## ADDITIONAL MATHEMATICS

Paper 1

4047/01
17 August 2018
2 hours
Additional Materials: Answer Paper

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all the questions.
Write your answers on the separate Answer Paper provided.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total number of marks for this paper is 80 .

## Mathematical Formulae

## 1. ALGEBRA

Quadratic Equation
For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n},
$$

where $n$ is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

## 2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan ^{2} A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

Answer all the questions.
1 A cone has curved surface area $\pi(17-\sqrt{3}) \mathrm{cm}^{2}$ and slant height $(7-3 \sqrt{3}) \mathrm{cm}$.
Without using a calculator, find the diameter of the base of the cone, in cm , in the form of $a+b \sqrt{3}$, where $a$ and $b$ are integers.

2 The roots of the quadratic equation $5 x^{2}-3 x+1=0$ are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
Find a quadratic equation with roots $\alpha^{3}$ and $\beta^{3}$.

3 (i) Show that $2 x^{2}+1$ is a factor of $2 x^{3}-4 x^{2}+x-2$.
(ii) Express $\frac{11 x-5 x^{2}-11}{2 x^{3}-4 x^{2}+x-2}$ in partial fractions.

4 (i) Sketch the graph of $y=\frac{4}{\sqrt{x}}$ for $x>0$.
(ii) Find the coordinates of the point(s) of intersection of $y=\frac{4}{\sqrt{x}}$ and $y^{2}=81 x$.

5 The diagram shows a cylinder of height $h \mathrm{~cm}$ and base radius $r \mathrm{~cm}$ inscribed in a sphere of radius 35 cm .

(i) Show that the height of the cylinder, $h \mathrm{~cm}$, is given by $h=2 \sqrt{1225-r^{2}}$.
(ii) Given that $r$ can vary, find the maximum volume of the cylinder.

6 (i) Show that $\frac{2-\sec ^{2} x}{2 \tan x+\sec ^{2} x}=\frac{\cos x-\sin x}{\cos x+\sin x}$.
(ii) Hence find, for $0 \leq x \leq 2 \pi$, the values of $x$ for which $\frac{6-3 \sec ^{2} x}{2 \tan x+\sec ^{2} x}=\frac{3}{2}$.

7 A curve is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{2}{e^{2 x-3}}$ and the point $P(1.5,2)$ lies on the curve. The gradient of the normal to the curve at $P$ is 10 . Find the equation of the curve.

8 The diagram shows the graph of $y=x^{\frac{3}{2}}-4 x$ which passes through the origin $O$ and cuts the $x$-axis at the point $A(16,0)$. Tangents to the curve at $O$ and $A$ meet at the point $B$.

(i) Show that $B$ is the point $\left(5 \frac{1}{3},-21 \frac{1}{3}\right)$.
(ii) Find the area of the shaded region bounded by the curve and the lines $O B$ and $A B$.

9 A tram, moving along a straight road, passes station $O$ with a velocity of $975 \mathrm{~m} / \mathrm{min}$. Its acceleration, $a \mathrm{~m} / \mathrm{min}^{2}, t$ mins after passing through station $O$, is given by $a=2 t-80$.
The tram comes to instantaneous rest, first at station $A$ and later at station $B$. Find
(i) the acceleration of the tram at station $A$ and at station $B$,
(ii) the greatest speed of the tram as it travels from station $A$ to station $B$,
(iii) the distance between station $A$ to station $B$.

10 (i) By considering the general term in the binomial expansion of $\left(x^{4}-\frac{1}{k x^{2}}\right)^{6}$, where $k$ is a positive constant, explain why there are only even powers of $x$ in this expansion.
(ii) Given that the term independent of $x$ in this binomial expansion is $\frac{5}{27}$, find the value of $k$.
(iii) Using the value of $k$ found in part (ii), hence obtain the coefficient of $x^{18}$

$$
\begin{equation*}
\text { in }\left(2-3 x^{6}\right)\left(x^{4}-\frac{1}{k x^{2}}\right)^{6} . \tag{4}
\end{equation*}
$$

$11 \quad M$ and $N$ are two points on the circumference of a circle, where $M$ is the point $(6,8)$ and $N$ is the point $(10,16)$. The centre of the circle lies on the line $y=2 x+1$.
(i) Find the equation of the circle in the form $x^{2}+y^{2}+a x+b y+c=0$, where $a, b$ and $c$ are constants.
(ii) Explain whether the point $(9,10)$ lie inside the circle. Justify your answer with mathematical calculations.


In the diagram, two circles intersect at $B$ and $F$. $B C$ is the diameter of the larger circle and is the tangent to the smaller circle at $B$.
Point $A$ lies on the smaller circle such that $A F E C$ is a straight line.
Point $D$ lies on the larger circle such that $B H E D$ is a straight line.
Prove that
(i) $C D$ is parallel to $A H$,
(ii) $A B$ is a diameter of the smaller circle,
(iii) triangles $A B C$ and $B F C$ are similar,
(iv) $A C^{2}-A B^{2}=C F \times A C$.

## CEDAR GIRLS' SECONDARY SCHOOL SECONDARY 4 ADDITIONAL MATHEMATICS Answer Key for 2018 Preliminary Examination

| PAPER 4047/1 |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 | $(10+4 \sqrt{3}) \mathrm{cm}$ | 10ii | $k=3$ |
| 2 | $x^{2}+18 x+125=0$ | 10iii | Coefficient of $x^{8}=2(-2)+(-3)\left(\frac{5}{3}\right)=-9$ |
| 3i | $2 x^{3}-4 x^{2}+x-2=\left(2 x^{2}+1\right)(x-2)$ | 11i | $x^{2}+y^{2}-12 x-26 y+180=0$ |
| 3ii | It is divisible by $2 x^{2}+1$ with no remainder. $\frac{-5 x^{2}+11 x-11}{2 x^{3}-4 x^{2}+x-2}=-\frac{1}{x-2}+\frac{5-3 x}{2 x^{2}+1}$ | 11ii | Length of point to centre of circle $=4.24<5$. Yes, the point lies inside the circle as its length from the centre of the circle is less than the radius. |
| 4i |  | 12i | $\angle A H D=\angle H D C$ (alternate angles) |
|  |  | 12ii | $A B$ is a diameter of the smaller circle ( $\angle$ in semicircle). |
|  |  | 12iii | Triangle $A B C$ is similar to triangle $B F C$ as all corresponding angles are equal. |
|  |  | 12iv | $\begin{aligned} & \frac{B C}{F C}=\frac{A C}{C B} \text { (ratio of similar triangles) } \\ & B C^{2}=C F \times A C \\ & B C^{2}=A C^{2}-A B^{2} \text { (Pythagoras' Theorem) } \\ & \therefore A C^{2}-A B^{2}=C F \times A C \text { (shown) } \end{aligned}$ |
|  |  |  |  |
| 4ii | $\left(\frac{4}{9}, 6\right)$ |  |  |
| 5 i | Using Pythagoras' Theorem: $\left(\frac{h}{2}\right)^{2}+r^{2}=35^{2}$ |  |  |
| 5ii | $104000 \mathrm{~cm}^{3}$ (3 s.f.) |  |  |
| 6ii | $x=0.322$ or $x=3.46$ (3 s.f.) |  |  |
| 7 | $y=\frac{1}{2} e^{3-2 x}+\frac{9}{10} x+\frac{3}{20}$ |  |  |
| 8ii | 68.3 units ${ }^{2}$ (3 s.f.) |  |  |
| 9i | Acceleration at $A=-50 \mathrm{~m} / \mathrm{min}^{2}$ <br> Acceleration at $B=50 \mathrm{~m} / \mathrm{min}^{2}$ |  |  |
| 9ii | Greatest speed $=625 \mathrm{~m} / \mathrm{min}$ |  |  |
| 9iii | 20.8 km (3 s.f.) |  |  |
| 10i | General term $=\binom{6}{r}(x)^{24-6 r}\left(-\frac{1}{k}\right)^{r}$ <br> Since $6 r$ is an even number, $24-6 r$ will be even. |  |  |

2018 Preliminary Examination 2
Additional Mathematics 4047 Paper 1

## Solutions

| Qn | Working |
| :---: | :---: |
| 1 | $\begin{aligned} & \pi r l=\pi(17-\sqrt{3}) \\ & r=\frac{(17-\sqrt{3})}{7-3 \sqrt{3}} \\ & r=\frac{(17-\sqrt{3})}{7-3 \sqrt{3}} \times \frac{7+3 \sqrt{3}}{7+3 \sqrt{3}} \\ & r=\frac{110+44 \sqrt{3}}{22} \\ & r=5+2 \sqrt{3} \\ & \text { Diameter }==10+4 \sqrt{3} \mathrm{~cm} \end{aligned}$ |
| 2 | $\begin{aligned} & \frac{1}{\alpha}+\frac{1}{\beta}=-\frac{-3}{5} \\ & =\frac{3}{5} \\ & \frac{1}{\alpha \beta}=\frac{1}{5} \\ & \alpha \beta=5 \\ & \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta} \\ & \frac{\alpha+\beta}{5}=\frac{3}{5} \\ & \alpha+\beta=3 \\ & \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \\ & =3\left[(\alpha+\beta)^{2}-3 \alpha \beta\right] \\ & =3\left[(3)^{2}-3(5)\right] \\ & =-18 \\ & \alpha^{3} \beta^{3}=(\alpha \beta)^{3} \\ & =125 \end{aligned}$ <br> Equation: $x^{2}+18 x+125=0$ |


| Qn | Working |
| :---: | :---: |
| 3i | $2 x^{3}-4 x^{2}+x-2=\left(2 x^{2}+1\right)(x-2)$ <br> It is divisible by $2 x^{2}+1$ with no remainder. |
| 3ii | $\begin{aligned} & \frac{-5 x^{2}+11 x-11}{2 x^{3}-4 x^{2}+x-2}=\frac{A}{x-2}+\frac{B x+C}{2 x^{2}+1} \\ & -5 x^{2}+11 x-11=A\left(2 x^{2}+1\right)+(B x+C)(x-2) \end{aligned}$ <br> When $x=2$, $A=-1$ <br> Comparing $x^{2}$ : $-5=2 A+B$ $\begin{aligned} & -5=-2+B \\ & B=-3 \end{aligned}$ <br> Comparing constant: $-11=A-2 C$ $-11=-1-2 C$ $C=5$ $\frac{-5 x^{2}+11 x-11}{2 x^{3}-4 x^{2}+x-2}=-\frac{1}{x-2}+\frac{5-3 x}{2 x^{2}+1}$ |
| 4 |  |

$$
\text { 4ii } \left\lvert\, \begin{aligned}
& \left(\frac{4}{\sqrt{x}}\right)^{2}=81 x \\
& \frac{16}{x}=81 x \\
& 81 x^{2}=16 \\
& x= \pm \frac{4}{9} \\
& x=\frac{4}{9} \\
& y=6 \\
& \text { Point of intersection }=\left(\frac{4}{9}, 6\right)
\end{aligned}\right.
$$

$5 i$
$\left(\frac{h}{2}\right)^{2}+r^{2}=35^{2}$ (Pythagoras' Theorem)
$\frac{h^{2}}{4}=1225-r^{2}$
$h^{2}=4\left(1225-r^{2}\right)$
$h=2 \sqrt{1225-r^{2}}$
(shown)
5ii
$V=\pi r^{2}\left(2 \sqrt{1225-r^{2}}\right)$
$V=2 \pi r^{2}\left(1225-r^{2}\right)^{\frac{1}{2}}$
$\frac{d V}{d r}=2 \pi r^{2}\left(\frac{1}{2}(-2 r)\left(1225-r^{2}\right)^{-\frac{1}{2}}\right)+\left(1225-r^{2}\right)^{\frac{1}{2}}(4 \pi r)$
$=-2 \pi r^{3}\left(1225-r^{2}\right)^{-\frac{1}{2}}+4 \pi r\left(1225-r^{2}\right)^{\frac{1}{2}}$
$-2 \pi r^{3}\left(1225-r^{2}\right)^{-\frac{1}{2}}+4 \pi r\left(1225-r^{2}\right)^{\frac{1}{2}}=0$
$r^{3}=2 r\left(1225-r^{2}\right)$
$3 r^{3}=2450 r$
$r=28.577$ (reject $r=0$ and -ve $r$ )
Using First Derivative Test,

| $x$ | $28.577(-)$ | 28.577 | $28.577(+)$ |
| :---: | :---: | :---: | :---: |
| Sign of $\frac{d V}{d r}$ | +ve | 0 | -ve |
| slope |  |  | - |

$V$ is maximum at $r=28.577$

$$
\begin{array}{|l|l}
\text { Maximum volume: } \\
V=\pi(28.577)^{2}\left(2 \sqrt{1225-(28.577)^{2}}\right) \\
=103688 \\
=104000 \\
=104000 \mathrm{~cm}^{3}(3 \text { s.f. })
\end{array}
$$

| Qn | Working |
| :---: | :---: |
| $6 \mathbf{i}$ <br>  <br>  <br>  <br> $6 i i$ | $\begin{aligned} & \text { LHS: } \frac{2-\sec ^{2} x}{2 \tan x+\sec ^{2} x}=\frac{2-\left(\tan ^{2} x+1\right)}{2 \tan x+\left(\tan ^{2} x+1\right)} \\ & =\frac{1-\tan ^{2} x}{2 \tan x+\tan ^{2} x+1} \\ & =\frac{(1-\tan x)(1+\tan x)}{(\tan x+1)^{2}} \\ & =\frac{1-\tan x}{1+\tan x} \\ & =\frac{1-\frac{\sin x}{\cos x}}{1+\frac{\sin x}{\cos x}} \\ & =\frac{\cos x-\sin x}{\cos x} \times \frac{\cos x}{\cos x+\sin x} \\ & =\frac{\cos x-\sin x}{\cos x+\sin x} \\ & (\operatorname{shown)} \\ & 3 \times \frac{\cos x-\sin x}{\cos x+\sin x}=\frac{3}{2} \\ & \frac{\cos x-\sin x}{\cos x+\sin x}=\frac{1}{2} \\ & 2 \cos x-2 \sin x=\cos x+\sin x \\ & \cos x=3 \sin x \\ & \tan x=\frac{1}{3} \\ & x=0.322 \text { or } x=3.46(3 \text { s.f. }) \end{aligned}$ |


| Qn | Working |
| :--- | :--- |
| 7 | $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 e^{3-2 x}$ <br> $\frac{\mathrm{~d} y}{\mathrm{~d} x}=2\left[-\frac{1}{2} e^{3-2 x}\right]+c$ <br> $\frac{\mathrm{~d} y}{\mathrm{~d} x}=-e^{3-2 x}+c$ <br> Gradient at tangent at $P=-\frac{1}{10}$ <br> $-e^{3-2 x}+c=-\frac{1}{10}$ <br> when $x=1.5$ <br> $c=\frac{9}{10}$ <br> $\frac{\mathrm{~d} y}{\mathrm{~d} x}=-e^{3-2 x}+\frac{9}{10}$ <br> $y=\frac{1}{2} e^{3-2 x}+\frac{9}{10} x+c$ <br> $2=\frac{1}{2} e^{3-2(1.5)}+\frac{9}{10}(1.5)+c$ <br> $c=\frac{3}{20}$ <br> Eqn: $y=\frac{1}{2} e^{3-2 x}+\frac{9}{10} x+\frac{3}{20}$ |


| Qn | Working |
| :---: | :---: |
| $8 \mathrm{8i}$ | $\frac{d y}{d x}=\frac{3}{2} x^{\frac{1}{2}}-4$ <br> At $O, x=0, \frac{d y}{d x}=-4$ <br> Equation $O B: y=-4 x$. $\begin{align*} & \text { At } A, x=16, \frac{d y}{d x}=2  \tag{1}\\ & y=2 x+c \\ & 0=2(16)+c \\ & c=-32 \end{align*}$ <br> Equation $A B: y=2 x-32$ $\begin{aligned} & 2 x-32=-4 x \\ & x=5 \frac{1}{3} \end{aligned}$ <br> Sub into (1), $\begin{aligned} & y=-21 \frac{1}{3} \\ & B=\left(5 \frac{1}{3},-21 \frac{1}{3}\right)(\text { shown }) \end{aligned}$ <br> Area of curve $=\left\|\int_{0}^{16} x^{\frac{3}{2}}-4 x d x\right\|=\left\|\left[\frac{2}{5} x^{\frac{5}{2}}-2 x^{2}\right]_{0}^{16}\right\|$ $=102.4$ units $^{2}$ <br> Area of triangle $\mathrm{OAB}=\frac{1}{2} \times 16 \times 21 \frac{1}{3}$ $=170 \frac{2}{3}$ units $^{2}$ <br> Area of shaded region $=170 \frac{2}{3}-102.4$ $=68.3$ units $^{2}$ (3 s.f.) |


| Qn | Working |
| :---: | :---: |
| 9 i | $\begin{aligned} & a=2 t-80 \\ & v=t^{2}-80 t+c \\ & t=0, v=975 \\ & 975=(0)^{2}-80(0)+c \\ & c=975 \\ & v=t^{2}-80 t+975 \end{aligned}$ $\begin{aligned} & \text { When } v=0, \\ & t^{2}-80 t+975=0 \\ & (t-15)(t-65)=0 \\ & t=15, t=65 \end{aligned}$ <br> Acceleration at $\mathrm{a}=2(15)-80$ $=-50 \mathrm{~m} / \mathrm{min}^{2}$ <br> Acceleration at $\mathrm{a}=2(65)-80$ $=50 \mathrm{~m} / \mathrm{min}^{2}$ |
| 9ii | When $a=0$, $\begin{aligned} & t=\frac{15+65}{2} \\ & t=40 \\ & v=(40)^{2}-80(40)+975 \\ & v=-625 \mathrm{~m} / \mathrm{min} \end{aligned}$ $\text { Greatest speed }=625 \mathrm{~m} / \mathrm{min}$ |
| 9iii | $\begin{aligned} & \text { Distance } A B=\left\|\int_{15}^{65} t^{2}-80 t+975 d t\right\| \\ & =\left\|\left[\frac{t^{3}}{3}-40 t^{2}+975 t\right]_{15}^{65}\right\| \\ & =20833 \frac{1}{3} \mathrm{~m} \\ & =20800 \mathrm{~m}(3 \text { s.f. }) \\ & =20.8 \mathrm{~km} \end{aligned}$ |


| Qn | Working |
| :---: | :---: |
| $10(i)$ <br> (ii) <br> (iii) | $\begin{aligned} & \text { General Term }=\binom{6}{r}\left(x^{4}\right)^{6-r}\left(-\frac{1}{k} x^{-2}\right)^{r} \\ & =\binom{6}{r}(x)^{24-6 r}\left(-\frac{1}{k}\right)^{r} \end{aligned}$ <br> Since $6 r$ is an even number, $24-6 r$ will be even. <br> For independent term, $24-6 r=0 \Rightarrow r=4$ $\begin{aligned} & \binom{6}{4}\left(-\frac{1}{k}\right)^{4}=\frac{5}{27} \\ & \frac{15}{k^{4}}=\frac{5}{27} \\ & k=+\sqrt[4]{\frac{27 \times 15}{5}}=3(\text { as } k>0) \end{aligned}$ <br> $\left(2-3 x^{6}\right)\left(\ldots+\right.$ Term in $x^{18}+$ Term in $\left.x^{12}+\ldots\right)$ <br> For term in $x^{88}, 24-6 r=18 \Rightarrow r=1$ <br> Therefore, term in $x^{8}=\binom{6}{1}\left(-\frac{1}{3}\right) x^{18}=-2 x^{18}$ <br> For term in $x^{2}, 24-6 r=12 \Rightarrow r=2$ <br> Therefore, term in $x^{22}=\binom{6}{2}\left(-\frac{1}{3}\right)^{2} x^{12}=\frac{5}{3} x^{12}$ <br> Coefficient of $x^{8}=2(-2)+(-3)\left(\frac{5}{3}\right)=-9$ |


| Qn | Working |
| :---: | :---: |
| 11i | Let $M N$ be a chord of circle. $\begin{aligned} & \text { Midpoint of } M N=\left(\frac{10+6}{2}, \frac{16+8}{2}\right) \\ & =(8,12) \end{aligned}$ <br> Gradient of $M N=\frac{16-8}{10-6}$ $=2$ <br> Gradient of perpendicular bisector $=-\frac{1}{2}$ <br> Equation of perpendicular bisector of $M N$ : $\begin{aligned} & y-12=-\frac{1}{2}(x-8) \\ & y=-\frac{1}{2} x+16 \\ & -\frac{1}{2} x+16=2 x+1 \\ & x=6 \\ & y=13 \end{aligned}$ <br> Centre of circle $=(6,13)$ $\text { Radius }=13-8$ $=5 \text { units }$ <br> Equation of circle: $\begin{aligned} & (x-6)^{2}+(y-13)^{2}=5^{2} \\ & x^{2}+y^{2}-12 x-26 y+180=0 \end{aligned}$ |
| 11ii | Length of point to centre of circle $\begin{aligned} & =\sqrt{(9-6)^{2}+(10-13)^{2}} \\ & =\sqrt{18} \\ & =4.24 \text { units } \\ & <5 \text { (radius) } \end{aligned}$ <br> Yes, the point lies inside the circle as its length from the centre of the circle is less than the radius. |

## Qn Working

12i $\angle B D C=90^{\circ}(\angle$ in semicircle $)$
$\angle B F C=90^{\circ}(\angle$ in same segment $)$ or ( $\angle$ in semicircle)
$\angle B F A=180^{\circ}-90^{\circ}($ adj $\angle \mathrm{s}$ on straight line)
$=90^{\circ}$
$\angle B H A=\angle B F A=90^{\circ}(\angle$ in same segment $)$
$\angle A H D=180^{\circ}-90^{\circ}(\mathrm{adj} \angle \mathrm{s}$ on straight line)
$=90^{\circ}$
$\angle A H D=\angle B D C=\angle H D C$ (alternate angles)
$\therefore C D / / A H$

12ii $\angle B H A=\angle B F A=90^{\circ}(\angle$ in same segment $)$
$A B$ is a diameter of the smaller circle ( $\angle$ in semicircle).

12iii Since $A B$ and $B C$ are tangents to the smaller and bigger circle
respectively, $\angle A B C=90^{\circ}(\tan \perp$ rad $)$
$\angle A B C=\angle B F C$
$\angle B C A=\angle F C B$ (common $\angle$ )
Triangle $A B C$ is similar to triangle $B F C$ as all corresponding angles are equal.

12iv $\frac{B C}{F C}=\frac{A C}{C B}$ (ratio of similar triangles)
$B C^{2}=C F \times A C$
$B C^{2}=A C^{2}-A B^{2}$ (Pythagoras' Theorem)
$\therefore A C^{2}-A B^{2}=C F \times A C$ (shown)

CEDAR GIRLS' SECONDARY SCHOOL Preliminary Examination Secondary Four

## ADDITIONAL MATHEMATICS

4047/02
20 August 2018
2 hours 30 minutes

## Additional Materials: Answer Paper

Graph paper (1 sheet)

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your answers on the separate Answer Paper provided.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of a scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total number of marks for this paper is 100.

## Mathematical Formulae

## 1. ALGEBRA

## Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n},
$$

where $n$ is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

## 2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} \\
\sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
\sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
\cos A+\cos B=2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
\cos A-\cos B=-2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

## Answer all the questions.

1 (a) Given that $3 \lg (x \sqrt[3]{y})=2+2 \lg x-\lg y$, where $x$ and $y$ are positive numbers, express, in its simplest form, $y$ in terms of $x$.
(b) Given that $p=\log _{8} q$, express, in terms of $p$,
(i) $\quad \log _{8}\left(\frac{1}{q}\right)$,
(ii) $\log _{2} 4 q$.

2 (i) Show that $\frac{\mathrm{d}}{\mathrm{d} x}(\sin x \cos x)=2 \cos ^{2} x-1$.
(ii) Hence, without using a calculator, find the value of each of the constants $a$ and $b$ for which

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} \cos ^{2} x \mathrm{~d} x=a+b \pi \tag{4}
\end{equation*}
$$

3 The variables $x$ and $y$ are such that when values of $\frac{1}{y}+\frac{1}{x}$ are plotted against $\frac{1}{x}$, a straight line with gradient $m$ is obtained. It is given that $y=\frac{1}{6}$ when $x=1$ and that $y=\frac{1}{2}$ when $x=\frac{1}{2}$.
(i) Find the value of $m$.
(ii) Find the value of $x$ when $\frac{3}{y}+\frac{3}{x}=3$.
(iii) Express $y$ in terms of $x$.

4 The equation of a curve is $y=x^{3}+p x^{2}$, where $p$ is a positive constant.
(i) Show that the origin is a stationary point on the curve and find the $x$-coordinate of the other stationary point in terms of $p$.
(ii) Find the nature of each of the stationary points.

Another curve has equation $y=x^{3}+p x^{2}+p x$.
(iii) Find the set of values of $p$ for which this curve has no stationary points.

5 A quadratic function $\mathrm{f}(x)$ is given by $\mathrm{f}(x)=k(x-2)^{2}-(x-3)(x+2)$, where $k$ is a constant and $k \neq 1$.
(i) Find the value of $k$ such that the graph of $y=\mathrm{f}(x)$ touches the $x$-axis at one point.
(ii) Find the range of values of $k$ for which the function possesses a maximum point.
(iii) Find the range of values of $k$ for which the value of the function never exceeds 18.

6 (a) A substance is decaying in such a way that its mass, $m \mathrm{~kg}$, at a time $t$ years from now is given by the formula

$$
m=240 e^{-0.04 t} .
$$

(i) Find the time taken for the substance to halve its mass.
(ii) Find the value of $t$ for which the mass is decreasing at a rate of 2.1 kg per year.
(b) The noise rating, $N$ and its intensity, $I$ are connected by the formula

$$
N=10\left(\lg \frac{I}{k}\right), \text { where } k \text { is a constant. }
$$

A hot water pump has a noise rating of 50 decibels.
A dishwasher, however, has a noise rating of 62 decibels.
Find the value of $\frac{\text { Intensity of the noise from the dishwasher }}{\text { Intensity of the noise from the hot water pump }}$.

7


The diagram shows the curve $y=(6 x+2)^{\frac{1}{3}}$ and the point $A(1,2)$ which lies on the curve. The tangent to the curve at $A$ cuts the $y$-axis at $B$ and the normal to the curve at $A$ cuts the $x$-axis at $C$.
(i) Find the equation of the tangent $A B$ and the equation of the normal $A C$.
(ii) Find the length of $B C$.
(iii) Find the coordinates of the point of intersection, $E$, of $O A$ and $B C$.

8 It is given that $y_{1}=\tan x$ and $y_{2}=2 \cos 2 x+1$.
(i) State the period, in radians, of $y_{1}$ and the amplitude of $y_{2}$.

For the interval $0 \leq x \leq 2 \pi$,
(ii) sketch, on the same diagram, the graphs of $y_{1}$ and $y_{2}$,
(iii) state the number of roots of the equation $|\tan x|-2 \cos 2 x=1$,
(iv) find the range(s) of values of $x$ for which $y_{1}$ and $y_{2}$ are both increasing as $x$ increases.

9 (a)


The diagram shows part of the curve,

$$
y=\tan x \cos 2 x,
$$

and its maximum point $M$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \cos ^{2} x-\sec ^{2} x-2$.
(ii) Hence find the $x$-coordinate of $M$.
(b) A particle moves along the line $y=\ln \sqrt{\frac{5 x}{x-2}}$ in such a way that the $x$-coordinate is increasing at a constant rate of 0.4 units per second. Find the rate at which the $y$-coordinate of the particle is increasing at the instant when $x=2.5$.

10 (a) The function f is defined for all real values of $x$ by $\mathrm{f}(x)=e^{2 x}-3 e^{-2 x}$.
(i) Show that $\mathrm{f}^{\prime}(x)>0$ for all values of $x$.
(ii) Show that f " $(x)=h \mathrm{f}(x)$, where $h$ is an integer.
(iii) Find the value of $x$ for which $\mathrm{f}^{\prime \prime}(x)=0$ in the form $x=p \ln q$, where $p$ and $q$ are rational numbers.
(b) The function g is defined for all real values of $x$ by $\mathrm{g}(x)=e^{2 x}+3 e^{-2 x}$. The curve $y=\mathrm{g}(x)$ and the line $x=\frac{1}{4} \ln 3$ intersect at point $Q$.
Show that the $y$-coordinate of $Q$ is $k \sqrt{3}$, where $k$ is an integer.

## 11 Solutions to this question by accurate drawing will not be accepted.



The diagram, which is not drawn to scale, shows a triangle $A B C$ with vertices $A(2,7), B(1,0)$ and $C(6,5)$ respectively. $E$ and $F$ are points on $B C$ and $A C$ respectively for which $A E$ is perpendicular to $B C$ and $B F$ bisects $A C$. $G$ is the point of intersection of lines $A E$ and $B F$.
Find
(i) the coordinates of $G$,
(ii) the coordinates of the point $D$ such that $A B C D$ is a parallelogram,
(iii) the area of $A B C D$.


The diagram above shows a quadrilateral in which $P X=a \mathrm{~m}$ and $Q X=b \mathrm{~m}$. Angle $O Q X=$ Angle $O P X=\theta^{\circ}$ and $O Q$ is perpendicular to $O P$.
(i) Show that $O P=a \cos \theta+b \sin \theta$.
(ii) It is given that the maximum length of $O P$ is $\sqrt{5} \mathrm{~m}$ and the corresponding value of $\theta$ is $63.43^{\circ}$.
By using $O P=R \cos (\theta-\alpha)$, where $R>0$ and $\theta$ is acute, find the value of $a$ and of $b$.
(iii) Given that $O P=2.15 \mathrm{~m}$, find the value of $\theta$.

## End of Paper

## CEDAR GIRLS' SECONDARY SCHOOL SECONDARY 4 ADDITIONAL MATHEMATICS

Answer Key for Prelim Examination 2018

| PAPER 4047/02 |  |  |  |
| :---: | :---: | :---: | :---: |
| 1a | $y=\frac{10}{\sqrt{x}}$ | 8(i) | Period of $y_{1}=\pi$ radians |
| 1bi | -p |  | Amplitude of $y_{2}=2$ |
| bii | $2+3 p$ | 8(ii) |  |
| 2ii | $a=\frac{1}{4}, b=\frac{1}{8}$ |  |  |
| 3(i) | $m=-3$ |  |  |
| 3(ii) | $x=\frac{1}{3}$ |  |  |
| 3(iii) | $y=\frac{x}{10 x-4}$ |  |  |
| 4(i) | $x=-\frac{2 p}{3}$ |  |  |
| 4(ii) | $(0,0)$ is a minimum point. | 8(iii) | 4 |
|  | maximum point at $x=-\frac{2 p}{3}$ | 8(iv) | $\frac{\pi}{2}<x<\pi, \frac{3 \pi}{2}<x<2 \pi$ |
| 4(iii) | $\{p: 0<p<3\}$ | 9a(ii) | 0.452 or $25.9^{\circ}$ |
| 5(i) | $k=\frac{25}{16}$ | 9b | -0.32 units per second |
| 5(ii) | $k<1$ | 10a(iii) | $x=\frac{1}{4} \ln 3$ |
| 5(iii) | $k \leq \frac{47}{56}$ | 10b | $2 \sqrt{3}$ |
| 6ai | 17.3 years | 11(i) | $G\left(3 \frac{2}{3}, 5 \frac{1}{3}\right)$ |
| 6aii | $t=38.0$ | 11(ii) | $(7,12)$ |
| 6b | 15.8 | 11(iii) | 30 sq units |
| 7(i) | Eqn of $A B$ : $y=\frac{1}{2} x+\frac{3}{2}$ | 12 (ii) | $a=1.00, b=2.00$ |
|  | Eqn of $A C: y=-2 x+4$ | 12(iii) | $\theta=79.4$ or 47.5 |
| 7(ii) | 2.5 units |  |  |
| 7(iii) | Coordinates of $E=\left(\frac{6}{11}, 1 \frac{1}{11}\right)$ |  |  |

## 2018 Preliminary Examination 2

Additional Mathematics 4047/2
Solutions


| Qn | Working | Marks | Total | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 3(i) <br> (ii) <br> (iii) | The linear equation is $\frac{1}{y}+\frac{1}{x}=m\left(\frac{1}{x}\right)+c$ Subst $y=\frac{1}{6}$ and $x=1$, $6+1=m+c \Rightarrow m+c=7$ <br> Subst $y=\frac{1}{2}$ and $x=\frac{1}{2}$ $\begin{aligned} & 2+2=2 m+c \Rightarrow 2 m+c=4 \\ & m=-3 \text { and } c=10 \end{aligned}$ <br> Since $\frac{3}{y}+\frac{3}{x}=3 \Rightarrow \frac{1}{y}+\frac{1}{x}=1$, $1=\frac{-3}{x}+10 \Rightarrow x=\frac{1}{3}$ $\begin{aligned} & \frac{1}{y}+\frac{1}{x}=-3\left(\frac{1}{x}\right)+10 \\ & \frac{x+y}{x y}=\frac{-3+10 x}{x} \end{aligned}$ $y=\frac{x}{10 x-4}$ | Total | [4] <br> [2] <br> [2] <br> [8] |  |




| Qn | Working | Marks | Total | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 6a(i) <br> a(ii) <br> b | When $t=0, m=240$ <br> When $240 e^{-0.04 t}=120$ $\begin{aligned} & e^{-0.04 t}=0.5 \\ & t=\frac{\ln 0.5}{-0.04} \\ & t=17.3 \end{aligned}$ <br> No. of years $=17.3$ $\begin{aligned} & \frac{\mathrm{d} m}{\mathrm{~d} t}=240(-0.04) e^{-0.04 t}=-9.6 e^{-0.04 t} \\ & -9.6 e^{-0.04 t}=-2.1 \\ & t=\frac{\ln \left(\frac{2.1}{9.6}\right)}{-0.04}=38.0 \\ & 10 \lg \left(\frac{I_{P}}{k}\right)=50 \Rightarrow\left(\frac{I_{P}}{k}\right)=10^{5} \end{aligned}$ <br> where $I_{P}=$ intensity of pump $\lg \frac{I_{D}}{k}=\frac{62}{10}=6.2 \Rightarrow\left(\frac{I_{D}}{k}\right)=10^{6.2}$ <br> where $I_{D}=$ intensity of dishwasher $\frac{I_{D}}{I_{P}}=\frac{10^{6.2} k}{10^{5} k}=15.8$ | Total | [2] <br> [3] <br> [3] <br> [8] |  |



| Qn | Working | Marks | Total | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| $8 \mathbf{8 i}$ | Period of $y_{1}=\pi$ radians <br> Amplitude of $y_{2}=2$ |  | [2] |  |
| iv |  $\frac{\pi}{2}<x<\pi, \frac{3 \pi}{2}<x<2 \pi$ |  |  |  |


| Qn | Working | Marks | Total | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{9 a}(\mathbf{i})$ <br> (ii) <br> b | $\begin{aligned} & y=\tan x \cos 2 x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\tan x(-2 \sin 2 x)+\cos 2 x\left(\sec ^{2} x\right) \\ & =\frac{\sin x}{\cos x}(-2 \times 2 \sin x \cos x)+\left(2 \cos ^{2} x-1\right)\left(\frac{1}{\cos ^{2} x}\right) \\ & =-4 \sin ^{2} x+2-\sec ^{2} x \\ & =-4\left(1-\cos ^{2} x\right)+2-\sec ^{2} x \\ & =4 \cos ^{2} x-\sec ^{2} x-2 \end{aligned}$ <br> When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$, $\begin{aligned} & 4 \cos ^{2} x-\sec ^{2} x-2=0 \\ & 4 \cos ^{4} x-2 \cos ^{2} x-1=0 \\ & \cos ^{2} x=\frac{2 \pm \sqrt{4-4(4)(-1)}}{8} \\ & =0.80902 \\ & \cos x=0.89945 \\ & x=0.452 \text { or } 25.9^{\circ} \end{aligned}$ <br> The $x$-coordinate of $M$ is 0.452 . $\begin{aligned} & y=\frac{1}{2}[\ln 5 x-\ln (x-2)] \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(\frac{5}{5 x}\right)-\frac{1}{2}\left(\frac{1}{x-2}\right) \\ & =\frac{1}{2 x}-\frac{1}{2(x-2)} \end{aligned}$ $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$ <br> When $x=2.5, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\left(\frac{1}{5}-\frac{1}{2(0.5)}\right) \times 0.4=-\frac{8}{25}=-0.32$ <br> The rate is -0.32 units per second. | Total | [5] <br> [3] <br> [3] <br> [11] |  |


| Qn | Working | Marks | Total | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 10(a)(i) | $\begin{aligned} & \mathrm{f}(x)=e^{2 x}-3 e^{-2 x} \\ & \mathrm{f}^{\prime}(x)=2 e^{2 x}+6 e^{-2 x} \end{aligned}$ <br> Since $e^{2 x}>0$ and $e^{-2 x}>0, \mathrm{f}^{\prime}(x)>0$ |  | [2] |  |
| (ii) | $\mathrm{f}^{\prime \prime}(x)=4 e^{2 x}-12 e^{-2 x}=4\left(e^{2 x}-3 e^{-2 x}\right)$ <br> Therefore $\mathrm{f}^{\prime \prime}(x)=4 \mathrm{f}(x)$ |  | [2] |  |
| (iii) | $\begin{aligned} & e^{2 x}-3 e^{-2 x}=0 \\ & e^{2 x}=\frac{3}{e^{2 x}} \\ & e^{4 x}=3 \\ & 4 x \ln e=\ln 3 \\ & x=\frac{1}{4} \ln 3 \end{aligned}$ |  | [2] |  |
| (b) | $\begin{aligned} & g(x)=e^{2 x}+3 e^{-2 x}, \\ & \text { When } x=\frac{1}{4} \ln 3, \\ & g(x)=e^{2\left(\frac{1}{4} \ln 3\right)}+k e^{-2\left(\frac{1}{4} \ln 3\right)}=e^{\frac{1}{2} \ln 3}+k e^{-\frac{1}{2} \ln 3} \\ & =\sqrt{3}+\frac{3}{\sqrt{3}}=2 \sqrt{3} \end{aligned}$ |  |  |  |
|  | Therefore the $y$-coordinate is $2 \sqrt{3}$. | Total | [2] [8] |  |


| Qn | Working | Marks | Total | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 11i | Mid-point of $A C, F=\left(\frac{2+6}{2}, \frac{7+5}{2}\right)=(4,6)$ |  |  |  |
|  | Gradient of $B F=\frac{6-0}{4-1}=2$ <br> Eqn of $B F: \quad y-0=2(x-1) \Rightarrow y=2 x-2$ |  |  |  |
|  | Gradient of $B C=\frac{5-0}{6-1}=1$ <br> Gradient of $A E=-1$ <br> Eqn of $A E: y-7=-1(x-2) \Rightarrow y=-x+9$ |  |  |  |
|  | $\begin{aligned} & -x+9=2 x-2 \\ & x=3 \frac{2}{3} \\ & \therefore y=-3 \frac{2}{3}+9=5 \frac{1}{3} \\ & G\left(3 \frac{2}{3}, 5 \frac{1}{3}\right) \end{aligned}$ |  | [4] |  |
| (ii) | Let $(x, y)$ be coordinates of $D$. $\begin{aligned} & \left(\frac{1+x}{2}, \frac{0+y}{2}\right)=(4,6) \\ & \Rightarrow x=7, y=12 \end{aligned}$ <br> Coordinates of $D=(7,12)$ |  | [2] |  |
| (iii) | $\text { Area of } A B C D=\frac{1}{2}\left\|\begin{array}{llccc} 2 & 1 & 6 & 7 & 2 \\ 7 & 0 & 5 & 12 & 7 \end{array}\right\|=30 \text { sq units }$ |  | [2] |  |
|  |  | Total | [8] |  |



