{dx}$.

$$\frac{dy}{dx} = \frac{(x+3)-(x-5)}{(x+3)^2} [M1 \text{ for attempting to use quotient rule}]$$

$$= \frac{8}{(x+3)^2} [A1]$$

(ii) Find the equation of the normal to the curve at the point (1,-1).

$$\frac{dy}{dx} = \frac{8}{(1+3)^2} = \frac{1}{2} [M1 \text{ for gradient of tangent}]$$

$$m \text{ normal} = -2$$

$$-1 = -2(1) + c [M1 \text{ attempt to find c}]$$

$$c = 1$$

$$y = -2x + 1 [A1]$$

(iii) Given that y = f(x) for $x \ge 0$, show that f is an increasing function.

Since
$$(x+3)^2 > 0$$
, $\frac{8}{(x+3)^2} > 0$, $f'(x) > 0$ [B1] f is increasing

JWSS Mid-Year Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

JWSS Mid-Year Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

[3]

[1]

[2]

Differentiate $(3x^2 - 5x)^4$ with respect to x.

$$\frac{d(3x^2-5x)^4}{dx} = 4(3x^2-5x)^3(6x-5)$$
 [B1, B1]

Hence evaluate $\int_{\sqrt{2}}^{3} (6x - 5)(3x^2 - 5x)^3 dx$.

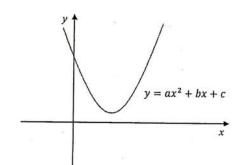
$$\begin{bmatrix} \frac{1}{4} \int_{\sqrt{2}}^{3} 4(6x-5)(3x^2-5x)^3 dx \\ [M1 \text{ for making the expression } 4(6x-5)(3x^2-5x)^3] \\ = \frac{1}{4} [(3x^2-5x)^4] \frac{3}{\sqrt{2}} [A1] \\ = \frac{1}{4} \Big\{ [3(3)^2-5(3)]^4 - \Big[3(\sqrt{2})^2-5(\sqrt{2})\Big]^4 \Big\} [M1 \text{ for substituting the values}] \\ = 5183.7 = 5180 \text{ units}^2 [A1]$$

11

Show that $\frac{\cos 2A}{1-\cos^2 A} = \csc^2 A - 2$.

$$\frac{\cos 2A}{1-\cos^2 A} = \frac{1-2\sin^2 A}{\sin^2 A}$$
 [M1 for denominator, M1 for numerator]
= $\csc^2 A - 2$ (shown) [A1]

Hence, solve the equation $\frac{\cos A}{1-\cos^2 A} = 0$, for $0 \le x \le \pi$.


cosec²
$$A - 2 = 0$$
 [M1 for using part (a)]
cosec² $A = 2$
 $\sin^2 A = \frac{1}{2}$ [M1 for converting reciprocal]
 $\sin A = \pm \frac{1}{\sqrt{2}}$
 $\alpha = \frac{\pi}{4}$
 $A = \frac{\pi}{4}$, $\frac{3\pi}{4}$ [A1]

[2]

[4]

[3]

12 The sketch below shows part of the graph of $y = ax^2 + bx + c$. For each of the following expressions state, with a reason, whether it is positive, zero or negative.

Positive, [B1] y-intercept is positive [B1]

Negative, [B1] No real roots [B1]

 $\frac{dy}{dx}$ at y intercept

Negative [B1] Decreasing [B1]

Positive [B1] Only have minimum point [B1]

13

Without using a calculator, express $\frac{5-\sqrt{3}}{2+\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b are

$$\frac{5-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} [M1 \text{ for rationalizing}]$$

$$= \frac{10-2\sqrt{3}-5\sqrt{3}+3}{4-3} [M1 \text{ for expansion}]$$

$$= 13-7\sqrt{3} [A1]$$

JWSS Mid-Year Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

JWSS Mid-Year Examinations 2016

Additional Mathematics 4044/01

Sec 4 Normal Academic

[2]

[2]

[2]

[2]

Hence or otherwise, find the values of the integers p and q for which $\frac{5-\sqrt{3}}{2+\sqrt{3}} = (p-\sqrt{3})(2q-\sqrt{3}).$

[5]

$$(p - \sqrt{3})(2q - \sqrt{3}) = 2pq - p\sqrt{3} - 2q\sqrt{3} + 3$$

= $(2pq + 3) - (p + 2q)\sqrt{3}$
= $13 - 7\sqrt{3}$

2pq + 3 = 13 [MI for attempting to compare coefficient]

$$pq = 5$$

$$pq = 5$$

$$p = \frac{5}{q} \dots (1)$$

 $p + 2q = 7 \dots (2)$ [M1 for attempting to compare coefficient of $\sqrt{3}$] Sub (1) into (2),

 $2q + \frac{5}{q} = 7$ [M1 for substitution]

$$2q^2 - 7q + 5 = 0$$

$$(q-1)(2q-5)=0$$

$$q=1 q=\frac{5}{2} [A1]$$

$$p = 5$$
 $p = 2$ [A1]

End of Paper

W 55

Jurong West Secondary School

Preliminary Examinations 2016

ADDITIONAL MATHEMATICS

Secondary Four Normal Academic

Paper 2

4044/02

Class Index no.

25 August 2016

0800 - 0945

1 hour 45 minutes

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 70.

After ch	ecking of answe	er script
Checked	Signature	Date
Student		

For Examiner's Use	

This document consists of 5 printed pages.

[Turn over

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$$
.

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/02

Sec 4 Normal Academic

- 1 (i) Write down the principal value, in radians as a multiple of π , of $\cos^{-1}(\frac{1}{2})$. [1]
 - (ii) Given that the principal value of sin⁻¹ a = x, find the principal value of sin⁻¹(-a) in terms of x.
- 2 (i) Given that $y = 3x^2 14x + 15$, determine the range of values of x for which y > 20.
 - (ii) Represent this set of values on a number line.
- 3 (i) Expand $(2-x)^8$ in ascending powers of x, up to and including the term in x^3 . [3]
 - (ii) Hence find the coefficient of x^2 in the expansion $(3 4x)(2 x)^8$. [3]
- 4 A polynomial f(x) is such that f''(x) = 24x 4, f'(1) = 23 and f(-1) = -10. [5]
- Given that $y = x^3(5x 2)^7$, find $\frac{dy}{dx}$, giving your answer in the form $(px + q)(5x 2)^6x^2$, where p and q are integers. [5]
- The roots of a quadratic equation $x^2 5x = 3$ are α and β .
 - (i) Evaluate $\alpha^2 + \beta^2$.
 - (ii) Find a quadratic equation with roots $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$.
- 7 (i) Find the coordinates of the stationary points on the graph of $y = x^3 + x^2 21x + 7$. [5]
 - (ii) Determine the nature of each of these stationary points.

(a) (i) Show that the equation $4 \sec^2 x - 9 \tan x = 2 \tan^2 x + 9$

may be written in the form
$$2 \tan^2 x - 9 \tan x - 5 = 0.$$

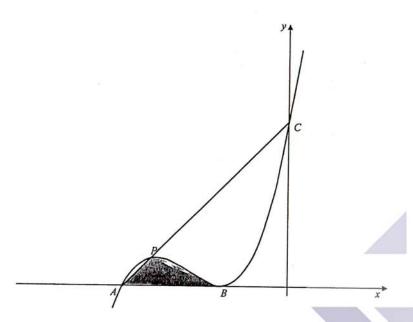
- (ii) Hence solve the equation $4\sec^2 x 9\tan x = 2\tan^2 x + 9, \text{ for } 0^\circ \le x \le 180^\circ.$ [3]
- (b) (i) Express $3 \sin \theta + \sqrt{3} \cos \theta$ in the form of $R \sin(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ radians. [4]
 - (ii) In an experiment the height, h m, of a wave of a water tank is given by $h = 3 \sin t + \sqrt{3} \cos t$, where t is the time in seconds after the start of the experiment.

 Find the time when the height of the wave first takes the maximum value. [3]

The equation of a circle is $x^2 + y^2 - 4x + 6y - 12 = 0$.

 Find the coordinates of the centre of the circle and determine the length of the radius.

The point A(-1,1) lies on the circle.


- (ii) Find the coordinates of the point B such that AB is a diameter of the circle. [2]
- (iii) Given that the coordinates of D is (1,5), find the equation of AD. [2]
- (iv) Hence show that the line AD cuts the circle at two distinct points. [3]

[2]

[3]

[1]

The diagram shows part of the graph of y = f(x), where $f(x) = x^3 + 13x^2 + kx + 63$. The curve crosses the x- and y- axes at the points A and C respectively and meet the x-axis at point B.

Given that x + 7 is a factor of f(x),

- (i) show that k = 51,
- (ii) solve f(x) = 0 and hence state the x-coordinate of the point B.

Given that the equation of line AC is y = 9x + 63,

- (iii) show that the coordinates of P is (-6,9),
- (iv) find the area of shaded region APB.

[1]

- [3]
- [4]

End of Paper

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/02

Sec 4 Normal Academic

MARKED SCHEME

Class Index no.

Jurong West Secondary School

Preliminary Examinations 2016

ADDITIONAL MATHEMATICS

Secondary Four Normal Academic

Paper 2

4044/02 -

25 August 2016

0800 - 0945

1 hour 45 minutes

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 70.

After ch	ecking of answe	er script
Checked	Signature	Date
Student		

For Examiner's Use	

This document consists of 9 printed pages.

[Turn over

2

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^2 + \dots + \binom{n}{r} a^{n-r}b^r + \dots + b^n$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$.

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$sec^2 A = 1 + tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

 $\sin 2A = 2\sin A\cos A$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

Formulae for \(ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

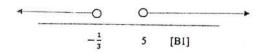
$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/02

Sec 4 Normal Academic


- 1 (i) Write down the principal value, in radians as a multiple of π , of $\cos^{-1}\left(\frac{1}{2}\right)$. [1] $\frac{\pi}{3}$ [B1]
 - (ii) Given that the principal value of $\sin^{-1} a = x$, find the principal value of $\sin^{-1}(-a)$ in terms of x. -x [B1]
- Given that $y = 3x^2 14x + 15$, determine the range of values of x for which y > 20. [3]

$$3x^{2} - 14x + 15 > 20 \text{ [M1]}$$

$$3x^{2} - 14x - 5 > 0$$

$$(3x + 1)(x - 5) > 0 \text{ [M1 for factorization]}$$

$$x < -\frac{1}{3} \text{ or } x > 5 \text{ [A1]}$$

3 (i) Expand $(2-x)^8$ in ascending powers of x, up to and including the term in x^3 .

$$(2-x)^8 = 2^8 + {8 \choose 1} 2^7 (-x) + {8 \choose 2} 2^6 (-x)^2 + {8 \choose 3} 2^5 (-x)^3$$

[M1 for binomial expansion]
= 256 - 1024x + 1792x² - 1792x³ + ··· [A1 for 2 to 3 correct simplification, A2 for all correct]

(ii) Hence find the coefficient of x^2 in the expansion $(3-4x)(2-x)^8$.

Coefficient of
$$x^2 = 3(1792) + (-4)(-1024)$$
 [M1, M1 for correct coefficient]
= 9472 [A1]

A polynomial f(x) is such that f''(x) = 24x - 4, f'(1) = 23 and f(-1) = -10. Find f(x).

$$f'(x) = \int (24x - 4) dx$$

$$= \frac{24x^2}{2} - 4x + c \text{ [M1 for integration]}$$

$$f'(1) = 12(1^2) - 4(1) + c = 23 \text{ [M1 for attempt to find } c \text{]}$$

$$c = 15$$

$$f'(x) = 12x^2 - 4x + 15$$

$$f(x) = \int (12x^2 - 4x + 15) dx$$

$$= \frac{12x^3}{3} - \frac{4x^2}{2} + 15x + c \text{ [M1]}$$

$$f(-1) = 4(-1)^3 - 2(-1)^2 + 15(-1) + c = -10 \text{ [M1 for attempt to find } c \text{]}$$

$$c = 11$$

$$f(x) = 4x^3 - 2x^2 + 15x + 11 \text{ [A1]}$$

Given that $y = x^3(5x - 2)^7$, find $\frac{dy}{dx}$, giving your answer in the form $(px + q)(5x - 2)^6x^2$, where p and q are integers.

$$\frac{dy}{dx} = (5x - 2)^7 (3)x^2 + 7(5)(5x - 2)^6x^3$$
 [M1 for attempt to use product rule]
= $3x^2(5x - 2)^7 + 35x^3(5x - 2)^6$ [A1, A1]
= $x^2(5x - 2)^6$ [(15x - 6 + 35x)] [M1 for factorisation]
= $(50x - 6)(5x - 2)^6x^2$ [A1]

The roots of a quadratic equation $x^2 - 5x = 3$ are α and β .

(i) Evaluate
$$\alpha^2 + \beta^2$$
.

$$\alpha + \beta = 5 \text{ [B1]}$$

$$\alpha\beta = -3 \text{ [B1]}$$

$$\alpha + \beta = 5 \text{ [B1]}$$

$$\alpha \beta = -3 \text{ [B1]}$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$= 5^2 - 2(-3)$$

$$= 31 \text{ [A1]}$$
[M1 for identity]

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/02

Sec 4 Normal Academic

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/02

Sec 4 Normal Academic

[5]

[5]

[4]

Find the coordinates of the stationary points on the graph of $y = x^3 + x^2 - 21x + 7$.

$$\frac{dy}{dx} = 3x^2 + 2x - 21 \text{ [M1 for differentiation]}$$

$$\frac{dy}{dx} = 0 \text{ at stationary points}$$

$$3x^2 + 2x - 21 = 0 \text{ [M1 for } \frac{dy}{dx} = 0 \text{]}$$

$$(3x - 7)(x + 3) = 0 \text{ [M1 for factorisation]}$$

$$x = -3 \text{ or } x = \frac{7}{3} = 2\frac{1}{3}$$

$$y = 52 \qquad y = -\frac{644}{27} = -23\frac{23}{27}$$

$$(-3,52), (2\frac{1}{3}, -23\frac{23}{27}) \text{ [A1, A1]}$$

Determine the nature of each of these stationary points.

$$\frac{d^2y}{dx^2} = 6x + 2$$
When $x = -3$,
$$\frac{d^2y}{dx^2} < 0 \Rightarrow \text{Maximum [B1]}$$
When $x = \frac{7}{3}$,
$$\frac{d^2y}{dx^2} > 0 \Rightarrow \text{Minimum [B1]}$$

JWSS Preliminary Examinations 2016 Additional Mathematics 4044/02 Sec 4 Normal Academic

[3]

[5]

may be written in the form

Show that the equation

8 (a) (i)

 $4 \sec^2 x - 9 \tan x = 2 \tan^2 x + 9$

 $2 \tan^2 x - 9 \tan x - 5 = 0$.

$$4(1 + \tan^2 x) - 9 \tan x = 2 \tan^2 x + 9
4 + 4 \tan^2 x - 9 \tan x = 2 \tan^2 x + 9
2 \tan^2 x - 9 \tan x - 5 = 0 (shown)$$
[B1]

Hence solve the equation $4 \sec^2 x - 9 \tan x = 2 \tan^2 x + 9$, for $0^\circ \le x \le 180^\circ$.

> $2 \tan^2 x - 9 \tan x - 5 = 0$ $(2\tan x + 1)(\tan x - 5) = 0$ [M1 for factorization] $\tan x = -\frac{1}{2} \quad \tan x = 5$ $\alpha = 26.5651^{\circ}$ $\alpha = 78.6901^{\circ}$ $x = 153.4^{\circ}$ $x = 78.7^{\circ}$ [A1, A1]

Express $3 \sin \theta + \sqrt{3} \cos \theta$ in the form of $R \sin(\theta + \alpha)$, where R > 0 and 0 < 1 $\alpha < \frac{\pi}{2}$ radians.

$$3 \sin \theta + \sqrt{3} \cos \theta = R \sin \theta \cos \alpha + R \cos \theta \sin \alpha$$

$$R \cos \alpha = 3$$

$$R \sin \alpha = \sqrt{3}$$

$$\alpha = \frac{\pi}{6} \text{ or } 0.524 \text{ rad [A1]}$$

$$R = 2\sqrt{3} \text{ or } 3.46 \text{ [B1]}$$

$$\sqrt{3} \sin \theta + 3 \cos \theta = 2\sqrt{3} \sin(\theta + \frac{\pi}{6}) \text{ [A1]}$$

In an experiment, the height, h m of a wave of a water tank is given by $h = 3 \sin t + \sqrt{3} \cos t$.

where t is the time in seconds after the start of the experiment. Find the time when the height of the wave first takes the maximum value.

$$\sin\left(t + \frac{\pi}{6}\right) = 1 \text{ [MI]}$$

$$t + \frac{\pi}{6} = \frac{\pi}{2} \text{ [MI]}$$

$$t = \frac{\pi}{3}$$

$$= 1.05 \text{ s [AI]}$$

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/02

Sec 4 Normal Academic

[1]

[3]

[3]

- The equation of a circle is $x^2 + y^2 4x + 6y 12 = 0$.
 - (i) Find the coordinates of the centre of the circle and determine the length of the radius.

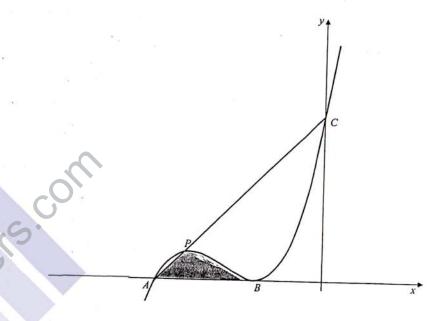
$$2g = -4$$

 $2f = 6$
 $g = -2$
 $f = 3$ [M1 for any method]
Centre (2, -3) [A1]
Radius $\sqrt{(-2)^2 + 3^2 - (-12)} = 5$ units[A1]

The point A(-1, 1) lies on the circle.

(ii) Find the coordinates of the point B such that AB is a diameter of the circle.

 $\frac{x_B + (-1)}{\frac{y_B + 1}{2}} = 2 \text{ [M1 for realizing that the centre is the midpoint of } AB \text{]}$ $\frac{y_B + 1}{2} = -3 \text{ [M1 for attempting to apply midpoint concept]}$ B(5, -7) [A1]


(iii) Given that the coordinates of D is (1,5), find the equation of AD.

Gradient
$$AD = \frac{1-5}{-1-1} = 2$$

 $1 = 2(-1) + c$ [M1 for attempt to find c]
 $c = 3$
Equation $AD: y = 2x + 3$ [A1]

(iv) Hence show that the line AD cuts the circle at two distinct points.

$$x^{2} + (2x + 3)^{2} - 4x + 6(2x + 3) - 12 = 0$$
 [M1 for substitution]
 $x^{2} + 4x^{2} + 12x + 9 - 4x + 12x + 18 - 12 = 0$
 $5x^{2} + 20x + 15 = 0$
 $x^{2} + 4x + 3 = 0$
 $4^{2} - 4(1)(3) > 0$ [M1 for any method]
2 intersection points [A1]

The diagram shows part of the graph of y = f(x), where $f(x) = x^3 + 13x^2 + kx + 63$. The curve crosses the x- and y- axes at the points A and C respectively and meet the x-axis at point B.

Given that x + 7 is a factor of f(x),

(i) show that k = 51.

$$f(-7) = (-7)^3 + 13(-7)^2 + k(-7) + 63 = 0$$

 $k = 51$ (shown) [B1]

Additional Mathematics 4044/02

Sec 4 Normal Academic

[3]

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/02

Sec 4 Normal Academic

[1]

solve f(x) = 0 and hence state the x-coordinates of the point B.

[4]

$$x^{2} + 6x + 9$$

$$x + 7) x^{3} + 13x^{2} + 51x + 63$$

$$x^{3} + 7x^{2}$$

$$6x^{2} + 51x$$

$$6x^{2} + 42x$$

$$9x + 63$$

$$9x + 63$$

$$9x + 63$$
[M1 for long division]
$$f(x) = (x + 7)(x^{2} + 6x + 9) [A1 \text{ for quotient}]$$

$$= (x + 7)(x + 3)^{2} [M1]$$

$$x = -3 [A1]$$

Given that the equation of line AC is y = 9x + 63,

(iii) find the coordinates of P.

[3]

$$9x + 63 = x^3 + 13x^2 + 51x + 63$$
 [M1 for attempting to solve simultaneous Equation]
 $x^3 + 13x^2 + 42x = 0$
 $x(x^2 + 13x + 42) = 0$
 $x(x + 7)(x + 6) = 0$ [M1 for factorization]
When $x = -6$, $y = 9$
 $P(-6,9)$ [A1]

(iv) find the area of shaded region APB.

[4]

Area of
$$APB = \frac{1}{2}(1)(9) + \int_{-6}^{-3} (x^3 + 13x^2 + 51x + 63) dx$$
 [M1 for area of triangle; M1 for correct definite integral]
$$= \frac{9}{2} + \left[\frac{x^4}{4} + \frac{13x^3}{3} + \frac{51x^2}{2} + 63x \right]_{-6}^{-3} [\text{M1 for integration}]$$

$$= \frac{9}{2} + \left\{ \left[\frac{(-3)^4}{4} + \frac{13(-3)^3}{3} + \frac{51(-3)^2}{2} + 63(-3) \right] - \left[\frac{(-6)^4}{4} + \frac{13(-6)^3}{3} + \frac{51(-6)^2}{2} + 63(-6) \right] \right\}$$

$$= \frac{9}{2} + \frac{63}{4}$$

$$= \frac{81}{4} = 20.25 \text{ units}^2 [\text{A1}]$$

End of Paper

JWSS Preliminary Examinations 2016

Additional Mathematics 4044/02

Sec 4 Normal Academic

ACCOUNT
S ATTE
D SW C
35,58
4

YUAN CHING SECONDARY SCHOOL

Secondary	Four Normal	(Academic) (
Preliminary	Examination	2016

CANDIDAT	E
NAME	

- 1		
- 1		

INDEX NUMBER

ADDITIONAL MATHEMATICS

4044/01

Paper 1

CLASS

11 Aug 2016

1 hour 45 minutes

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staple, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on the separate foolscap papers provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 70.

	MARKS
Total	/ 70

This paper consists of 4 printed pages.

[Turn Over

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$

2. TRIGONOMETRY

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\cos e c^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A + B) = \tan A \pm \tan B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

(i)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
, [1]

(ii)
$$\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$$
. [1]

- 2 (i) Expand $(1-3x)^8$ in ascending powers of x, up to the term in x^3 .
 - (ii) Hence find the coefficient of x^2 in the expansion of $\left(x+2+\frac{3}{x}\right)(1-3x)^8$. [2]
- The volume of a sphere $V \text{ cm}^3$ is increasing at a constant rate of 30 cm³/s. Calculate the rate of increase of its radius r cm when r = 0.4. [3]
- 4 (i) Show that (x-a) is a factor of x^3-a^3 .
 - (ii) Hence factorise completely $3x^3 24$. [2]
- 5 (a) Solve the following pair of simultaneous equations

$$\frac{1}{9} = 3^x \times 27^{2y}$$
 and $5^x \times 25^{2y} = 1$.

- (b) By means of a suitable substitution, solve the equation $16^x + 4 = 5(4^x)$.
- 6 Find the range of values of x for the following inequalities.
 - (a) $2(x+1)^2 < 8$,

135

- (b) $x(1-x) \le x-1$.
- (a) Without the use of a calculator, express $\frac{\sqrt{3}-1}{\sqrt{3}+2}$ in the simplest form $a+b\sqrt{3}$
- where a and b are integers. [3] (b) Solve the equation $x^2\sqrt{3} - 5x + \sqrt{12} = 0$, expressing your answers in the form
 - of $\frac{c}{\sqrt{3}}$ where c is an integer. [2]
- 8 (a) Solve $\cos 2\theta \cos \theta = 0$ for $0^{\circ} \le \theta \le 180^{\circ}$. [4]
 - (b) Find x in terms of π when $\sqrt{3}\cos\left(x \frac{\pi}{2}\right) = \cos x$ for $0 \le x \le \pi$. [4]

- The curve $y = a + b \sin cx$ where a, b and c are real numbers has a maximum value of 3, minimum value of -5 and a period of 60°.
 - (i) Find the value of a, of b and of c. [3]
 - (ii) Hence sketch the graph for $0^{\circ} \le x \le 120^{\circ}$. [3]
- 10 The equation of a curve is $y = x^4(x+1)$.
 - (i) Find the x-coordinates of the stationary points of the curve. [3]

[2]

- (ii) Determine the nature of each of these stationary points.
- 11 (i) Sketch the graph of the curve $y^2 = 4 x$. [2]
 - (ii) State the equation of the tangent to the curve $y^2 = 4 x$ at x = 4. [1]
 - (iii) The line y = -x + 2 cuts the curve $y^2 = 4 x$ at points P and Q. Find the equation of the perpendicular bisector of P and Q. [5]
- 12 Find (a) $\int 3(1+2x)^6 dx$, [2]
 - (b) $\int \left(\frac{1}{x} + x\right)^2 dx$. [2]
- Given that $15-6x = A(x^2+2)+(Bx+C)(2x-1)$ for all values of x, find the value of A, of B and of C. [3]
- 14 (a) Given that (A + B) is acute and $\sin(A + B) = \frac{3}{7}$ and $\sin A \cos B = \frac{1}{7}$, without using a calculator, find the exact value of
 - (i) $\cos A \sin B$, [2]
 - ii) $\frac{\tan A}{\tan B}$, [1]
 - (iii) cos(A+B). [1]
 - (b) Given that $\cot \theta = \frac{5}{12}$ where θ is acute, find the exact value of $\csc \theta$. [2]

---- END OF PAPER ----


Efforts Today, Rewards Tomorrow

3

[5]

Answer Key 2016.4N.AM.Prelim P1

Qn	Answers3
1	$(i) -\frac{\pi}{3} \qquad (ii) \frac{\pi}{4}$
2	(i) $1-24x+252x^2-1512x^3+$ (ii) -4056
3	14.9 cm/s
4	(i) $f(a) = 0$ (ii) $3(x-2)(x^2+2x+4)$
5	(a) $x = 4, y = -1$ (b) $x = 1, 0$
6	(a) $-3 < x < 1$ (b) $x \le -1$ or $x \ge 1$
7	(a) $-5 + 3\sqrt{3}$ (b) $\frac{3}{\sqrt{3}} \text{ or } \frac{2}{\sqrt{3}}$
8	(a) 0°, 120° (b) $\frac{\pi}{6}$
9	(i) a = -1, b = 4, c = 6 (ii) 3 1 1 1 1 1 1 1 1 1 1 1 1 1
10	(i) $x = 0, -\frac{4}{5}$ (ii) min pt when $x = 0$, max pt when $x = -\frac{4}{5}$
11	connect shape (1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12	(ii) $x = 4$ (iii) $y = x - 1$ (a) $\frac{3(1+2x)^7}{14}$ (b) $-\frac{1}{x} + 2x + \frac{x^3}{3} + c$ $A = 5\frac{1}{3}$, $B = -4\frac{1}{3}$, $C = -2\frac{2}{3}$
1000	
14	(a) (i) $\frac{2}{7}$ (ii) $\frac{1}{2}$ (iii) $\frac{2\sqrt{10}}{7}$ (b) $\frac{13}{12}$

	0	SECO	Note	
6		S M	么图	
1	1	Žm	5	
-		PIM.		

YUAN CHING SECONDARY SCHOOL

Secondary Four Normal (Academic) Course Preliminary Examination 2016

CANDIDATE	
NAME	

CLASS

			=33
7.10			7

INDEX NUMBER

Į,	100	
1		1 3
d	<u></u>	berned.

4044/02

ADDITIONAL MATHEMATICS

Paper 2

15 Aug 2016

1 hour 45 minutes

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staple, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on the separate foolscap papers provided.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 70.

7.740.0
MARKS
/ 70

This paper consists of 4 printed pages.

[Turn Over

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$

Identities

2. TRIGONOMETRY

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\cos ec^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

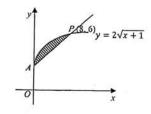
$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$


Answer all the questions.

- (a) Find the range of values of k for which $kx^2 + 4x k + 5$ is always positive. [3]
 - (b) Find the values of m for which the line y = 2 + mx is a tangent to the curve $y = x^2 - 4x + 3$.
 - [4]
- The roots of a quadratic equation are α and β , where $\alpha + \beta = \frac{2}{3}$ and $\alpha\beta = -3$.
 - Find this quadratic equation in the form of $ax^2 + bx + c = 0$ where a, b and c are
 - (ii) The roots of another quadratic equation $x^2 + px + q = 0$ are $\alpha \beta$ and $\beta \alpha$. Find the value of each of the constants p and q. [4]
- Express $5\cos\theta 12\sin\theta$ in the form of $R\cos(\theta + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Hence
 - find the maximum value of $5\cos\theta 12\sin\theta$ and the corresponding value of θ at which this occurs.
 - [2] solve for the values of θ when $5\cos\theta - 12\sin\theta = 1$, for $0^{\circ} \le \theta \le 360^{\circ}$. [3]
- (a) (i) Prove the identity $\sec A = \frac{\cos A}{1 + \cos 2A} + \frac{\sin A}{\sin 2A}$
 - Hence find, in terms of π , all the angles between 0 and 2π which satisfy the equation $\frac{\cos A}{1 + \cos 2A} + \frac{\sin A}{\sin 2A} = \sqrt{2}$.
 - (b) Solve the equation $3\sec^2 x \tan^2 x + 5\tan x = 6$ for $0^{\circ} \le x \le 180^{\circ}$.
- Find the equation of the line that is parallel to x + 4y = 1 and which bisects the line AB where the coordinates of A and B are (-1, 11) and (7, -3) respectively. [3]
 - A curve has the equation $y = x^4 6x + k$, where k is a constant.

138

- Find the gradient of the tangent to the curve at x = 1.
- (ii) Show that the tangent to the curve at x = 1 is perpendicular to the line 4y - 2x = 5.
- (iii) Given that the tangent to the curve at x = 1 cuts the y-axis at y = -2, show that k = 1.
- (iv) Hence, find the equation of the normal to the curve at x = 1.
- Given that $y = \frac{1-x}{x+1}$, $x \ne -1$, find $\frac{dy}{dx}$ and determine if y is an increasing or decreasing function. [4]

- The equation of a circle is $x^2 + y^2 4x + 8y = 5$.
 - Find the centre and the radius of the circle.
 - Show that the origin is inside the circle.
 - (iii) Show that P(2, 1) lies on the circle.
 - (iv) State the equation of the tangent to the circle at P(2, 1).
- The expression $f(x) = x^3 + 2x^2 x + 7$ can be written as $(x^2 1)Q(x) + a$.
 - (a) Find
 - (i) Q(x)
 - (ii) the value of a.
 - (b) Find the remainder when f(x) is divided by x-1.
- The diagram shows a part of a curve $y = 2\sqrt{x+1}$ which intersects the y-axis at A.
 - A straight line passing though A meets the curve again at P(8, 6). Find
 - the coordinates of A.
 - the equation of line AP,
 - (iii) the area of the shaded region.

[2]

[1]

[1]

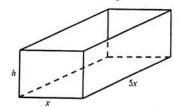
[1]

[2]

[1]

[1]

[1]


[2]

[4]

[2]

[5]

The diagram shows an open trough for water of rectangular base x metres by 5xmetres and height h metres. The internal surface area of the water trough is 36 m². The thickness of the base and sides can be ignored.

- Show that the height, h m, of the water trough is $h = \frac{36 5x^2}{12x}$. [2]
- Show that the volume, $V \text{ m}^3$, of the water trough is $V = \frac{180x 25x^3}{12}$
- (iii) Given that x and h can vary, find the value of x for which V is a maximum.

---- END OF PAPER ----Efforts Today, Rewards Tomorrow

[2]

[2]

[2]

[2]

[2]

- Qn	Answers
1	(a) $1 < k < 4$ (b) $m = -2 \text{ or } -6$
2	(i) $3x^2 - 2x - 9 = 0$ (ii) $p = 0, q = -12\frac{4}{9}$
3	$5\cos\theta - 12\sin\theta = 13\cos(\theta + 67.4^{\circ})$ (i) Max = 13 when θ =292.6° (ii) θ = 18.2° or 207.0°
4	(aii) $A = \frac{\pi}{4} or \frac{7\pi}{4}$ (b) $\theta = 26.6^{\circ}$, 108.4°

5	(a) $4y = -x + 19$ b(i) -2 (ii) $since \frac{1}{2} \times (-2) = -1$ (iii) Use gradient of $(1, -5 + k)$ and $(0, -2) = -2$ (iv) $2y = x - 9$
6	(b) $\frac{dy}{dx} = \frac{-2}{(x+1)^2} < 0$; therefore y is an increasing function.
7	(i) Centre $(2, -4)$ radius = 5 (ii) distance of centre to origin = $\sqrt{20} < 5$. (iii) Show that when $x = 2$, $y = 1$. (iv) $y = 1$
8	(a) $Q(x) = x + 2$ (ii) $a = 9$ (b) 9
9	(i) $A(0,2)$ (ii) $2y = x + 4$ (iii) $2\frac{2}{3}$
10	(i) $5x^2 + 12xh = 36$ (ii) $V = 5x^2h$ (iii) $x = 1.55$, Need to show V is max.