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Mathematical Formulae

1. ALGEBRA
Quadratic Equation

For the equation ax? + bx + ¢ =0,

_ —b++b* —4ac

2a

X

Binomial expansion

n__ n n n—1 n n-232 n n—rir n
(a+b)—a+1ab+2a b™+....... + a”'b +.... +b",
r

where 7 is a positive integer and ( J = =
-

2. TRIGONOMETRY

Identities
sin? 4 +cos’A4=1
sec?A4=1+tan’> 4
cosec’A=1+cot’ 4
sin(4+ B) =sin Acos B+ cos Asin B
cos(Ax B)=cos Acos BFsin Asin B
tan A +tan B
1¥tan Atan B
sin 24 =2 sin A cos A
cos 24 =cos’ A—sin*A=2cos’A—1=1-2sin* 4
2tan 4
I—tan® 4

tan(A+ B) =

tan2A4 =

Formulae for AABC

a b c

sinA:sinB :sinC
a’ =b*+c*=2bc cos A4

A= lbc sin 4
2
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Answer all questions.

Section A

A metal cube with sides 2x mm is heated. The sides are expanding at a rate of 0.05 mm/s.

Calculate the rate of change of the total surface area of the cube when x = 0.57 mm. [3]

Without using a calculator, find the integer value of a and of b for which the solution of the

equation 2x3/5 =xV2 +4/18 is Ja+b . [4]

3
The equation of a curve is y = 3x°
Jax—h
Given that the x-coordinate of the stationary point is 1, find the value of 4. [4]
2
The roots of the quadratic equation 8x”* —49x+c =0 are 2@ and —'B
a
(i)  Show that ¢ = 32. [1]

(ii)  Given that ¢ff = 4, find two distinct quadratic equations whose roots are & and . [4]

2
Given that y = w ,
tan” 2x+1
(i) express y in the form cos4x+k , [2]

(ii)  sketch the graph of | y| for —% < x < 7 and state the value of n when | y| =n

has four solutions. [3]

The polynomial f(x)= px’ +3x” +¢gx—6 is divisible by x> +x—6.
(>i) Find the value of p and of g. [4]

(i)  Find the remainder in terms of x when f(x) is divided by x* —1. [2]

3 [Turn over
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7 Given the equation =5—cotd where 0° <6 <360°, find

)

sin
(i) the values of 4, [4]
(ii)  the exact values of cos 6. [2]
8 @) Express 22x——1 in partial fractions. (4]
x (x+1)
. 2x -1
i Hence, determine | —— 2
(ii) _[ 2 x+1) [2]

Section B

Begin this section on a new sheet of writing paper.

9 Given the curve y = (m+1)x” —8x+3m has a minimum value, find the range of values of m

(i) for which the line y = m — 4mx meets the curve, [5]
(ii) for which the y-intercept of the curve is greater than —% . [2]
10 () Solve the equation 3log,, [log1000 (x* +9) —10g, 400 x] =-1. [3]
(ii)  (a) On the same axes, sketch the graphs of y =log, x—1 and y =log, x+1. [2]
2
(b) Explain why the two graphs are symmetrical about the x-axis. [2]
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11

12

120° 120°

A piece of wire of length 80 cm is bent into the shape of a trapezium ABCD.
AB=CD =x cm and angle BAD = angle ADC =120°.

(i) Show that the area of the trapezium ABCD is given by ?x(% —x) em?’.

(ii)  Given that x can vary, find the value of x for which the area has a stationary value.

(iii) Determine whether this stationary value is a maximum or a minimum.

18

A particle moves in a straight line so that its velocity, v m/s, is given by v=2— (12
t+

where ¢ is the time in seconds, after leaving a fixed point O.

Its displacement from O is 9 m when it is at instantaneous rest.

Find

(i) the value of t when it is at instantaneous rest,

(ii)  the distance travelled during the first 4 seconds.

At ¢t =7, the particle starts with a new velocity, V' m/s, given by V = —h(t* =7t)+k .

(iii)  Find the value of £.

(iv)  Given that the deceleration is 0.9 m/s”> when ¢ = 8, find the value of .

[4]

2]

[2]

[2]
[4]

[1]
2]

5 [Turn over
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13 Solutions to this question by accurate drawing will not be accepted.

S(5,7)

0.4

P(3,2)

In the diagram, PQ is parallel to SR and the coordinates of P, Q and § are (3, 2), (9, 4) and
(5, 7) respectively.

The gradient of the line OR is 1.

Find
(i) the coordinates of R, [4]
(ii)  the area of the quadrilateral PORS, [2]

(iii)  the coordinates of the point H on the line y = 1 which is equidistant from P and Q. [4]

End of Paper
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Solutions for students

1 A metal cube with sides 2x mm is heated. The sides are expanding at a rate of 0.05 mm/s.
Calculate the rate of change of the total surface area of the cube when X = 0.57 mm. [3]
Solution OR
Let | =2x . :

Area A 6l Most students appill)((id this method but used
dA —%xd—l 0.05 wrongly for T
dtdldt Some students used wrong formula for SA.
=121%0.05 chain rule
=12(2(0.57))x0.05 Area A= 6(2x)* = 24X’
=0.684 dA dA _dx
Answer: 0.684 mm?/s. It dx dt
=48xx0.025 chain rule
=48(0.57)x0.025
=0.684

Answer: 0.684 mm?/s.




Without using a calculator, find the integer value of a and of b for which the solution of the

equation 2xv5 = xv/2 +4/18 is \/§3+b .

Solution OR
A handful used this method but did not
X( ) \/g _ \/5 ) _ \/E reject one answer/ did not know why
one of the answers is not acceptable.
2 2
X= Jis X 2J5+42 conjugate surds (2X\/§) =(X\/§+\/ﬁ)
252 25442 , )
250 +6 20x% =2x> +2/36x +18
- 18 18X2—12X—18=0
610 +6 3x* —2x-3=0
18 x—2+’/4_4(2)(_3)
_10+1 B 2(3)
3 14410 1-10 , .
a=10,b=1 = or (reject)
3 3
a=10,b=1

3x?

Jax—h

Given that the x-coordinate of the stationary point is 1, find the value of h.

The equation of a curve is y =

Solution

2 1 -
& V4x—h (6x)—-3x (2)(4x—h) (4)
dx 4x—h
(4x—h)% [(6x)(4x—h)—6x2]

4x—h
_18x* —6hx

(4x—h)>

quotient OR product rule

At stationary point,  —

18(1)° —6h(1) _

(4)-h)2
h=3

When x =1, 0

[4]

[4]



4 2a 2p

The roots of the quadratic equation 8x* —49X+c=0 are — and ——.

a
(1) Show that ¢ = 32. [1]
(i)  Given that af3 = 4, find two distinct quadratic equations whose roots are @ and f. [4]
Solution
(1)
2a (%) _¢
f )\ a 8
_c
8
c=32
(i)
2a 26 _4% SOR
g a 8
20° +28° _49
aff 8
20°+28° 49
4 8
49
a’+pf=—
p 4
) 49
(a+p) 20 = ” apply perfect square
(a+ ) -8=""
4
81
a+pB) =—
(a+p) 2
9
at+p=*+—
p 2

Eqns are 2X° —9x+8=0, 2X+9x+8=0.

both eqns, accept fractional coefficients

5 _ 2
Given that y = —2 32560 2X
tan” 2X+1



(i) expressy inthe form cos4x+k,

(ii) sketch the graph of |y| for —% < x < 7 and state the value of n when |y| =n

has four solutions.

Solution
0 2—3sec’2X _ 2—3sec’ 2X
tan’® 2X +1 sec? 2X
=2cos’ 2X—3
=2cos’ 2x—1-2
=cos4x—2
(ii1) graph
n=1

L 3n/4

m

8| |

T | | %

.

The polynomial f(X)= px’ +3x>+gx—6 is divisible by x> +x—6.

(i) Find the value of p and of q.

(2]

[4]



(i)  Find the remainder in terms of X when f(X) is divided by x* —1.

Solution

(i) X +X=6=(Xx-2)(x+3)
By the factor thm, f(2)=0
P(2)’ +3(2)* +q(2)-6=0

8p+29+6=0
4p+q=-3

OR
PX® +3%X> + X — 6 = (X—2)(X+3)(px +1)

factor thm

P(=3)’ +3(-3)* +q(-3)-6=0 factor thm

-27p-39+21=0
Op+q=7
Solve (1) and (2); p=2, q=-11

(ii) Using x> =1,
f(x)=2x+3x* -11x-6
=2X*(X)+3x* =11x-6
=2X+3-11x-6
=-9x-3

Given the equation ——;
sin” @

(i) the values of 4.
(ii)  the exact values of cos 4.

Solution
(i) 2cosec’d=5-cotd
2(1+cot’@)—5+cotd=0

2cot’@+cotd—-3=0
(2cot@+3)(cotd—-1)=0

identity
factorisation

c0t<9=—% or cotd =1

tan@z—% ortan =1

Basic angle = 33.69° , 45°
0 =146.3°,326.3",45°,225°

.. 2
1) tanfd=-——
(i1) 3

OR long division (ecf)
Many used this method.
2K F
x2-1]2x3 + 3x2 - 11x - 6
2x3 - 2
3x2 - 9x - 6
3x2 -3

=5—cot@ where 0° <9 <360°, find

OR

5sin* @ —sin@cos@—2=0

which is common to many but at the
same time spells the end of qn 7.

5sin” @ —sin @ cos @ —2(cos’ @ +sin’ @) =0
3sin’ @ —sin@cos@—2cos’ =0

(3sin@+2cosB)(sind—cosf) =0

tanﬁz—g or tan@ =1

(quadrants 2, 4) or tan € =1 (quadrants 1, 3)

[2]

[4]
2]



3 1
cosd=+—, cosf=+—
J13 V2
@ Express 22)(—_1 in partial fractions. [4]
X“(X+1)
(i) x-1
Hence, determine J. > dx. [2]
X“(x+1)
Solution
(1) 22)(—_1 _A + Ez + £ correct factors
X“(x+1) x x° x+1

2X—1= AX(x+1)+B(x+1)+Cx’

Letx=-1, —-3=C(-1>=>C=-3 or comparing coeff.
Let x =0, B=-1

Letx =1, 1=2A—(2)-3(1)> ==> A=3

Hence, ﬂ E_L_i

X*(X+1) X X x+1

Lo 2x=1 (3 13
Rt el

Given the curve y = (m+1)x*> —8x +3m has a minimum value, find the range of values of m

(i) for which the line y = m —4mx meets the curve, [5]
(ii) . . . 5
for which y — intercept of the curve is greater than S [2]
Solution

(1) (M+1Dx*> —8x+3m=m—4mx
(M+1)x> +4mx—-8x+2m=0  quadratic eqn

b*>—4ac>0
(4m—=8)> —4(m+1)(2m) =0 discriminant, inequality
(4(m=2))>-8m(m+1)>0
2(m*—-4m+4)-m’-m>=0  expansion, simplify
m’-9m+8>0
(M-1)(M-8)=0 factorisation
m<1 or m=2=>8

Since it is a minimum graph, m+ 1> 0, ie m> -1
So-1<m<1 or m=>38



(i1) Aty — intercept, X = 0,
(M+1)x* —8x+3m >—§

5
m>——
6

10 G
Solution

log,gpo ——

XX +9 1
10gloooT_3
2 1
X+9 _1000°
X
x> +9=10x
x> —10Xx+9=0
(X=1)(x=9) =0
X =1or9

(i)

Solution

Solve the equation 3log,, [logmoo(x2 +9)—10g,000 X] =-1.

index form

index form

(a) On the same axes, sketch the graphs of y =log, Xx—1 and y =log, X+1

2

(b) Explain why the two graphs are symmetrical about the x-axis.

[3]

[2]
[2]
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(i) —(log. X—1)= 198X |

2 log, 5

:_l()g—z)fl+1
log, 2
=log, x+1

The functions are negative of each other. [A1]

A
/ J120°

X

D
120°\ \

~

B

A piece of wire of length 80 c¢m is bent into the shape of a trapezium ABCD.
AB = CD = x cm and angle BAD = angle ADC =120°.

)

(ii)  Given that X can vary, find the value of X for which the area has a stationary value.

Show that the area of the trapezium ABCD is given by g X(40-x) cm?.

(iii)  Determine whether this stationary value is a maximum or a minimum.

A

D

120°

60°

120°

Q

Solution

O

ZABC =180—-120(int./s, AD / /BC)

— 60"
BQ

X

(1) cos ZABC =

X

BO=—

Q 2
Perimeter = BC +2x+ AD

80:§+AD+§+X+AD+X

AD — 80—-3x

AQ

sin 60° = AQ =

i

Area ——(AD + BC)(

OR (Most used this method)
AD +BC =80-2x

ZABC=180—- ZBAD (int.angles, AD//BC)
=60°
AQ = height of the trapezium
AQ

sin60 =—
X

3

AQ=—X
Q 2

Area :l(ﬁ XJ(AD+ BC)
21 2

:%[gx](SO—zx)

B
2

——x(40-x) (shown)

[4]
2]
[2]



=i(80—3x+x)\/§x

3

=—X(80—-2X
2 ( )

NG

= X(40—-x) (Shown)

(i1) i—A =0 when the area has a stationary value
X

B3

204/3 - 73(2X) =0 differentiation
X =20

2
(i11) ((11 = ~J3<0. second derivative or using first derivative
X

Area is a maximum

12 A particle moves in a straight line so that its velocity, V m/s, is given by v=2— a 182)2
+

where t is the time in seconds, after leaving a fixed point O.

Its displacement from O is 9 m when it is at instantaneous rest.
(i) the value of t when it is at instantaneous rest,
(ii)  the distance travelled during the first 4 seconds.

At t =7, the particle starts with a new velocity, V ms™!, given by V = —h(t> = 7t) + k .
(iii)  Find the value of k.
(iv)  Given that the deceleration is 1.9 m/s* when t = 8, find the value of h.

Solution
(1) At turning pt,v=20
(t+2)

t=1 or -5(NA)

(i1)
s:f ydt :2t+£+c
dt t+2

Whent=1,5=9

2(1)+£+c=9
1+2

c=1,so0 S=2t+£+l
t+2

2]
[4]

[1]
2]
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Whent=0,s=10m
Whent=1,s=9m
Whent=4,s=12m

Total distance travelled= 10-9+12-9=4m

18 16

(ii1)) Whent=7,v=2- S =—
(7+2) 9

\% =—h(t—7)+k=%,hence k=%

(iv) V =-h({t*=7t)+k =—ht> +7ht +k

a:d—V:—2ht+7h
dt

—2h(8)+7h =—0.9
~16h+7h=-0.9

—-9h=-0.9
h=0.1

Solutions to this question by accurate drawing will not be accepted.

AY R

S(5,7)
QO 4)

P@3.,2)

» X

o)

In the diagram, PQ is parallel to SR and the coordinates of P, Q and S are (3, 2), (9, 4) and
(5, 7) respectively. The gradient of the line OR is 1.

Find
(i) the coordinates of R, [4]
(ii)  the area of the quadrilateral PQRS, [2]

(iii)  the coordinates of the point H on the line y = 1 which is equidistant from P and Q.  [4]

Solution

. 1
(i) Mg = g

Since PQ // SR, mg =%



Eqn of SR, (y—7)=%(x—5)

X

16
3

Sub. R(a, a) into y=§+?, a=8 ORuseeqnof ORasy=Xx

~R=(8, 8)
1‘3 9 8 5 3‘

ii) Arca of PQRS =~
(i) AreaofPQRS=2)) 4 ¢ 7 2

= %(39) =19.5 units”

[M1]

[AT]

(i)  Since the point H lies on the line y =1 and is equidistant from P and Q, H must lie

on the L bisector of PQ.
Mid-point of PQ = (6, 3)

gradient of L bisector= —3.

Equation, (y—3)=-3(x-06)
y=-3x+21
Sincey =1,
1=-3x+21, x:6z
3
2
~H6=, 1
( 3 )
OR
PH=QH

V@1 (30" = (41 +(0-x)

1+9—-6X+X> =9+81-18x+ X
12x =80

20

BE}

20
H =1
(3 )

X

using length

expansion
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Mathematical Formulae

1. ALGEBRA
Quadratic Equation

For the equation ax? + bx + ¢ =0,

—b*~b* —4ac

2a

X =

Binomial expansion

n _ _n n n-1 n n-272 n n—riyr n
(a+b)—a+1a b+2a b +... +| |la""h" +....... +b",
r

where 7 is a positive integer and (

2. TRIGONOMETRY

Identities
sin? A +cos*A=1

sec?A=1+tan’ 4
cosec’ A =1+ cot> 4
sin(4 £ B) =sin Acos B £+ cos Asin B
cos(A £ B) =cos Acos B ¥ sin Asin B
tan A+ tan B
l¥tan Atan B
sin 24 =2 sin A4 cos A
cos24=cos’A—sin?A=2cos’A—-1=1-2sin’ 4
2tan 4
1—tan’® 4

tan(4+ B) =

tan2A4 =

Formulae for AABC
a b c

sinA:sinB:sinC
a* =b* +c¢* —2bccos A

A= lbc sin A
2
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Name: ( ) Class:

1 A rectangular garden, with length x m and breadth y m, has an area of 270 m?. It has a
path of width 2.5 m all round it. Given that the outer perimeter of the path is 87 m, find
the length and breadth of the garden. [5]

2 (@ Solve 2(9"")-5(3")=27. [4]

(b) Given that f(x)=1n(5x-2)’,
(i) State the range of x for f (x) to be defined. [1]

(i) Show that 5f'(x)+(5x—2)f"(x)=0. [4]

3 (@) (i) Write down the first four terms in the expansion of (1+ x)so and (1 —x)50

Hence, write down the first two terms for (1+ x)50 -(1- x)50 . [3]

(i)  Without the use of calculator, deduce if 1.01°° or 1’° +0.99” is larger. [3]

7
(b) The term independent of x in x'' (2x +£2j is 896.
X

Find the two possible values of £. [4]

4 (i) Provethat tan A+cot A=

sin24 "

(ii) Hence, or otherwise, solve tan A+cot A =2.5for 0°< 4<270°. [4]

3 [Turn over
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5 In the diagram, not drawn to scale, P(a, b) is a point on the graph y* =16x,

and Q is a point on the line x =—4. PQ is the perpendicular distance from P to this

line. F(4, 0) is a point on the x-axis.

4

(i) Find the length PF in terms of a.

(ii) Given that the tangent to the curve at P cuts the y-axis at G, find the coordinates

of G in terms of a.
(iii) Show that G is the the mid-point of QF.

(iv) Find the equation of the normal at P in terms of a.

4

6
6 (a) Evaluatej

sin (2x +gj dx, leaving your answer in surd form.
0

() () Find % {ezx [cos 3x+ %sin 3xﬂ .

(i) Hence find jez" cos3x dx.

(2]
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Name: ( ) Class:

7  The diagram shows a point P on a circle and PQ is a tangent to the circle. Points 4, B
and C lie on the circle such that P4 bisects angle OPB and QAC is a straight line. The
lines QC and PB intersect at D.

P 0

>

A
o
B
(i) Prove that AP = AB. [4]
(ii) Prove that CD bisects angle PCB. [4]
(iii) Prove that triangles CDP and CBA are similar. [2]

8 The table below shows experimental values of two variables x and y obtained from an

experiment.
X 1 2 3 4 5 6
% 5.1 17.5 37.5 60.5 98 137

It is also given that x and y are related by the equation y = ax +bx’, where a and b are

constants.

(i) Plot z against x and draw a straight line graph. Use 2 c¢m to represent 1 unit 4]
X

on the horizontal axis and 4 cm to represent 10 units on the vertical axis.
(ii) Use the graph to estimate the value of a and of b. [2]

(iii) By drawing a suitable straight line, estimate the value of x for which

(b+5)x:38—a. [4]

5 [Turn over
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9  The figure below shows two circles, Ci and C2, touching each other in the first
quadrant of the Cartesian plane. Ci has radius 5 and touches the y-axis at D. C> has
radius 4 and touches the x-axis at £E. The line AB joining the centre of Ci and (2,

meets the x-axis at F. Angle BFO is 6.

Ci

(i)  Find expressions for OD and OE in terms of #and show that
DE?*= 122+90cos@+72sinf. [3]

(ii) Hence express DE? in the form 122 +Rcos(t9—a) ,where R >0 and a is acute. [3]

(iii) Calculate the greatest possible length of DE and state the corresponding value
of 6. [3]
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Name: ( ) Class:

10 The population of a town is estimated to increase by k % per year. The population at

11

the end of 2017 was 20000. The population, y, after x years can be modelled by
y=A(L.11) .

(i) Deduce the value of 4 and of k& with the information provided.

(ii) Sketch the graph of y.

(iii) Find the value of x when y = 9600.

Explain the meaning of this value of x.

(iv) Calculate the population of the town at the end of 2027.

Given that y =2x" +3x* +11x+5,

(i) show that

(a) yis an increasing function for all values of x,
1
(b) y has only one real root at x = 5

(ii) sketch the graph of y,

(iii) hence, calculate the area bounded by y =2x’ +3x” +11x+5, the x-axis and the

linesx=-1 and x=1.

End of paper

(2]




4ESN PRELIM 2018 AM P2 Ans Scheme

1 Xy =270
270

y==>

X
2(x+5+y+5)=87
o7

X+Yy 5 o 2)

Substitute (1) into (2),
270 67
-
X 2
2x* —67Xx+540=0

(2x-27)(x-20)=0
2x-27=0 or x-20=0
X=13.5 or x=20
When x=13.5,y =20
When x =20,y =13.5
Since X is the length, then X =20 mand y = 13.5 m.

2a 1 <
2(? -§j—5(3)=27

Let 3X,
%yz -5y-27=0

2y> —45y-243=0
(2y+9)(y-27)=0

9
=—— or y=27
y > y

3= —% (rejected) or 3 =3’

X=3
2bi 5x—2>0
X>—
2
f(x):3@x—2);5
(5x-2)
15
C5x=2




= 5E(x)+(5x-2)f (%)

7575
5Xx—-2 5x-2
=0 (shown)
3ai | (14 %)™ =1% 4 50x+ PC,x* + C, ¢ 4.+ X
=1+50X+1225%X> +19600X’ +...+ X
(1-x)" =1-50x+1225x* ~19600X +...— X"
(1+x)" =(1-x)" =100x +39200x’
ii Let x=0.01,
1.01%° =0.99% =100(0.01)+39200(0.01)
=1+0.0392
1.01° =1+0.0392 +0.99"
>1+0.99"
Hence, 1.01%° is larger.
3b

T ="C, (20 (%]

X
— 7Cr 277I‘ kI‘X7f3r

For7 -3r=-11
r=6




OR

o kY
x''T,,, ="C,(2x) (FJ X'
— 7Cr 274’ er1873l’
For 18 —=3r=0
r=6

Term independent of X = 896

Xll(

:
2x+£2j — 896

X
'C,2"°k°® =896
k® =64
k=12

Alternative method:

7
x“(2x+£2j

X

27x7+7(2°)kx* +7C,2°K?x + 'C;2*k %

+7C, 2K + 1C, 22K XS + 7C 2K XM kX

Term independent term of X = 896
896 = X' (7C 2k x)
896 =14k°
k® =64
k=42

|




4i

LHS =tan A+cot A

sinA cosA
= +

cosA sinA
_sin® A+cos’ A

sin Acos A
1

1 2sin Acos A
2

2
sin2A
=RHS (shown)

OR
LHS =tan A+cot A

=tan A+

tan A

B tan” A+1
~ tanA
B sec” A
~ tan A

1 cos
“Cos? A sinA
B 1
~ sin Acos A
B 2
~ 2sin Acos A
2
~ sin2A
=RHS (shown)

4ii

25

sin2A 2

sin2A:i

5
a=53.13°

2A=53.13°126.87°,413.13°,486.67°
A=26.6°63.4°,206.6°,243.4°




51

y* =16x
AtP, b* =16a

PF =/(a—4)" +b?

—Ja>—8a+16+16a
=J(a+4)
=a+4

il

y* =16x

y =4/x

Equation of tangent at P,

y-b x—a)

-2
a
y:%—2\/5+4\/5

:§+2\/5
a

Ja
When x =0, y=2va

-~ G (0, Vay

il

Mid-point of QF
B (—4 +4 b+ Oj

- 9

2 2

[, Ha
2

=(0, 2Va)

Hence, G lies in the centre of QF.
OR find lengths of QG and GP.




v

Ja

Gradient of normal at P= ——

Equation of normal at P:

6a

o L
YK

w2

-

=]
7\

\S]

>

+
N—

o

X

S
o |

6bi

[ezx (cos 3X +%sin 3Xﬂ

=2e** (cos3x+§sin3x]+e2X (—SSin 3X+%cos3xj

|

=X (2cos3x+3sin3X—3sin3X+§cos3Xj

1
= —3e2" cos 3X
2

6bii

'[ e**cos 3x dx =£I Eezxcos 3x dx
13 2

=£e2X cos3x+§sin3x +C
13 2

71

AABP = XAPQ (alt. segment theorem)
Since PA bisects XQPB,
XAPQ = XAPB
. £ABP = XAPB (base £s of isosceles triangle APB)
Hence,
AP = AB.




7ii XACB = XAPB («£s in the same segemnt)

X£ACP = £ABP («s in the same segemnt)
= XAPB (shown)

XACB=xACP

Hence, CD bisects £PCB .

7iii | £ACB = £ACP (from ii)
A£CPD = xCAB (£s in the same segemnt)

Hence, ACDX and ACBA are similar.

i Y —bx+a
X

X 1 2 3 4 5 6
y/x 5.1 875 125 | 15.13 | 19.6 |22.83
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ii

azl—mwmwt
X

=1.5
b = gradient
135

38
~3.55

iii

(b+5)x=38-a
bx+5x=38-a
bx +a=38-5x

Draw l:38—5x s
X

at point of intersection, x =4.25

9i

OE =5+9cos@
OD =4+9sin8

DE? = OE? + OD?
=(5+9cos6)’ +(4+9sing)’
=25+90cos@+81cos’ O

+16+72sin@+81sin* @
=41+81+90cos@+72sin @
=122+90cos@+72sin @

ii

Let 90cos @+ 72sind =Rcos(6-a) .

R=+/90% +72

=+/13284

=115 (3s.f)

0= tan’12
90
=38.65°

DE* =122+115cos(6—38.7°)

OR
122++/13284 cos (6 —38.7°)




iii | DE is greatest when cos(6—38.7°) =1

DE =122 +115

=15.4 units (3 s.f.)

Corresponding € is 38.7°.

10i | A=20000,k=11

i
AY

il When y = 9600,

9600 =20000(1.11)"

9600
iy Ol
850000 ©

=-7.03 (3s.f)

The population of the town was 9600 approximately 7 years ago.

v When x = 10,

y =20000(1.11)"
=56788
The population of the town would be 56788 (or 56800) at the end of 2027.

111 y=2x +3x* +11x+5

d—y=6x2+6x+11

dx
2
=6| X+ 1 + D
2 2
d 1Y’
LN 0 as(x +—j > 0 for all values of x, hence y is an increasing function for all
X

values of X.




i

Using long division,

y:(2x+1)(x2+x+5)

But for x> +X+5 , discriminant = -19 <0, hence X* +X+35 has no real roots.

Therefore, y has only one real root at

1
X=——=.
2

il

£0.5

v

Area required
— J:ll y dx

-0.5
=‘.|.1 2x° +3x* +11x+5 dx

+f 2% +3x° +11X+5 dx
-0.5

-0.5 X4 11 1
+| —+ x> +—+5x
2 2 05

-1

2+ 12-(-2)
32 32
7

=14—
16

4
:§;+x3+ll+5x

or
=14.4 sq. units (3 s.f.)






