Commonwealth Secondary School Additional Mathematics

Mathematical Formulae

Quadratic Equation

1. ALGEBRA

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

Identities

2. TRIGONOMETRY

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formula for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

1 Find the range of values of m such that $y=3 m x^{2}+6 x+m$ is always positive.

2 Find the value of x for which $8 \log _{4} x+\left(\log _{x} 4\right)^{2}=0$.

3 A structured deposit pays a compound interest of $r \%$ per annum.
In n years, the principal amount P_{0} will become P_{n} where $P_{n}=P_{0}\left(1+\frac{r}{100}\right)^{n}$. Mandy invests $\$ 20000$ and receives $\$ 22497.28$ in 3 years.
(i) Find the value of r.
(ii) Find the number of years Mandy has to invest if she wishes to double the principal amount.

4 (i) Sketch the graph of $y^{2}=12 x$.
(ii) If $x+y=k$ is a normal to the curve $y^{2}=12 x$, find the value of k.

5 Given that $y=\frac{2 x^{2}}{4 x-3}$, where $x>\frac{3}{4}$,
(i) find an expression for $\frac{d y}{d x}$,
(ii) find the range of values of x for which $y=\frac{2 x^{2}}{4 x-3}$ is a decreasing function.

6 (i) Prove the identity $(1+\operatorname{cosec} \theta)(\sec \theta-\tan \theta) \equiv \cot \theta$.
(ii) Hence solve the equation $\sec 2 x-\tan 2 x=\frac{\sqrt{3}}{1+\operatorname{cosec} 2 x}$ for $0^{\circ}<x<360^{\circ}$.

7 In the diagram, the points B, D, F and G lie on a circle with diameter $D G$.
Lines $A C$ and $C E$ are tangents to the circle at B and D respectively.
$A G F E$ is a straight line and line $B F$ meets $D G$ at H.

(i) Prove that triangle $A B G$ is similar to triangle $A F B$.
(ii) Given that angle $G H F=90^{\circ}$, show that $B F$ and $C E$ are parallel.
(iii) Using the above results, show that $\frac{A C}{C E}=\frac{A G}{G B}$.

8 (i) Sketch the graph of $y=|x-2|-2$, showing clearly the intercepts on the coordinate axes and the vertex.
(ii) A line $y=m x+c$ is drawn on the same axes.
(a) If $m=0$, write down the range of values of c such that the line $y=m x+c$ will intersect the graph of $y=|x-2|-2$ at two distinct points.
(b) If $c=0$, write down the range of values of m such that the line $y=m x+c$ will intersect the graph of $y=|x-2|-2$ at two distinct points.
(iii) Solve the equation $|x-2|-2=-\frac{1}{2} x+1$.

9 A particle travels in a straight line such that t seconds after passing through a fixed point O, its acceleration $a \mathrm{~m} / \mathrm{s}^{2}$ is given by $a=\frac{8}{(t+2)^{2}}$.

The particle comes to instantaneous rest when $t=2$.
(i) Find the initial velocity of the particle.
(ii) Find the distance from O at which the particle comes to instantaneous rest.
(iii) Show that the particle is again at O at some instant during the 6 th second.

10 Given that $y=5 \sin ^{2} t-3 \cos ^{2} t$,
(i) express y in the form $a \cos 2 t+b$, where a and b are integers.
(ii) Sketch the graph of y for $0 \leq t \leq 2 \pi$.
(iii) The equation $y=5 \sin ^{2} t-3 \cos ^{2} t$ models the motion of a whale jumping in and out of the ocean. y, in metres, is the vertical displacement of the whale from the sea level and t is the time in seconds.

Find the duration the whale is first out of the water.

11 The diagram below shows a semicircle $O A B C D$ with radius 6 cm and centre O. $A B C D$ is a symmetrical trapezium with height $C E$ and angle $C O E$ is θ radians.

(i) Show that the shaded area, $A \mathrm{~cm}^{2}$, is given by $A=18 \pi-18 \sin 2 \theta-36 \sin \theta$.
(ii) Find the minimum value of A, leaving your answer in the exact form in terms of surds and π.

12 (i) Sketch the graph of $y=\ln (2 x+1)$ for $-\frac{1}{2}<x \leq 4$.
(ii) A point P moves along the curve $y=\ln (2 x+1)$ such that the x-coordinate of P increases at a constant rate of 0.005 units/s. Find the x-coordinate of P at the instant the y-coordinate is increasing at 0.002 units/s.
(iii) Make x the subject in the equation $y=\ln (2 x+1)$.

Hence find the area bounded by the curve $y=\ln (2 x+1)$, the x-axis and the line $x=4$.

END OF PAPER

Answer all the questions

1. The points P and Q have coordinates $(\sqrt{3}, 2 \sqrt{3})$ and $(\sqrt{5}, 4 \sqrt{5})$ respectively. Show that the gradient of $P Q$ can be expressed as $a+b \sqrt{15}$, stating the value of the integers a and b. [5]
2. A viral post on a social media platform spreads to its users according to the equation

$$
x=\frac{1}{1+e^{-k t}},
$$

where x is the proportion of users that received the post in their feed at time t minutes and k is a positive constant.
(i) Find the rate of spread of the viral post in terms of k.
(ii) Show that $\frac{d x}{d t}=k x(1-x)$.
(iii)Find the values of x when $\frac{d x}{d t}=0$. Explain the significance of these values of x.
3. (i) Given $y=2 \cos x \sin 2 x-\sin x \cos 2 x$, show that $\frac{d y}{d x}=k \cos x \cos 2 x$, stating the value of k.
(ii) Hence, show that $\int_{0}^{\frac{\pi}{4}}\left(5 \cos x \cos 2 x+\sec ^{2} x\right) d x=\frac{5 \sqrt{2}}{3}+1$.
4. (i) Given that the term independent of x in the binomial expansion of $\left(x-\frac{k}{x^{2}}\right)^{9}$ is -672 , find the value of the integer k.
(ii) Using the value of k found in part (i), find the coefficient of x^{7} in the expansion of $(1+3 x)\left(x-\frac{k}{x^{2}}\right)^{9}$.
5. Points P and Q lie on a curve with equation $y=-x^{2}+4 x-3$. The tangent to the curve at P has gradient 2. The points P and Q are equidistant from the line of the symmetry of the curve.
(i) Find the coordinates of P and of Q.

The normal to the curve at point Q meets the curve again at R.
(ii) Find the area of the triangle $P Q R$.
6. The equation of a curve is $y=x \sqrt{8-x^{2}}$.
(i) Find the coordinates of the stationary points of the curve.
(ii) Determine the nature of these stationary points.
7. The lines $y=8$ and $4 x+3 y=30$ are tangent to a circle C at the points $(-1,8)$ and $(3,6)$ respectively.
(i) Show that the equation of C is $x^{2}+y^{2}+2 x-6 y-15=0$.
(ii) Explain whether or not the x-axis is tangent to C.
(iii)The points Q and R also lie on the circle, and the length of the chord $Q R$ is 2 . Calculate the shortest distance from the centre of C to the chord $Q R$.
8. (i) Find the remainder when $8 x^{3}-4 x^{2}-2 x-3$ is divided by $2 x+1$.
(ii) Hence, factorise completely the cubic polynomial $8 x^{3}-4 x^{2}-2 x+1$.
(iii)Express $\frac{8 x}{(x+1)(x-1)^{2}}$ as a sum of 3 partial fractions.
9. The mass of radioactive iodine can be modelled by the equation $m=m_{0} k^{t}$ where m grams is the mass after t days and m_{0} and k are constants. Measured values of m and t are given in the following table.

t	2	4	6	8
m	14.72	9.42	6.03	3.86

(i) Using suitable variables, draw, on graph paper, a straight line graph and hence estimate m_{0} and k to 1 decimal place.
(ii) Using your values of m_{0} and k in (i), calculate the value of m when $t=10$.

The half-life of a radioactive substance is the time it takes for a mass of the substance to reduce to half its mass.
(iii)Explain how another straight line can be drawn on your diagram to lead to the estimate of the half-life of iodine. Draw this line and estimate this value.
10. The roots of the quadratic equation $-2 x^{2}+3 x-7=0$ are α and β.
(i) Find the value of $\alpha^{2}+\beta^{2}$ and hence deduce the nature of the roots.
(ii) Find the value of $\alpha^{3}+\beta^{3}$.
(iii) Find a quadratic equation with integer coefficients whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
11.

A vertical farming tower is used to grow plants in land-scarce Singapore. The tower is placed on rooftops of high-rise buildings to allow the plants to absorb sunlight. The diagram shows the crosssection of the tower which consists of a trapezium $A B C D$. Angle $B A D=\theta$, angle $A D C=90^{\circ}$ and the lengths of $A B$ and $B C$ are 9 m and 5 m respectively.
(i) Show that $L \mathrm{~m}$, the total perimeter of $A B C D$, can be expressed in the form

$$
\begin{equation*}
p+q \sin \theta+r \cos \theta \tag{2}
\end{equation*}
$$

where p, q and r are constants to be found.
(ii) Express L in the form $p+R \cos (\theta-\alpha)$, where $R>0$ and $0<\alpha<90^{\circ}$.
(iii)State the maximum value L.
(iv)Find θ if $L=22 \mathrm{~m}$. Explain why a tower with this value of L should not be built.

No	Solution
[5]	Given that $y=\frac{2 x^{2}}{4 x-3}$, where $x>\frac{3}{4}$, i) $\frac{d y}{d x}=\frac{(4 x-3)(4 x)-\left(2 x^{2}\right)(4)}{(4 x-3)^{2}}=\frac{8 x^{2}-12 x}{(4 x-3)^{2}}=\frac{4 x(2 x-3)}{(4 x-3)^{2}}$. ii) For decreasing function, $\frac{d y}{d x}=\frac{4 x(2 x-3)}{(4 x-3)^{2}}<0 \Rightarrow 4 x(2 x-3)<0$ since $(4 x-3)^{2}>0$ $\Rightarrow 0<x<1 \frac{1}{2}$ and $x>\frac{3}{4} \Rightarrow \therefore \frac{3}{4}<x<1 \frac{1}{2}$ (No answer mark if the lower limit is 0)
6 $[7]$ See N15	i) LHS $=(1+\operatorname{cosec} \theta)(\sec \theta-\tan \theta)=\left(1+\frac{1}{\sin \theta}\right)\left(\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}\right)$ $=\left(\frac{1+\sin \theta}{\sin \theta}\right)\left(\frac{1-\sin \theta}{\cos \theta}\right)=\frac{1-\sin ^{2} \theta}{\sin \theta \cos \theta}=\frac{\cos ^{2} \theta}{\sin \theta \cos \theta}=\frac{\cos \theta}{\sin \theta}=\cot \theta=\text { RHS }$ ii) Solve $\cot 2 x=\sqrt{3} \Rightarrow \tan 2 x=\frac{1}{\sqrt{3}}, 0^{\circ}<2 x<720^{\circ}$ $\alpha=30^{\circ} \Rightarrow 2 x=30^{\circ}, 210^{\circ}, 390^{\circ}, 570^{\circ} \Rightarrow x=15^{\circ}, 105^{\circ}, 195^{\circ}, 285^{\circ}$
7 $[7]$	i) $\angle A B G=\angle A F B$ (alternate segment theorem), $\angle B A G=\angle F A B$ (same angle) $\therefore \triangle A B G$ is similar to $\triangle A F B$ (all corresponding angles are equal) ii) $B F$ is perpendicular to $G D$ (given), $C E$ is perpendicular to $G D(\tan \perp \mathrm{rad}) \quad \therefore B F / / C E$ iii) $\frac{A C}{C E}=\frac{A B}{B F}$ ($\triangle A C E$ and $\triangle A B F$ are similar) $\frac{A B}{B F}=\frac{A G}{G B} \quad$ ($\triangle A F B$ and $\triangle A B G$ are similar) $\therefore \frac{A C}{C E}=\frac{A G}{G B}$ (shown) * Note : To subtract max of 1 mark if reasons are missing or incorrect
8 [8]	i) Sketch the graph of $y=\|x-2\|-2$

2017 4E5N Amuths PI

No	Solution
[4] See N08	$\begin{aligned} & y=3 m x^{2}+6 x+m>0 \Rightarrow b^{2}-4 a c<0 \Rightarrow(6)^{2}-4(3 m)(m)<0 \Rightarrow 36-12 m^{2}<0 \Rightarrow m^{2}-3>0 \\ & \Rightarrow(m+\sqrt{3})(m-\sqrt{3})>0 \Rightarrow m<-\sqrt{3}(\text { rejected as } m>0 \text { for } U \text { shaped graph), } m>\sqrt{3} \end{aligned}$ ** Note : NO answer marks if y write $m^{2}>3 \Rightarrow m> \pm \sqrt{3}$ Incorrect case 1 : $m=-2(m<-\sqrt{3})$ $y=-6 x^{2}+6 x-2$ Incorrect case 2 : $\mathrm{m}=1(-\sqrt{3}<m<\sqrt{3})$ $y=3 x^{2}+6 x+1$
[2	$\begin{aligned} & 8 \log _{4} x+\left(\log _{x} 4\right)^{2}=0 \Rightarrow 8 \log _{4} x+\left(\frac{\log _{4} 4}{\log _{4} x}\right)^{2}=0 \Rightarrow 8 \log _{4} x+\frac{1}{\left(\log _{4} x\right)^{2}}=0 \\ & \Rightarrow 8\left(\log _{4} x\right)^{3}+1=0 \Rightarrow\left(\log _{4} x\right)^{3}=-\frac{1}{8} \Rightarrow \log _{4} x=-\frac{1}{2} \Rightarrow x=4^{-1 / 2}=\frac{1}{2} \end{aligned}$
3 $[4]$	i) $P_{n}=P_{0}\left(1+\frac{r}{100}\right)^{n} \Rightarrow 22497.28=20000\left(1+\frac{r}{100}\right)^{3} \Rightarrow\left(1+\frac{r}{100}\right)^{3}=1.124864$, (or 1.1254 sf) $\Rightarrow 1+\frac{r}{100}=1.04 \Rightarrow r=4$ (accept 4.003 sf) ii) $P_{0}\left(1+\frac{4}{100}\right)^{n}=2 P_{0} \Rightarrow 1.04^{n}=2 \Rightarrow n=\frac{\lg 2}{\lg 1.04}=17.7$ years (3sf) or 18 years
4 $[5]$	i) Sketch the graph of $y^{2}=12 x$. (Table is for reference only) ii) If $y=-x+k$ is a normal to the curve $y^{2}=12 x$ \Rightarrow gradient of normal $=-1 \Rightarrow$ gradient of tangent $=1$ $\Rightarrow 2 \sqrt{x}=\sqrt{12} \Rightarrow 4 x=12 \Rightarrow x=3 \text { and } y=6 \quad \therefore k=x+y=3+6=9$ \Rightarrow normal is at a point on the positive y section. $y=\sqrt{12} x^{1 / 2} \Rightarrow \frac{d y}{d x}=\frac{\sqrt{12}}{2 \sqrt{x}}=1$

 	SIN วəS [6]
 (уગ סи!!	OI
	LOOtdS 'SIN ${ }^{2} 2 \mathrm{~S}$ [8] 8
uo!̣njos	

No	Solution
$\begin{array}{\|c\|} \hline 11 \\ {[10]} \\ \text { See } \\ \text { N15 } \end{array}$	i) In $\triangle C O E, \sin \theta=\frac{C E}{6} \Rightarrow C E=6 \sin \theta$ and $\cos \theta=\frac{O E}{6} \Rightarrow O E=6 \cos \theta$ $\begin{aligned} & \text { Shaded area }=\text { semicircle }- \text { trapezium }=\frac{1}{2} \pi(6)^{2}-\frac{1}{2}(12+2(6 \cos \theta))(6 \sin \theta) \\ & =18 \pi-36 \sin \theta \cos \theta-36 \sin \theta=18 \pi-18 \sin 2 \theta-36 \sin \theta \end{aligned}$ ii) For $\min A, \frac{d A}{d \theta}=-36 \cos 2 \theta-36 \cos \theta=0 \Rightarrow(\div-36) \quad \cos 2 \theta+\cos \theta=0$ $2 \cos ^{2} \theta+\cos \theta-1=0 \Rightarrow(2 \cos \theta-1)(\cos \theta+1)=0$ $\Rightarrow \cos \theta=\frac{1}{2}$, so $\theta=\frac{\pi}{3}$ or $\cos \theta=-1$, so $\theta=\pi$ (rejected as θ is acute) $\frac{d^{2} A}{d \theta^{2}}=72 \sin 2 \theta+36 \sin \theta=72 \sin \frac{2 \pi}{3}+36 \sin \frac{\pi}{3}=\frac{72 \sqrt{3}}{2}+\frac{36 \sqrt{3}}{2}=54 \sqrt{3}>0 \Rightarrow \min A$ $\therefore \min A=18 \pi-18 \sin \frac{2 \pi}{3}-36 \sin \frac{\pi}{3}=18 \pi-18 \frac{\sqrt{3}}{2}-36 \frac{\sqrt{3}}{2}=18 \pi-27 \sqrt{3} \mathrm{~cm}^{2} .$
12 $[10]$	i) Sketch the graph of $y=\ln (2 x+1)$ for $-\frac{1}{2}<x \leq 4$. ii) Given $\frac{d x}{d t}=0.005$ and $\frac{d y}{d t}=0.002$, find $x . \quad \frac{d y}{d x}=\frac{2}{2 x+1}$ $\therefore \frac{d y}{d t}=\frac{2}{2 x+1} \cdot \frac{d x}{d t} \Rightarrow 0.002=\frac{2}{2 x+1} \cdot 0.005 \Rightarrow \frac{2}{2 x+1}=\frac{2}{5} \Rightarrow 2 x+1=5 \Rightarrow x=2$ $\begin{aligned} & \text { iii) } y=\ln (2 x+1) \Rightarrow 2 x+1=e^{y} \Rightarrow x=\frac{e^{y}-1}{2} \\ & \text { Required area }=(4)(\ln 9)-\int_{0}^{\ln 9} \frac{e^{y}-1}{2} d y=4 \ln 9-\left[\frac{1}{2} e^{y}-\frac{1}{2} y\right]_{0}^{\ln 9} \\ & =4 \ln 9-\left[\frac{1}{2} e^{\ln 9}-\frac{\ln 9}{2}-\frac{1}{2}+0\right]=4 \ln 9-\left[4-\frac{\ln 9}{2}\right]=\frac{9 \ln 9}{2}-4=5.89 \text { units }^{2} \text { (3sf) } \end{aligned}$

3 ii	$\begin{aligned} & \int_{0}^{\frac{\pi}{4}} 5 \cos x \cos 2 x+\sec ^{2} x d x \\ & =\left[\frac{5}{3}(2 \cos x \sin 2 x-\sin x \cos 2 x)+\tan x\right]_{0}^{\frac{\pi}{4}} \\ & =\frac{5}{3}\left(2\left(\frac{1}{\sqrt{2}}\right)-0\right)+1-0 \\ & =\frac{5 \sqrt{2}}{3}+1 \quad \text { (Shown) } \end{aligned}$
4i	$\begin{aligned} T_{r+1} & =\binom{9}{r} x^{9-r}\left(\frac{-k}{x^{2}}\right)^{r} \\ & =\binom{9}{r}(-k)^{r} x^{9-3 r} \end{aligned}$ Let $9-3 r=0 \Rightarrow r=3$ Term independent of x : $\begin{aligned} & T_{4}=-\binom{9}{3} k^{3}=-672 \\ & k=2 \end{aligned}$
4 ii	Let $9-3 r=6 \Rightarrow r=1$ $\begin{aligned} & \begin{aligned} & T_{2}=9 x^{8}\left(-\frac{2}{x^{2}}\right)=-18 x^{6} \\ & \text { Coefficient of } x^{7}=3(-18) \\ &=-54 \end{aligned} \end{aligned}$
5 i	$\begin{aligned} & \frac{d y}{d x}=-2 x+4 \\ & \text { Let } \frac{d y}{d x}=2 \\ & \Rightarrow x=1 \end{aligned}$ When $x=1, y=0 \Rightarrow P(1,0)$ Line of symmetry: $x=2$ $\Rightarrow Q(3,0)$

2017 4E5N Amaths P2

	relim A Math P2 Mark Scheme
1.	$\begin{aligned} \text { Gradient } & =\frac{2 \sqrt{3}-4 \sqrt{5}}{\sqrt{3}-\sqrt{5}} \\ & =\frac{(2 \sqrt{3}-4 \sqrt{5})(\sqrt{3}+\sqrt{5})}{3-5} \\ & =\frac{-14-2 \sqrt{15}}{-2} \\ & =7+\sqrt{15} \\ \Rightarrow a=7, b & =1 \end{aligned}$
2 i	$\begin{aligned} \frac{d x}{d t} & =-\left(1+e^{-t}\right)^{-2}\left(-k e^{-t}\right) \\ & =\frac{k e^{-t}}{\left(1+e^{-t}\right)^{2}} \end{aligned}$
2 ii	$\begin{aligned} k x(1-x) & =k\left(\frac{1}{1+e^{-t t}}\right)\left(1-\frac{1}{1+e^{-k t}}\right) \\ & =\frac{k e^{-k}}{1 e^{-k t}} \\ & =\frac{d x}{d t} \text { (shown) } \end{aligned}$
2 iii	$\begin{aligned} & \text { when } \frac{d x}{d t}=0, \\ & k x(1-x)=0 \Rightarrow x=0 \text { or } x=1 \end{aligned}$ The rate of spread is never zero until all users receive the post
3 i	$\begin{aligned} & \frac{d}{d x} 2 \cos x \sin 2 x-\sin x \cos 2 x \\ & =-2 \sin x \sin 2 x+4 \cos x \cos 2 x-\cos x \cos 2 x+2 \sin x \sin 2 x \\ & =3 \cos x \cos 2 x \\ & \Rightarrow k=3 \end{aligned}$

	9

$\begin{aligned} \varsigma-10 \mathcal{\varepsilon}=x \Leftarrow \varsigma \mathcal{Z} & =6+{ }_{2}(1+x) \\ 0 & =\kappa \text { นวЧМ } \end{aligned}$	4
 $\begin{aligned} & 0<\boldsymbol{t}={ }^{\tau=x} \left\lvert\, \frac{\tau^{x p}}{\Lambda_{\imath} p}\right. \\ & 0>\boldsymbol{t}==^{\tau=x} \left\lvert\, \frac{z^{x p}}{\kappa_{\tau} p}\right. \\ & \frac{\varepsilon_{\tau}(x-8)}{x+\tau-\varepsilon^{x} \tau}=\frac{\tau^{x p}}{\kappa_{\tau} p} \end{aligned}$	

10ii	$\begin{aligned} \alpha^{3}+\beta^{3} & =(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \\ & =\left(\frac{3}{2}\right)\left(-\frac{19}{4}-\frac{7}{2}\right) \\ & =-\frac{99}{8} \end{aligned}$
10iii	$\begin{aligned} & \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{3}{7} \\ & \left(\frac{1}{\alpha}\right)\left(\frac{1}{\beta}\right)=\frac{2}{7} \\ & \text { equation: } x^{2}-\frac{3}{7} x+\frac{2}{7}=0 \\ & \Rightarrow 7 x^{2}-3 x+2=0 \end{aligned}$
11 i	$\begin{aligned} & C D=9 \sin \theta \\ & A D=5+9 \cos \theta \\ & L=A D+C D+A B+B C \\ & =9 \sin \theta+9 \cos \theta+19 \end{aligned}$
11 ii	$\begin{aligned} & R=\sqrt{9^{2}+9^{2}}=9 \sqrt{2} \\ & \alpha=\tan ^{-1} 1=45^{\circ} \\ & L=19+9 \sqrt{2} \cos \left(\theta-45^{\circ}\right) \end{aligned}$
11 iii	$\operatorname{Max} L=19+9 \sqrt{2}=31.7 \mathrm{~m}$
1liv	$\begin{aligned} & 19+9 \sqrt{2} \cos \left(\theta-45^{\circ}\right)=22 \\ & \cos \left(\theta-45^{\circ}\right)=0.2357 \\ & \alpha=76.367^{\circ} \\ & \theta=121.4^{\circ} \text { or } 328.6^{\circ}(N A) \end{aligned}$ The angle θ should not be obtuse as the plants will not be able to absorb sunlight. Hence $L=22$ is not a suitable value to build this tower.

7 iii	$\begin{aligned} \text { Shortest distance } & =\sqrt{5^{2}-1^{2}} \\ & =\sqrt{24} \\ & =4.90 \text { units } \end{aligned}$
8 i	Let $\mathrm{f}(x)=8 x^{3}-4 x^{2}-2 x-3$ $f\left(-\frac{1}{2}\right)=-4$ By remainder theorem, remainder $=-4$
8ii	Let $\mathrm{g}(x)=8 x^{3}-4 x^{2}-2 x+1$ From (i), $\mathrm{f}(x)=(2 x+1) Q(x)-4$ $\begin{aligned} & \Rightarrow \mathrm{f}(x)+4=(2 x+1) Q(x) \\ & \Rightarrow \mathrm{g}(x)=(2 x+1) Q(x) \end{aligned}$ $\Rightarrow \mathrm{g}(x)$ has a factor of $2 x+1$ By long division/synthetic division/comparing coefficients, $\begin{aligned} g(x) & =(2 x+1)\left(4 x^{2}-4 x+1\right) \\ & =(2 x+1)(2 x-1)^{2} \end{aligned}$
8iii	$\frac{8 x}{(x+1)(x-1)^{2}}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}$ By comparing/substitution, $\begin{aligned} & A=-2 \\ & B=2 \\ & C=4 \\ & \frac{8 x}{(x+1)(x-1)^{2}}=-\frac{2}{x+1}+\frac{2}{x-1}+\frac{4}{(x-1)^{2}} \end{aligned}$
9	Refer to graph paper
10 i	$\begin{aligned} & \alpha+\beta=\frac{3}{2} \\ & \alpha \beta=\frac{7}{2} \\ & \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=-\frac{19}{4} \end{aligned}$ Since $\alpha^{2}+\beta^{2}<0$, the roots are not real.

