Name: ______(

)

Fairfield Methodist School Additional Math Sec 4E/5NA SA2 2017

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$$

2. TRIGONOMETRY

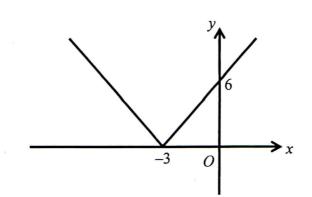
Identities

$$\sin^{2} A + \cos^{2} A = 1$$
$$\sec^{2} A = 1 + \tan^{2} A$$
$$\csc^{2} A = 1 + \cot^{2} A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = \cos^{2} A - \sin^{2} A = 2\cos^{2} A - 1 = 1 - 2\sin^{2} A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^{2} A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

ż



)

Class:

Name: _

1

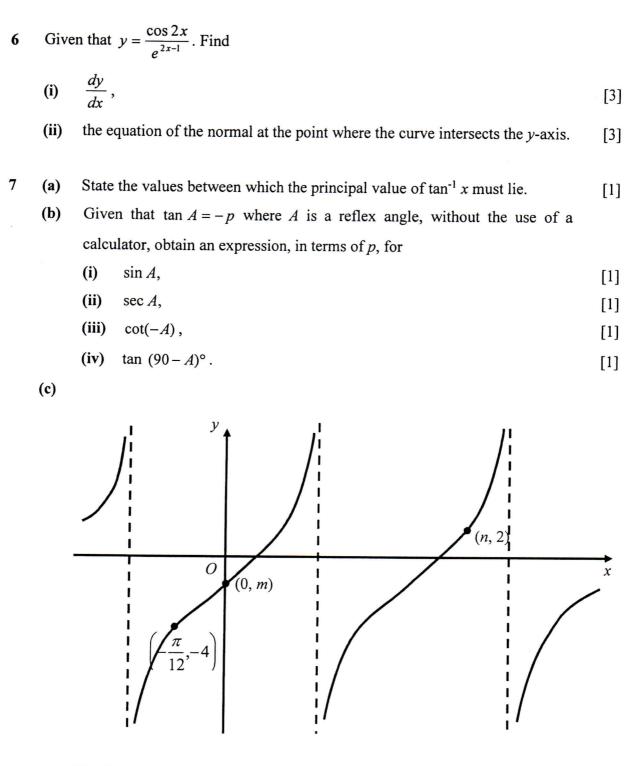
- (i) The diagram shows the graph of y = |f (x)| passing through (0, 6) and [2] touching the x-axis at (-3, 0). Given that the graph y = f (x) is a straight line, write down the two possible expressions for f (x).
- (ii) State the range of values of *m* for which the line y = mx intersects the graph, [1] y = |f(x)| at 2 distinct points.
- 2 An isosceles triangle PQR in which PQ = PR has an area of 46 cm². Given that its base QR is $(8\sqrt{3}-2\sqrt{2})$ cm, find in surd form,
 - (i) the height of the triangle, [2]
 - (ii) the perimeter of the triangle. [3]

3 Express
$$\frac{3x^3 + 6x - 8}{x(x^2 + 2)}$$
 in partial fractions. [5]

- 4 (i) Given that p < 1, show that the roots of the equation $x^2 2x + 2 p = 0$ are not real.
 - (ii) Find the range of values of k for which the line, y + kx = 8 intersects the curve, $x^2 + 4y = 20.$ [3]

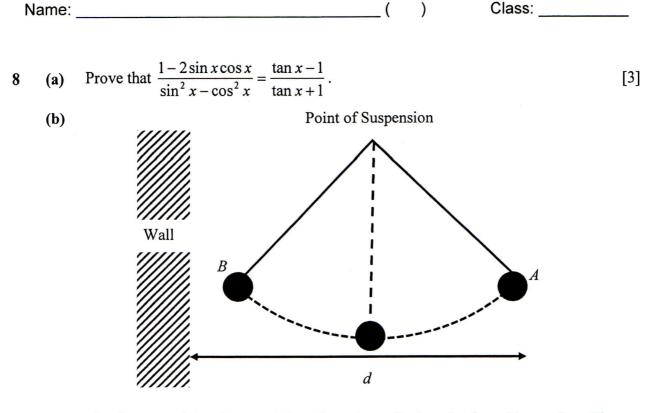
5 (i) Show that
$$\frac{d}{dx}[2x(\ln x - 3)] = 2\ln x - 4.$$
 [2]

(ii) Hence, find $\int_{1}^{8} 2 \ln x \, dx$, giving your answer in the form of $h \ln 2 + k$, where h and k are constants. [4]


[3]

Name:

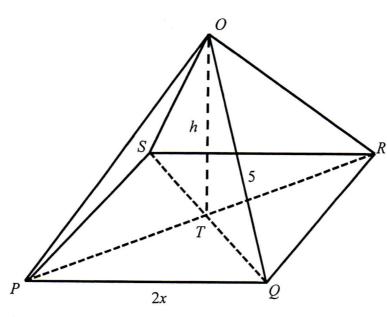
)


_ (

Class:

The diagram shows part of the graph $y = m + 3 \tan 3x$ passing though the

points
$$\left(-\frac{\pi}{12}, -4\right)$$
, (0, m) and (n, 2). Find the value of m and of n. [3]


The distance of the giant pendulum from the wall, d, varies from 13 m to 3 m. The giant pendulum swings from A to B and back to A every 12 seconds. The distance of the pendulum from the wall, d, is, is modelled by the equation $d = 8 + a \cos b\pi t$, where a and b are constants and t is the time in seconds from the start of motion.

- (i) Find the value of a and of b. [2]
- (ii) Hence, sketch the graph of $d = 8 + a \cos b\pi t$ for $0 \le t \le 24$. [2]
- (iii) Find the first two times when the pendulum was 10 m away from the [2] wall.

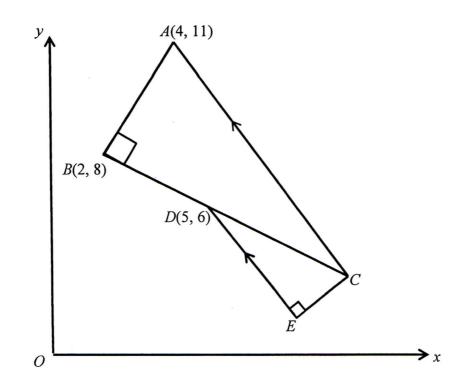
9 (a) Solve the following equations.

- (i) $4^x = 7^{x-1}$ [3]
- (ii) $2\log_4 5x^2 \log_8 (4-x)^3 = 1 + \log_2 (1-x)$ [6]
- (b) Sketch the graph of $y = 2e^{-x}$ and $y = 3 e^{x}$ on the same diagram. Find the *x*-coordinate of the points of intersection of the two graphs. [4]

Name:

A right pyramid has a square base, PQRS, with vertex, O. O is directly above the centre of the base, T, as shown in the diagram above.

The lengths of the sides of the base are 2x metres and the height is h metres.


The lengths of the sloping edges, OP, OQ, OR and OS are each 5 metres.

- (i) Show that the volume of pyramid, $V \text{ m}^3$, is given by $V = \frac{4x^2\sqrt{25-2x^2}}{3}$. [3]
- (ii) Given that x can vary, find the value of x for which V has a stationary value.Hence, calculate this stationary value of V.
- (iii) By considering the sign of $\frac{dV}{dx}$, determine whether this stationary value is a maximum or a minimum. [1]

[5]

NI	2	m	0	•
1 1	a	111	c	

(

11 Solutions to this question by accurate drawing will not be accepted.

In the diagram, the points, A, B and D have coordinates (4, 11), (2, 8) and (5, 6) respectively. The point D is the mid-point of BC. The line ED is parallel to CA and angle ABC = angle CED = 90°. Find

(i)	coordinates of C,	[2]
(ii)	the coordinates of <i>E</i> ,	[6]
(iii)	the of area of <i>ABDEC</i> .	[2]

~ End of Paper ~

Name:

- 1 The variables x and y are related by the equation $y = \frac{5}{2(x-1)^2}$, where $x \neq 1$.
 - (i) Given that x is decreasing at a rate of 0.2 units per second, find the rate of change of y when x = 2. [3]

(

It is given further that the variable w is such that $\sqrt{w} = y$.

(ii) Show that, when x = 2, the rate of change of w is five times the rate of change of y.

[3]

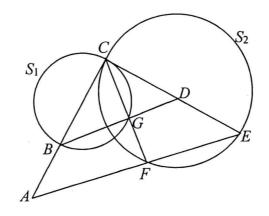
2 The trees in a certain forest are dying because of an unknown virus. The number of trees, N, surviving t years after the onset of the virus is shown in the table below.

t	1	2	3	4	5	6
N	2000	1300	890	590	395	260

The relationship between N and t is thought to be of the form $N = Ab^{-t}$.

- Using suitable variables, draw, on graph paper, a straight line graph and hence estimate the value of each of the constants A and b.
 [6]
- (ii) If the trees continue to die in the same way, find the number of trees surviving after
 15 years. [1]
- 3 The coefficient of x^2 in the expansion of $\left(1+\frac{x}{5}\right)^n$, where *n* is a positive integer, is $\frac{3}{5}$.
 - (i) Find the value of n.
 - (ii) Using this value of n, find the term independent of x in the expansion of

$$\left(1+\frac{x}{5}\right)^n \left(2-\frac{3}{x}\right)^2.$$
[3]


- 4 (a) Find all the values of x between 0 and 4 for which $\cos(x + \frac{\pi}{6}) = \frac{1}{3}\cos(x \frac{\pi}{6})$. [4]
 - (b) (i) Show that $2\sin 3x + 2\sin x = 8\sin x \cos^2 x$. [3]
 - (ii) Hence solve the equation $\sin 3x 4 \sin x = 0$ for $0^{\circ} < x < 360^{\circ}$. [4]

[3]

Class:

- 5 The roots of the quadratic equation $4x^2 + 3x + 1 = 0$ are α and β . Find
 - (i) the value of $\alpha^2 + \beta^2$, [3]
 - (ii) a quadratic equation with roots $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$. [4]

6

In the diagram, not to scale, *BC* and *CE* are diameters of the circles, S_1 and S_2 respectively. *CE* is a tangent to the circle S_1 at *C*. *CF* and *BD* meet at *G*, which lies on the circumference of S_1 . *F* lies on the circumference of S_2 with centre at *D*. *CB* produced and *EF* produced meet at *A*. Show that

(a) lines BD and AE are parallel, [2]

$$AC = 2BC, [3]$$

(c) triangle CEF is similar to triangle AEC, [2]

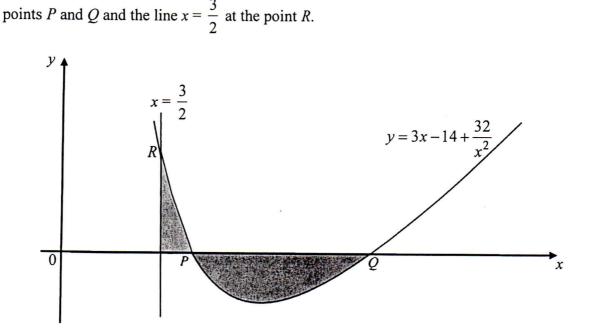
(d)
$$CF^2 = AF \times EF$$
. [3]

7 (a) It is given that
$$y = (x+5)(x-1)^2$$
.

(i) Obtain an expression for $\frac{dy}{dx}$ in the form p(x-q)(x+p), where p and q are

integers.

(ii) Determine the values of x for which y is an increasing function. [2]


(b) A curve is such that $f''(x) = 4e^{-2x}$. Given that f'(0) = 3 and the curve passes through the point $\left(2, \frac{1}{e^4}\right)$, find the equation of the curve. [6]

[3]

Class:

(ii) Hence factorise $3x^3 - 14x^2 + 32$ completely. [3]

The diagram below shows part of the curve $y = 3x - 14 + \frac{32}{x^2}$ meeting the x-axis at the

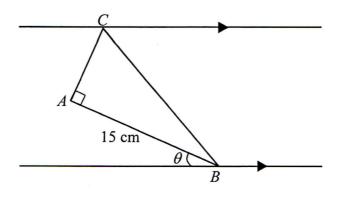
(iii)	Find the <i>x</i> -coordinates of P and Q .	[2]
(111)	Find the x-coordinates of P and Q .	[2

9 The equation of a circle C_1 is $3x^2 - 30x + 75 - 12y + 3y^2 = 0$.

(i)	Find the radius and the coordinates of the centre of C_1 .	[3]
(ii)	Show that the circle C_1 touches the x-axis.	[2]

A second circle, C_2 , has the same centre as the circle C_1 and a diameter AB. Given that the coordinates of A are (1, 6), find

(iii)	the equation of the circle C_2 ,	[2]
-------	------------------------------------	-----


(iv) the equation of the tangent to C_2 , at B. [3]

A point P, which lies on the circle C_2 , has the same distance from the x-axis as the point A.

(v) Find the equation of PB. [2]

Name:

10 The diagram shows two parallel lines and a right-angled triangle *BAC* with AB = 15 cm, the area of $\triangle ABC = 60$ cm² and *AB* makes an acute angle θ with one of the lines.

(i) Show that the distance between the parallel lines, $D = (15 \sin \theta + 8 \cos \theta) \text{ cm}$.

[3]

[2]

(ii) Express D in the form
$$R \cos(\theta - \alpha)$$
, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. [3]

(iii) Find the greatest possible value of D and the value of θ at which this occurs.

- (iv) Find the values of θ for which D = 16. [3]
- 11 A particle starts at a displacement 6 m from O and travels in a straight line so that its velocity, v m/s, is given by $v = -24 \sin 2t$, where t is the time in seconds measured from the start of the motion. Find
 - (i) the time at which the particle first has a velocity of 4 ms⁻¹, [1]
 (ii) the initial acceleration of the particle, [2]
 (iii) an expression, in terms of *t*, for the displacement of the particle from *O*, [2]
 - (iv) the maximum displacement of the particle from *O*, [1]
 - (v) the total distance travelled by the particle in the first 4 seconds. [3]

~ End of Paper ~

4(i) 4 1 1 1 1 8 8 8 1 1 1 1 1 1 8 8 8 1	nondrana	Kemarks
	a = 1, b = -2, c - 2 = p $b^2 - 4 = c - 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	
	$p - 4ac = (-2)^{-} - 4(1)(2 - p)$	M1 evaluate the
	-4 - 6 + 4p	discriminant
	If $p < 1, 4p < 4$	IM
	-4 + 4p < 0	
	Since $b^2 - 4ac < 0$, therefore, the roots are not real.	A1 Explanation
	$y + kx = 8 \rightarrow y = 8 - kx - \dots (1)$	
* 0	$x^{2} + 4y = 20$ (2) Substitute (1) into (2)	
	$\frac{3}{2} + \frac{4}{8} = \frac{1}{2}$	
< ×	$x^2 + 32 - 4kx - 20 = 0$	MI equate line and curve
*	$x^2 - 4kx + 12 = 0$	
Ą	$b^2 - 4ac \ge 0$	
·	$(-4k)^2 - 4(1)(12) \ge 0$	M1 $b^2 - 4ac \ge 0$
	$16k^2 - 48 \ge 0$	
× -	kr - 3 ≥ 0 L - 6 - 5 - 5	
		AI N
(1)c	$\frac{d}{dx}[2x(\ln x - 3)] = \frac{d}{dx}[2x\ln x - 6x)]$	
, II	4 C+vu	
11	$= 2\ln x - 4(Shown)$	B2
5(ii) [$\int_{1}^{8} 2 \ln x - 4 dx = \left[2 x (\ln x - 3) \right]_{1}^{8}$	M1 using hence
_	$\int_{1}^{1} 2 \ln x dx - \int_{1}^{1} 4 dx = \left[2 x (\ln x - 3) \right]_{1}^{0}$	
	$\int_{1}^{8} 2 \ln x dx = \left[2x(\ln x - 3) \right]_{1}^{8} + \int_{1}^{8} 4 dx$	
	$\int_{1}^{7} 2 \ln x dx = \left[2x(\ln x - 3) \right]_{1}^{7} + \left[4x \right]_{1}^{8}$	
	$\int_{0}^{8} 2 \ln x dx = [16(\ln 8 - 3) - 2(\ln 1 - 3)] + [4x]_{0}^{8}$	M1 make 2 ln x as subject
•	$= 16\ln 8 - 48 - 2\ln 1 + 6 + (32 - 4)$	M1 substitution
		AI
6(i) J	$y = \frac{\cos 2x}{2^{x-1}}$	
3	$\frac{dv}{dv} = e^{2x-1}(-2\sin 2x) - (\cos 2x)(2e^{2x-1})$	M1 for Quotient Rule
13	$\frac{1}{dx} = \frac{1}{(e^{2x-1})^2}$	M1 for differentiating cos
9	$dy - 2(\sin 2x + \cos 2x)$ $dy - 2\sin 2x - 2\cos 2x$	
13	$\frac{dx}{dx} = \frac{e^{2x-1}}{e^{2x-1}}$ or $\frac{x}{dx} = \frac{e^{2x-1}}{e^{2x-1}}$	AI
6(ii) A	G	
910	$\frac{dy}{dt} = \frac{-2(0+1)}{(t^{a-1})} = -2e$	
3	-	
L	Therefore, gradient of normal $=\frac{1}{2e}$	B1 (gradient of normal)
2	When $x = 0$, $y = \frac{\cos 0}{e^{-1}} = e$. Therefore (0, e)	B1 (coordinate at y-axis)

) ation	Kemarks	B1, B1	B1		МІ			AI		MI			AI	AI	B1		MI			M1 (Substitution /	Comparing Coefficient)						AI	1
Fairfield Methodist School (Secondary) Secondary 4 Express Preliminary Examination Additional Mathematics Marking Scheme Paper 1	I(i) Gradient of line = -2 or 2		1(u) -2 < m < 0	 $\left \left(4\sqrt{3} - \sqrt{2} \right) \times h = 46 \right $	$h = \frac{46}{(4\sqrt{3} - \sqrt{2})} \times \frac{4\sqrt{3} + \sqrt{2}}{4\sqrt{3} + \sqrt{2}}$, 184/3 + 46/2	n=		$2(\mathrm{iii}) \left PQ^2 = h^2 + \left[\frac{1}{2} (8\sqrt{3} - 2\sqrt{2}) \right]^2 \right]$	$PQ^2 = (4\sqrt{3} + \sqrt{2})^2 + (4\sqrt{3} - \sqrt{2})^2$	$PQ^2 = 48+8\sqrt{6}+2+48-8\sqrt{6}+2$	$PQ^2 = 100$	Perimeter of triangle $POR = 2 \times 10 + 8\sqrt{3} - 2\sqrt{5}$	$= (20 + 8\sqrt{3} - 2\sqrt{2}) \text{ cm}$	$\frac{3}{3} \qquad \frac{3x^3 + 6x - 8}{3} = \frac{3}{3} - \frac{8}{2}$	$x(x^{2}+2)$ $x(x^{2}+2)$	$\frac{-8}{1.2} = \frac{A}{2} + \frac{Bx + C}{2}$	x(x + z) - x - x + z -8 = $A(x^2 + 2) + (B_x + C)(x)$	Using substitution,	x = 0, -8 = 2A	A = -4 When x = 1, -8 = A(3) + B + C	-8 = -12 + B + C 4 = B + C (1)	-1, -8 = 3.	4 = B - C (1) + (2), 8 = 2B	$(1)^{-1}(2)^$	Sub B = 4 into (1), C = 0	$\frac{3x^{2}+6x-8}{x(x^{2}+2)} = 3 - \frac{4}{x} + \frac{4x}{(x^{2}+2)}$	

M1 multiply by 1 for the given form	$=\frac{\sin x - \cos x}{\sin x + \cos x} \times \frac{\sin x - \cos x}{\sin x - \cos x}$	
	$= \frac{\cos x}{\sin x + \cos x}$	
M1 change to sin x / cos x	$= \frac{\cos x}{\sin x} + 1$ $\frac{\sin x}{\cos x} + \cos x$	
	$RHS = \frac{\tan x - 1}{\tan x + 1}$ $\frac{\sin x}{\sin x} = 1$	
	$\frac{1-2\sin x \cos x}{\sin^2 x - \cos^2 x} = \frac{\tan x - 1}{\tan x + 1}$	8(a)
AI	$n = \frac{5\pi}{12}$	
	$3n=\frac{\pi}{4},\frac{5\pi}{4}$	
m = m = m = m = m = m = m = m = m = m =	$3 = 3 \tan 3n$ $1 = \tan 3n$	
M1 use their m and (m	when $m = -1$, $2 = -1 + 3$ tan $3m$	
BI	= -	
	$-4 = m + 3 \tan\left(-\frac{\pi}{4}\right)$	
	$-4=m+3\tan\left(3\times-\frac{\pi}{12}\right)$	
	When $x = -\frac{\pi}{12}$, $y = -4$	7(c)
5		
D1	1	7(h)(iv)
BI		7(b)(iii)
BI	$\sqrt{p^2+1}$	7(b)(ii)
BI	$-\frac{p}{\sqrt{p^2+1}}$	7(b)(i)
BI	$-\frac{\pi}{2} < x < \frac{\pi}{2}$ or $-90^{\circ} < x < 90^{\circ}$	7(a)
	Or $y = \frac{1}{2e}x + e$	
B1 (either one)	Equation of normal: $y - e = \frac{1}{2e}(x - 0)$	
Remarks	Description	No.

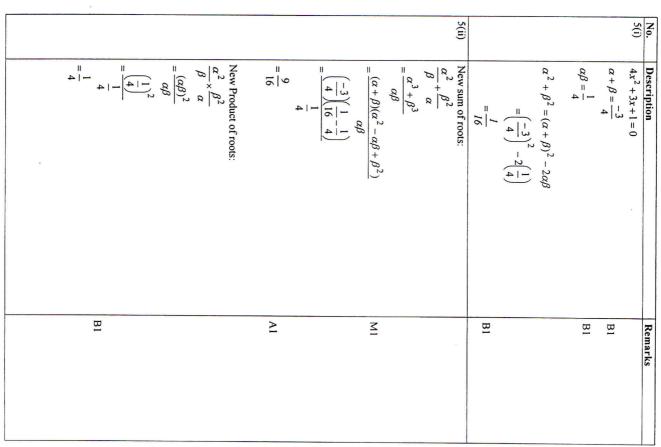
	Remarks
$\frac{1}{2} \cos^2 x$	AGI
OR	
$LHS = \frac{1 - 2\sin x \cos x}{\sin^2 x - \cos^2 x}$	
$\sin^2 x + \cos^2 x - 2\sin x \cos x$	factorize denominator
	correctly
$=\frac{1}{(\sin x - \cos x)(\sin x + \cos x)}$	
	M1 divide by cos x
$(\sin x + \cos x)$ $\cos x$	
$=\frac{\tan x-1}{2}$	AGI
$\tan x + 1$	
a = (13 - 3)/2 = 5	BI
$13 = 8 + a$ $3 = 8 + a \cos \pi$	
a=5 $a=5$	
$Period, 12 = \frac{2\pi}{b}> b = \frac{2\pi}{12}$	
Therefore $b = \frac{1}{6}$ B	BI
	CI correct change with
	maximum and minimum
	value shown P1 correct period of graph
12 24 4	
(b)(iii) = 10,	
$10 = 8 + 5\cos\frac{\pi}{6}$	MI
$\cos\frac{\pi}{h} = \frac{2}{s}$	
Basic angle = 1.15927	
$\frac{\pi}{6}$ = 1.15927, 5.1239	
t = 2.214, 9.7859	
	Al

ω

Remarks	MI AI	AGI	M2 for product rule	M1 equating to zero	AI BI	B1 table and conclusion		
	By Pythagoras Theorem, $TQ^2 = x^2 + x^2$ $TQ^2 = 2x^2$ By Phytagoras Theorem, $QQ^2 = OT^2 + TQ^2$ $S^2 = \mu^2 + 2x^2$ $S^2 = \mu^2 + 2x^2$ $2x^2 = 25 - \mu^2$ $h = \sqrt{25 - 2x^2}$	Volume of pyramid, $V = \frac{1}{3} \times (2x)^2 \times h$ = $\frac{1}{3} \times 4x^2 \times \sqrt{25 - 2x^2}$	$\frac{dV}{dx} = \sqrt{25 - 2x^2} \times \frac{8x}{3} + \frac{1}{3} + \frac{1}{25 - 2x^2} \times \frac{8x - 8x^2}{3} + \frac{1}{25 - 2x^2} + \frac{1}{25 - 3x^2} + \frac{1}{25 - 3x^2} + \frac{1}{25 - 2x^2} + \frac{1}{3} + \frac{1}{3$	When V has a stationary value, $\frac{dV}{dx} = 0$ $\frac{(25-3x^2)8x}{3\sqrt{25-2x^2}} = 0$ $25 = 3x^2$ $x = \pm \sqrt{\frac{25}{3}}$ Since $x > 0$, $x = -\frac{5}{2}$ or 2.89 (3s.f.) [2.88675]		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Let coordinate C be (x, y)	
No.	10(1)		10(ii)			10(iii)	11(i)	

No	Doccuration	
0/2/2/		Kemarks
(I)(B)Y	$4^{*} = 7^{*}$	
	$\lg 4^{x} = \lg 7^{x-1}$	MI applying natural /
	$x \lg 4 = (x - 1) \lg 7$	common logarithm M1 power law
	$x \lg 4 - x \lg 7 = - \lg 7$	
	x(lg 4 - lg 7) = -lg 7	
	lg7	
	<u>x - Ig4-Ig7</u>	A 1
	=3.477225 = 3.48 (3 s.f.)	
9(a)(ii)	$2\log_4 5x^2 - \log_8 (4 - x)^3 = 1 + \log_2 (1 - x)$	
	$2\left(\frac{\log_2 5x^2}{\log_2 (x^2)}\right) = \left(\frac{\log_2 (4-x)^3}{\log_2 (4-x)^3}\right) = \log_2 (4-x)^3$;
	log ₂ 4	M1 Change of base
	$\log, 5x^2$ (3 $\log, (4-x)$)	M1 Douver Law / Outstant
		Law / Product Law
	$\log_{10} 5x^{2} - \log_{10} (4 - x) = \log_{10} 2 + \log_{10} (1 - x)$	M1 Change to same base
		for 1 (if don't show, give
	$\log_2\left(\frac{5x^2}{4-x}\right) = \log_2 2(1-x)$	M1 for Quotient Law
	$\left \left(\frac{5x^2}{4-x}\right) = 2(1-x)\right $	M1 form equation
	$z_{n} = 2(1 - v)(A - v)$	
	$5x^{2} = 2(4-5x+x^{2})$	
	$5x^2 = 8 - 10x + 2x^2$	
	(3x-2)(x+4) = 0	MI for solving for x
	$x = -\frac{2}{2}$ or $x = -4$	
	3	A1 if write NA no mark
9(b)		
	3	B1 for $y = 2e^{-x}$ correct
	k	snape and y-intercept.
	$y = 2e^{x}$	B1 for $y = 3 - e^x$ for
		correct snape, asymptote and y-intercept.
	$y = 3 - e^x$	
	Let $y = e^x$, $y^2 - 3y + 2 = 0$ or $e^{2x} - 3e^x + 2 = 0$ (y - 2)(y - 1) = 0	M1 for quadratic equation
	y = 1	
	$x = \ln 2$ or $x = 0$ = 0.693 (3 s.f.)	AI
		S

	11(iii)						11(11)		No.
$= \frac{1}{2} 32 + 12 + 16 + 26.4 + 88 - (22 + 40 + 39.6 + 25.6 + 16) $ =15.6 units ²	Area of $ABDEC = \frac{1}{2} \begin{vmatrix} 4 & 2 & 5 & \frac{33}{5} & 8 & 4 \\ 11 & 8 & 6 & \frac{16}{5} & 4 & 11 \end{vmatrix}$	When $x = \frac{33}{5}$ or $6\frac{3}{5}$, $y = \frac{16}{5}$ or $3\frac{1}{5}$ Coordinate E is $\left(\frac{33}{5}, \frac{16}{5}\right)$	Sub (1) into (2): $\frac{4}{7}x - \frac{4}{7} - 6 = -\frac{7}{4}x + \frac{35}{4}$ $x = \frac{33}{5}$	Equation of DE: $y - 6 = -\frac{7}{4}(x - 5)$ (2)	$4 = \frac{4}{7}(x - 8)$ - $\frac{4}{7} - \frac{4}{7}$	Gradient of CE = $\frac{4}{7}$	Gradient of AC = $\frac{11-4}{4-8} = -\frac{7}{4}$ Gradient of DE = $-\frac{7}{4}$ (parallel to AC)	$\left(\frac{x+2}{2}, \frac{y+8}{2}\right) = (5,6)$ x = 8, y = 4 \rightarrow Coordinate C is (8, 4)	Description
AI	MI	AI	M1 substituition	BI	M1 (follow through)	B1 gradient of CE	B1 gradient of DE	M1 A1 Coordinate of C	Remarks


ż

No.	Description	-
	-0.6	M1 (gradient)
	gradient = $\frac{-1}{3.4}$	(1111-11)
	= -0.17647	
	$\Rightarrow -\lg b = -0.17647$	
	$\lg b = 0.17647$	
	$b = 10^{0.17647}$	
	≈1.50130	
	= 1.50(3 <i>sf</i> /)	АІ
	Accepts: 1.41 – 1.55	
2(ii)	<u>i = 15</u>	
	$\log N = -0.17647(15) + 3.48$	
	≈ 0.83295	
	$N \approx 10^{0.83295}$	
	≈ 6.807	
	= 6 trees	BI
	Accepts: 4 to 17 trees	
3(i)	, X,n	
	(1+-)"	
	$1 + \frac{n}{\epsilon}x + \frac{n(n-1)}{2}\left(\frac{x}{\epsilon}\right)^2 + \dots$	
	(c) 7 c	
	Coeff of $x^2 = \frac{5}{5}$	
	$\frac{n(n-1)}{2} = \frac{3}{2}$	M1 (equation)
	C C2×2	
	$n^{2} - n = 30$	
	$n^2 - n - 30 = 0$	
	(n+5)(n-6)=0	M1 (factorisation)
	n = -5 (NA) or 6	AI
3(ii)	$(1+\frac{x}{5})^6(2-\frac{3}{2})^2$	
	د (²) اع ۵	
	$= [1 + \frac{5}{5}x + 15(\frac{5}{25}) +)(4 - \frac{5}{x} + \frac{5}{x^2}]$	MI (expansion till x ² term)
	$= \left[4 + \frac{6}{2}x(\frac{-12}{2}) + \frac{15}{2}x^2(\frac{9}{2}) + \dots\right]$	M1 (identify product of
	-x c7 x c	terms that will give
	$= [4 - \frac{72}{5} + \frac{135}{25} + \dots]$	
	= -5 The term indenendent of v is - S	AI

-M1 (connected rate0 M1 (connected rate) Points –P1 Straight line – S1 B1 (3sf) (table) MI (dw/dy) MI(dy/dx) Remarks AG1 Fairfield Methodist School (Secondary) 2017 Secondary 4 Express Preliminary Examination Additional Mathematics Marking Scheme Paper 2 AI BI Thus, when x = 2, w is increasing at 5 times the rate of
 4
 5
 7

 2.77
 2.60
 2.41
 See attach for straight line graph 2.95 $y = \frac{5}{2(x-1)^2} = \frac{5}{2}(x-1)^{-2}$ 3 Accepts A: 2950 - 3090 $\Big| = \frac{-5}{(2-1)^3} \times (-0.2)$ 2 3.11 $\frac{dx}{dt} = -0.2unis/s$ $\frac{dy}{dx} = \frac{-5}{(x-1)^3}$ $\frac{dw}{dt} = 2(2.5) \times \frac{dy}{dt}$ $y = \frac{5}{2(2-1)^2}$ $\frac{dw}{dt} = \frac{dw}{dy} \times \frac{dy}{dt}$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$ 3.30 Description When x = 2, When x = 2, $A = 10^{3.48}$ = 3020(3sf) $\lg A = 3.48$ ≈ 3019.95 $\frac{dw}{dy} = 2y$ y. (shown) = 1 units/s $\sqrt{w} = y$ = 2.5 $w = y^2$ $=5\frac{dy}{dt}$ IgN 1(ii) No. 2(i)

Al(only 1 answer)	For 0° < <i>x</i> < 360°, .: <i>x</i> = 1 <i>80</i> °	
	x = 0°, 180°, 360°	
A1 (NA for cos ² x or cosx)	$\sin x = 0 or \cos^2 x = \frac{5}{4}(NA)$	
M1(factorise out sinx)	$\sin x (4\cos^2 x - 5) = 0$	
	$4\sin x \cos^2 x - 5\sin x = 0$	
	$4\sin x \cos^2 x - \sin x - 4\sin x = 0$	
M		
	$\sin 3x = 4 \sin x \cos^2 x - \sin x - \dots - (2)$	
	From b(i)	
	i) $\sin 3x - 4 \sin x = 0$ (1)	4b(ii)
~	=RHS (Shown)	
} AGI	$=8\sin x\cos^2 x$	
}	$= 2[2\sin x \cos^2 x + 2\sin x \cos^2 x - \sin x + \sin x]$	
$M1(cos2x=2cos^2x-1)$	$= 2[2\sin x \cos^2 x + (2\cos^2 x - 1)\sin x + \sin x]$	
M1[sin(A+B)]	$= 2[\sin 2x \cos x + \cos 2x \sin x + \sin x]$	
	$= 2[\sin(2x + x) + \sin x]$	
	$= 2(\sin 3x + \sin x)$	
	$= 2\sin 3x + 2\sin x$	
	LHS	
714 714	1) Show: $2\sin 3x + 2\sin x = 8\sin x \cos^2 x$	4b(i)
A 1	= 0.714, 3.86 (3sf)	
	x = 0.71372, 3.8553	
	$basic \angle = 0.71372$	
M1 $(\tan x)$	$\tan x = \frac{\sqrt{2}}{2}$	
	<u> </u>	
	$\sqrt{3} - 2 \tan x = 0$	
	$\sqrt{3}\cos x - 2\sin x = 0$	
	2	
	$\frac{3\sqrt{3}}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} = \frac{1}{\sqrt{3}} = 0$	
M1 (Special ∠s)	$3(\cos x, \frac{\sqrt{2}}{2} - \sin x, \frac{1}{2}) = \cos x, \frac{\sqrt{2}}{2} + \sin x, \frac{1}{2})$	
M1 $[\cos(A+B)]$	$\Im(\cos x \cos \frac{\pi}{6} - \sin x \sin \frac{\pi}{6}) = \cos x \cos \frac{\pi}{6} + \sin x \sin \frac{\pi}{6}$	
	$3\cos(x+\frac{\pi}{6})=\cos(x-\frac{\pi}{6})$	
	$\cos(x+\frac{\pi}{6})=\frac{1}{3}\cos(x-\frac{\pi}{6}).$	+(a)
Remarks		4(2)
	Description	N

ω

No.	Description	Remarke
	Method 2:	
	$\angle CFE = 90^{\circ}$ (rt. $\angle 1$ in a semicircle) $\angle CFA = 90^{\circ}$ (adi. $\angle s$ on a straight line)	
	$\therefore CCFE = CCFA$	
	$\angle FCE = \angle CBG$ (Alternate Segment Theorem)	BI
	$\angle CBG = \angle CAF$ (corr. $\angle s$, $BD \mid AE$)	
	$\therefore ZFCE = ZCAF$	
	By AA test, triangle FCE is similar to triangle FAC	BI
	Using similar triangles,	
	$\frac{CF}{FF} = \frac{AF}{AF}$	AGI
	EF CF CF ² = AF × EF(shown)	
(in)	c	
/(al)	$y = (x+5)(x-1)^2$	
	$\frac{dy}{dt} = (x+5)2(x-1) + (x-1)^2(1)$	M2 (Product/Chain Rule)
	= (x - 1)[2(x + 5) + x - 1]	
	= (x-1)(3x+9)	
	=3(x-1)(x+3)	AI
7(aii)	v is an increasing function	
(im)		
	$\frac{1}{dt} > 0$	
	$\Rightarrow 3(x-1)(x+3) > 0$	MI
	(x-1)(x+3) > 0	
	x > 1 or $x < -3$	Al
7b	$\Gamma(x) = \int 4e^{-2x} dx$	
	$=\frac{4e^{-2x}}{2}+c$	
	= -2 = -2e ^{-2x} + c	BI
	When $x = 0$, f'(x) = 3	MI
	5 = -2 + C c = 5	
	$f'(x) = -2e^{2x} + 5$	AI
	$f(x) = \int -2e^{-1x} + 5dx$	
	$= e^{-2x} + 5x + d$	BI
	At $\left(2, \frac{1}{e^4}\right), \frac{1}{e^4} = e^{-4} + 10 + d$	IW
	d == 10	
	Equation of curve: $f(x) = e^{2x} + 5x - 10$	AI

No		
NO.	Description	Remarks
	: The quadratic equation is $x^2 - \frac{9}{16}x + \frac{1}{4} = 0$	B1
	or 10 4	
	$16x^2 - 9x + 4 = 0$	
6(a)	$\angle CGB = 90^{\circ}$ (rt. \angle in a semicircle) $\angle CGD = 90^{\circ}$ (adj. $\angle s$ on a straight line) $\angle CFE = 90^{\circ}$ (rt. \angle in a semicircle)	} BI (∠CGD & ∠CFE)
	Since $\angle CGD = \angle CFE = 90^{\circ}$, Using the <u>converse property of corresponding angles</u> are equal, <i>BD</i> is parallel to <i>AE</i> (shown)	BI
6(b)	$\angle CDB = \angle CEA$ (corresponding $\angle s$, BD // AE) $\angle CBO = \angle CAE$ (corresponding $\angle s$, BD // AE)	} }BI
	By AA test, triangle CDB is similar to triangle CEA .	Bl
	$\therefore \frac{CD}{CE} = \frac{BC}{AC} = \frac{1}{2}$	AGI
	⇒ AC = 2BC (shown)	
6(c)	$\angle CEF = \angle AEC$ (Common \angle) $\angle CFE = 90^{\circ}$ (rt. \angle in a semicircle) $\angle ACE = 90^{\circ}$ (tan \perp radius) $\therefore \angle CFE = \angle AEC$	
	By AA test, triangle CEF is similar to triangle AEC (Shown).)
(q)	Method 1: Using similar triangles in (c) $\frac{CE}{EF} = \frac{AE}{EC}$ $CE^{2} = AE \times EF (1)$	W
	In triangle <i>CEF</i> , by Pythagoras Theorem $CE^2 = CF^2 + EF^2 (2)$	MI
	Sub (1) into (2): $AE \times EF = CF^2 + EF^2$ $CF^2 = EF(AE - EF)$ $CF^2 = EF \times AF(shown)$	IDV
		5

	$=2\frac{22}{24}$ OR 2.96 units ² (3sf)
A	$=\frac{23}{24}+2$
	$= \left[(-38) - (-38\frac{23}{24}) \right] + \left (-40) - (038) \right $
	$+ \left(\frac{3(4)^2}{2} - 14(4) - \frac{32}{4}\right) - \left(\frac{3(2)^2}{2} - 14(2) - \frac{32}{2}\right)$
	$= \left[\frac{(3(2)^2}{2} - 14(2) - \frac{32}{2}) - (\frac{3(1.5)^2}{2} - 14(1.5) - \frac{32}{1.5}) \right]$
	$= \left[\frac{3x^2}{2} - 14x - \frac{32}{x}\right]_{1.5}^2 + \left \frac{3x^2}{2} - 14x - \frac{32}{x}\right _{1.5}^2$
	$= \int_{1.5}^{2} 3x - 14 + 32x^{-2} dx + \left \int_{2}^{4} 3x - 14 + 32x^{-2} dx \right ^{4}$
	From (ii) (x-2)(3x+4)(x-4) = 0 x=2 - 4 or $-4/3$
	$3x^3 - 14x^2 + 32 = 0$
	$3x - 14 + \frac{32}{x^2} = 0$
	8(iii) $y = 3x - 14 + \frac{32}{x^2}$
	=(x-2)(3x+4)(x-4)
	$3x^3 - 14x^2 + 32 = (x - 2)(3x^2 - 8x - 16)$
	8 <i>a</i>
	Comparing coefficient: x: 0 = -16-2p
	8(ii) $3x^3 - 14x^2 + 32 = (x - 2)(3x^2 + px - 16)$
	= 0 $\therefore (x-2)$ is a factor of $f(x)$
	$f(2) = 3(2)^3 - 14(2)^2 + 32$
	$8(i) f(x) = 3x^3 - 14x^2 + 32$
	No. Description

(IV)			9(i) 9(ii)
Radius of $C_2 = 4\sqrt{2}$ AB is the diameter, centre = (5, 2) Let point <i>B</i> be (<i>x</i> , <i>y</i>)	Radius of C ₂ is (3, 2) Radius of C ₂ $=\sqrt{(5-1)^2 + (2-6)^2}$ $=\sqrt{32}$ $=4\sqrt{2}$ Or 5.6568 \approx 5.66 units. equation of circle C ₂ is $(x-5)^2 + (y-2)^2 = (4\sqrt{2})^2$ $(x-5)^2 + (y-2)^2 = 32$ Or $x^2 + y^2 - 10x - 4y - 2 = 0$		$C_{I}: 3x^{2} - 30x + 75 - 12y + 3y^{2} = 0$ $x^{2} + y^{2} - 10x - 4y + 25 = 0$ Centre of circle is (5, 2) Radius of circle $= \sqrt{5^{2} + 2^{2} - 25}$ $= 2 \text{ units}$ Method 1:
	fi l(use wrong centre from (i)) Al	} ₿ ₿ ₿ ₿ ₿	BI AI AI

No	Description	-
	D = AP + AQ	Kcmarks
	In ΔAQB : sin $\theta = \frac{AQ}{B}$	
	15 $AQ = 15\sin\theta$	(<i>db</i>) IM
	In ΔAPC :	\ \ AG1
	$AP = 8s \cos\theta$	
	$\therefore D = 15 \sin\theta + 8 \cos\theta (shown)$	~
10(ii)	Let $D = R\cos\theta\cos\alpha + R\sin\theta\sin\alpha$ $8\cos\theta + 15\sin\theta = R\cos\theta\cos\alpha + R\sin\theta\sin\alpha$	
	Compare coefficients:	
	$\cos\theta : 8 = R\cos\alpha, \dots, \dots, (1)$	
	$(2) + (1) \tan \alpha = \frac{15}{8}$	
	$\alpha = \tan^{-1}\left(\frac{15}{8}\right)$	M1 (for α)
	- 1.00004	
	$(1)^2 + (2)^2; R = \sqrt{8^2 + 15^2} = 17$	MI (for R)
	$\therefore D = 17\cos(\theta - 1.08)$	
10(iii)	$D = 17\cos(\theta - 1.08084)$ Greatest value of $D = 17$	BI
	If occurs when $\cos(\theta - 1.08084) = 1$ That is $\theta = 1.08084$ = 1.08 (3 sf)	BI
10(iv)	$17\cos(\theta - 1.0808) = 16$ $\cos(\theta - 1.08084) = \frac{16}{17}$ Basic angle = 0.34470	
		MI

.0N	Description	Remarks
	$\frac{x+1}{2} = 5$ $x = 9$	ft 1 (use wrong centre from (i))
	$\frac{y+6}{2} = 2$ y = -2 $\therefore B = (9, -2)$	
	Gradient of line joining A and (5, 2) 4	<i>f</i> i 1
	= -4 = -1	AI
	Gradient of the tangent at $B = 1$	
	Equation of the tangent at B is y - (-2) = 1(x - 9) y + 2 = x - 9 or $y = x - 11$	
9(v)	Let P be (x, 6) That is	
	$(x-5)^2 + (6-2)^2 = 32$	
	$(x-5)^2 = 32 - 16$	
	x - 5 = 4 or -4	
	x = 9 or I(NA)	MI
	Equation of <i>PB</i> is $x = 9$.	AI
10(i)	Area $\Delta ABC = 60$ $\frac{1}{2} \times 15 \times AC = 60$	OFIM
	AC=8	
	d A A	
	Q B	
		6

11(iv)		11(11)		No.
Maximum displacement, $V = 0$ $-24 \sin 2t = 0$ $2t = 0, \pi, 2\pi$ $t = 0, \frac{\pi}{2}, \pi$ $\therefore \max S = 12 \cos 2(\pi/2) - 6$ $= 12 \cos \pi - 6$ = -18 m	$S = \int V dt$ = $\frac{\int -24 \sin 2t dt}{2} + c$ = $12\cos 2t + c$ When t = 0, s = 6 6 = $12\cos 9 + c$ C = -6 $\therefore S = 12\cos 2t - 6$	Initial Acceleration, $t = 0$ $a = \frac{dv}{dt}$ $= -24 \cos 2t \times 2$ $= -48 \cos 2t$ When $t = 0$, Initial acceleration $= -48 \cos 0$ $= -48 \text{ m/s}^2$	$v = -24 \sin 2t$ when V = 4 m/s $-24 \sin 2t = 4$ $\sin 2t = \frac{-1}{6}$ Basic angle = 0.167448 $2t = \pi + 0.167448$ t = 1.65452 = 1.655 s	Description $-1.08084 < \theta - 1.08084 < 0.48996$ $\theta - 1.08084 = 0.34470, -0.34470$ $\theta = 1.43, 0.736$
<u>∞</u>	AI <u>M</u> I	MI	BI	Remarks A2

11(v) No. Total distance travelled = (6 + 18) × 2 + (6 + 7.746) = 61.746 = 61.7 m (3sf) Methods 2: $S = 12\cos 2t - 6$ By observation, max S = -18 mt = 0, s = 6 m = 61.746 = 61.7 m (3sf) $t = \pi$, s = 6 m t = 4, s = -7.7460 $= \left[12\cos 2t \right]_{0}^{\frac{\pi}{2}} + \left[12\cos 2t \right]_{\pi}^{\frac{\pi}{2}} + \left[12\cos 2t \right]_{\pi}^{\frac{4}{2}} + \left[12\cos 2t \right]_{\pi}^{\frac{4}{2}} \right]_{\pi}^{\frac{4}{2}}$ $\left| \int_{0}^{\pi} 2-24\sin 2t \, dt \right| + \int_{\pi}^{\pi} -24\sin 2t \, dt + \left| \int_{\pi}^{4} -24\sin 2t \, dt \right|$ Method 2: $t = \frac{\pi}{2}$, s = -18 m Description M AI M2 (Any two correct) AI ~ **B1** Remarks B1 (all correct)