Name: \qquad ()

Class: \qquad
Fairfield Methodist School
Additional Math
Sec 4E/5NA SA2 2017

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

Name: \qquad () \qquad

1

(i) The diagram shows the graph of $y=|\mathrm{f}(x)|$ passing through $(0,6)$ and touching the x-axis at $(-3,0)$. Given that the graph $y=\mathrm{f}(x)$ is a straight line, write down the two possible expressions for $\mathrm{f}(x)$.
(ii) State the range of values of m for which the line $y=m x$ intersects the graph, $y=|\mathrm{f}(x)|$ at 2 distinct points.

2 An isosceles triangle $P Q R$ in which $P Q=P R$ has an area of $46 \mathrm{~cm}^{2}$. Given that its base $Q R$ is $(8 \sqrt{3}-2 \sqrt{2}) \mathrm{cm}$, find in surd form,
(i) the height of the triangle,
(ii) the perimeter of the triangle.

3 Express $\frac{3 x^{3}+6 x-8}{x\left(x^{2}+2\right)}$ in partial fractions.

4 (i) Given that $p<1$, show that the roots of the equation $x^{2}-2 x+2-p=0$ are not real.
(ii) Find the range of values of k for which the line, $y+k x=8$ intersects the curve, $x^{2}+4 y=20$.

5 (i) Show that $\frac{\mathrm{d}}{\mathrm{d} x}[2 x(\ln x-3)]=2 \ln x-4$.
(ii) Hence, find $\int_{1}^{8} 2 \ln x \mathrm{~d} x$, giving your answer in the form of $h \ln 2+k$, where h and k are constants.

Name: \qquad () \qquad

6 Given that $y=\frac{\cos 2 x}{e^{2 x-1}}$. Find
(i) $\frac{d y}{d x}$,
(ii) the equation of the normal at the point where the curve intersects the y-axis.

7 (a) State the values between which the principal value of $\tan ^{-1} x$ must lie.
(b) Given that $\tan A=-p$ where A is a reflex angle, without the use of a calculator, obtain an expression, in terms of p, for
(i) $\sin A$,
(ii) $\sec A$,
(iii) $\cot (-A)$,
(iv) $\tan (90-A)^{\circ}$.
(c)

The diagram shows part of the graph $y=m+3 \tan 3 x$ passing though the points $\left(-\frac{\pi}{12},-4\right),(0, m)$ and $(n, 2)$. Find the value of m and of n.
\qquad () \qquad

8 (a) Prove that $\frac{1-2 \sin x \cos x}{\sin ^{2} x-\cos ^{2} x}=\frac{\tan x-1}{\tan x+1}$.
(b)

Point of Suspension

The distance of the giant pendulum from the wall, d, varies from 13 m to 3 m . The giant pendulum swings from A to B and back to A every 12 seconds. The distance of the pendulum from the wall, d, is, is modelled by the equation $d=8+a \cos b \pi t$, where a and b are constants and t is the time in seconds from the start of motion.
(i) Find the value of a and of b.
(ii) Hence, sketch the graph of $d=8+a \cos b \pi t$ for $0 \leq t \leq 24$.
(iii) Find the first two times when the pendulum was 10 m away from the wall.

9 (a) Solve the following equations.
(i) $4^{x}=7^{x-1}$
(ii) $2 \log _{4} 5 x^{2}-\log _{8}(4-x)^{3}=1+\log _{2}(1-x)$
(b) Sketch the graph of $y=2 \mathrm{e}^{-x}$ and $y=3-\mathrm{e}^{x}$ on the same diagram.

Find the x-coordinate of the points of intersection of the two graphs.
\qquad (\qquad

A right pyramid has a square base, $P Q R S$, with vertex, $O . O$ is directly above the centre of the base, T, as shown in the diagram above.
The lengths of the sides of the base are $2 x$ metres and the height is h metres.
The lengths of the sloping edges, $O P, O Q, O R$ and $O S$ are each 5 metres.
(i) Show that the volume of pyramid, $V \mathrm{~m}^{3}$, is given by $V=\frac{4 x^{2} \sqrt{25-2 x^{2}}}{3}$.
(ii) Given that x can vary, find the value of x for which V has a stationary value. Hence, calculate this stationary value of V.
(iii) By considering the sign of $\frac{d V}{d x}$, determine whether this stationary value is a maximum or a minimum.

Name: \qquad ()

Class: \qquad

11 Solutions to this question by accurate drawing will not be accepted.

In the diagram, the points, A, B and D have coordinates $(4,11),(2,8)$ and $(5,6)$ respectively. The point D is the mid-point of $B C$. The line $E D$ is parallel to $C A$ and angle $A B C=$ angle $C E D=90^{\circ}$. Find
(i) coordinates of C,
(ii) the coordinates of E,
(iii) the of area of $A B D E C$.

Name: \qquad ()

Class: \qquad

1 The variables x and y are related by the equation $y=\frac{5}{2(x-1)^{2}}$, where $x \neq 1$.
(i) Given that x is decreasing at a rate of 0.2 units per second, find the rate of change of y when $x=2$.
It is given further that the variable w is such that $\sqrt{w}=y$.
(ii) Show that, when $x=2$, the rate of change of w is five times the rate of change of y.

2 The trees in a certain forest are dying because of an unknown virus.
The number of trees, N, surviving t years after the onset of the virus is shown in the table below.

t	1	2	3	4	5	6
N	2000	1300	890	590	395	260

The relationship between N and t is thought to be of the form $N=A b^{-t}$.
(i) Using suitable variables, draw, on graph paper, a straight line graph and hence estimate the value of each of the constants A and b.
(ii) If the trees continue to die in the same way, find the number of trees surviving after 15 years.

3 The coefficient of x^{2} in the expansion of $\left(1+\frac{x}{5}\right)^{n}$, where n is a positive integer, is $\frac{3}{5}$.
(i) Find the value of n.
(ii) Using this value of n, find the term independent of x in the expansion of

$$
\begin{equation*}
\left(1+\frac{x}{5}\right)^{n}\left(2-\frac{3}{x}\right)^{2} \tag{3}
\end{equation*}
$$

4 (a) Find all the values of x between 0 and 4 for which $\cos \left(x+\frac{\pi}{6}\right)=\frac{1}{3} \cos \left(x-\frac{\pi}{6}\right)$.
(b) (i) Show that $2 \sin 3 x+2 \sin x=8 \sin x \cos ^{2} x$.
(ii) Hence solve the equation $\sin 3 x-4 \sin x=0$ for $0^{\circ}<x<360^{\circ}$.
\qquad
\qquad

5 The roots of the quadratic equation $4 x^{2}+3 x+1=0$ are α and β. Find
(i) the value of $\alpha^{2}+\beta^{2}$,
(ii) a quadratic equation with roots $\frac{\alpha^{2}}{\beta}$ and $\frac{\beta^{2}}{\alpha}$.

6

In the diagram, not to scale, $B C$ and $C E$ are diameters of the circles, S_{1} and S_{2} respectively. $C E$ is a tangent to the circle S_{1} at $C . C F$ and $B D$ meet at G, which lies on the circumference of S_{1}. F lies on the circumference of S_{2} with centre at D. $C B$ produced and $E F$ produced meet at A. Show that
(a) lines $B D$ and $A E$ are parallel,
(b) $A C=2 B C$,
(c) triangle $C E F$ is similar to triangle $A E C$,
(d) $C F^{2}=A F \times E F$.
$7 \quad$ (a) It is given that $y=(x+5)(x-1)^{2}$.
(i) Obtain an expression for $\frac{d y}{d x}$ in the form $p(x-q)(x+p)$, where p and q are integers.
(ii) Determine the values of x for which y is an increasing function.
(b) A curve is such that $\mathrm{f}^{\prime \prime}(x)=4 \mathrm{e}^{-2 x}$. Given that $\mathrm{f}^{\prime}(0)=3$ and the curve passes through the point $\left(2, \frac{1}{\mathrm{e}^{4}}\right)$, find the equation of the curve.
\qquad (\qquad

8 (i) Show that $x-2$ is a factor of $3 x^{3}-14 x^{2}+32$.
(ii) Hence factorise $3 x^{3}-14 x^{2}+32$ completely.

The diagram below shows part of the curve $y=3 x-14+\frac{32}{x^{2}}$ meeting the x-axis at the points P and Q and the line $x=\frac{3}{2}$ at the point R.

(iii) Find the x-coordinates of P and Q.
(iv) Find the area of the shaded region.

9 The equation of a circle C_{1} is $3 x^{2}-30 x+75-12 y+3 y^{2}=0$.
(i) Find the radius and the coordinates of the centre of C_{1}.
(ii) Show that the circle C_{1} touches the x-axis.

A second circle, C_{2}, has the same centre as the circle C_{1} and a diameter $A B$. Given that the coordinates of A are $(1,6)$, find
(iii) the equation of the circle C_{2},
(iv) the equation of the tangent to C_{2}, at B.

A point P, which lies on the circle C_{2}, has the same distance from the x-axis as the point A.
(v) Find the equation of $P B$.
\qquad () \qquad

10 The diagram shows two parallel lines and a right-angled triangle $B A C$ with $A B=15 \mathrm{~cm}$, the area of $\triangle A B C=60 \mathrm{~cm}^{2}$ and $A B$ makes an acute angle θ with one of the lines.

(i) Show that the distance between the parallel lines, $D=(15 \sin \theta+8 \cos \theta) \mathrm{cm}$.
(ii) Express D in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(iii) Find the greatest possible value of D and the value of θ at which this occurs.
(iv) Find the values of θ for which $D=16$.

11 A particle starts at a displacement 6 m from O and travels in a straight line so that its velocity, $v \mathrm{~m} / \mathrm{s}$, is given by $v=-24 \sin 2 t$, where t is the time in seconds measured from the start of the motion. Find
(i) the time at which the particle first has a velocity of $4 \mathrm{~ms}^{-1}$,
(ii) the initial acceleration of the particle,
(iii) an expression, in terms of t, for the displacement of the particle from O,
(iv) the maximum displacement of the particle from O,
(v) the total distance travelled by the particle in the first 4 seconds.

No.	Description	Remarks
4(i)	$\begin{aligned} & a=1, b=-2, \mathrm{c}=2-p \\ & b^{2}-4 a c=(-2)^{2}-4(1)(2-p) \\ &=4-8+4 p \\ &=-4+4 p \\ & \text { If } p<1,4 p<4 \\ &-4+4 p<0 \end{aligned}$ Since $b^{2}-4 a c<0$, therefore, the roots are not real.	M1 evaluate the discriminant M1 Al Explanation
4(ii)	$\begin{aligned} & y+k x=8 \rightarrow y=8-k x \cdots(1) \\ & x^{2}+4 y=20-\cdots(2) \\ & \text { Substitute }(1) \text { into (2) } \\ & x^{2}+4(8-k x)=20 \\ & x^{2}+32-4 k x-20=0 \\ & x^{2}-4 k x+12=0 \\ & \mathrm{~b}^{2}-4 \mathrm{ac} \geq 0 \\ & (-4 k)^{2}-4(1)(12) \geq 0 \\ & 16 k^{2}-48 \geq 0 \\ & k^{2}-3 \geq 0 \\ & k \leq-\sqrt{3} \text { or } k \geq \sqrt{3} \\ & \hline \end{aligned}$	M1 equate line and curve M1 $b^{2}-4 a c \geq 0$ AI
5(i)	$\begin{aligned} & \left.\frac{\mathrm{d}}{\mathrm{~d} x}[2 x(\ln x-3)]=\frac{\mathrm{d}}{\mathrm{~d} x}[2 x \ln x-6 x)\right] \\ & =2 \ln x+2-6 \\ & =2 \ln x-4(\text { Shown }) \end{aligned}$	B2
5(ii)	$\left.\left.\left.\begin{array}{l} \int_{1}^{8} 2 \ln x-4 d x=[2 x(\ln x-3)]_{1}^{8} \\ \int_{1}^{8} 2 \ln x d x-\int_{1}^{8} 4 d x=[2 x(\ln x-3)]_{1}^{8} \\ \int_{1}^{8} 2 \ln x d x= \end{array} \quad[2 x(\ln x-3)]_{1}^{8}+\int_{1}^{8} 4 d x\right]\right]_{1}^{8}+[4 x]_{1}^{8}\right] \begin{aligned} & \int_{1}^{8} 2 \ln x d x=[2 x(\ln x-3) \\ & \begin{aligned} \int_{1}^{8} 2 \ln x d x & =[16(\ln 8-3)-2(\ln 1-3)]+[4 x]_{1}^{8} \\ & =16 \ln 8-48-2 \ln 1+6+(32-4) \\ & =48 \ln 2-14 \end{aligned} \end{aligned}$	M1 using hence M1 make $2 \ln x$ as subject M1 substitution AI
6(i)	$\begin{aligned} & y=\frac{\cos 2 x}{e^{2 x-1}} \\ & \frac{d y}{d x}=\frac{e^{2 x-1}(-2 \sin 2 x)-(\cos 2 x)\left(2 e^{2 x-1}\right)}{\left(e^{2 x-1}\right)^{2}} \\ & \frac{d y}{d x}=\frac{-2(\sin 2 x+\cos 2 x)}{e^{2 x-1}} \text { or } \frac{d y}{d x}=\frac{-2 \sin 2 x-2 \cos 2 x}{e^{2 x-1}} \end{aligned}$	M1 for Quotient Rule M1 for differentiating cos 2 x and $\mathrm{e}^{2 \mathrm{x}}$ correctly Al
6(ii)	At y-axis, $x=0$, gradient of tangent, $\frac{d y}{d x}=\frac{-2(0+1)}{\left(e^{-1}\right)}=-2 e$ Therefore, gradient of normal $=\frac{1}{2 e}$ When $x=0, y=\frac{\cos 0}{e^{-1}}=e$. Therefore $(0, \mathrm{e})$	B1 (gradient of normal) B1 (coordinate at y-axis)

ω

No．	Description	Remarks
	Equation of normal：$y-e=\frac{1}{2 e}(x-0)$ Or $y=\frac{1}{2 e} x+e$	B1（either one）
7（a）	$-\frac{\pi}{2}<x<\frac{\pi}{2} \text { or }-90^{\circ}<x<90^{\circ}$	B1
7（b）（i）	$-\frac{p}{\sqrt{p^{2}+1}}$	B1
7（b）（ii）	$\sqrt{p^{2}+1}$	B1
7（b）（iii）	$\frac{1}{p}$	B1
7（b）（iv）	$-\frac{1}{p}$	BI
7（c）	$\begin{aligned} & \text { When } x=-\frac{\pi}{12}, y=-4 \\ & -4=m+3 \tan \left(3 \times-\frac{\pi}{12}\right) \\ & -4=m+3 \tan \left(-\frac{\pi}{4}\right) \\ & m=-1 \\ & \text { When } x=n, y=2 \\ & 2=m+3 \tan 3 n \\ & \text { When } m=-1,2=-1+3 \tan 3 n \\ & 3=3 \tan 3 n \\ & 1=\tan 3 n \\ & 3 n=\frac{\pi}{4}, \frac{5 \pi}{4} \\ & n=\frac{5 \pi}{12} \end{aligned}$	B1 M1 use their m and $(n, 2)$ A1
8（a）	$\begin{aligned} & \frac{1-2 \sin x \cos x}{\sin ^{2} x-\cos ^{2} x}=\frac{\tan x-1}{\tan x+1} \\ & \text { RHS }=\frac{\tan x-1}{\tan x+1} \\ & =\frac{\frac{\sin x}{\cos x}-1}{\frac{\sin x}{\cos x}+1} \\ & =\frac{\frac{\sin x-\cos x}{\cos x}}{\frac{\sin x+\cos x}{\cos x}} \\ & =\frac{\sin x-\cos x}{\sin x+\cos x} \times \frac{\sin x-\cos x}{\sin x-\cos x} \end{aligned}$	M1 change to $\sin x / \cos x$ M1 multiply by 1 for the given form

IV		
पderô jo pourd pouno Id имочs әпןел unuiu！u pue unuinxew чІІМ әdeys		（！！）（9）8
18		（！）（9）8
sяनхшग्y	uopd！${ }^{\text {ajosa }}$	${ }^{\circ} \mathrm{N}$

No.	Description				Remarks
10(i)	By Pythagoras Theorem, $T Q^{2}=x^{2}+x^{2}$ $T Q^{2}=2 x^{2}$ By Phytagoras Theorem, $\begin{aligned} & O Q^{2}=O T^{2}+T Q^{2} \\ & 5^{2}=h^{2}+2 x^{2} \\ & 2 x^{2}=25-h^{2} \\ & h=\sqrt{25-2 x^{2}} \end{aligned}$				$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\text { Volume of pyramid, } \begin{aligned} V & =\frac{1}{3} \times(2 x)^{2} \times h \\ & =\frac{1}{3} \times 4 x^{2} \times \sqrt{25-2 x^{2}} \end{aligned}$				AG1
10(ii)	$\begin{aligned} \frac{d V}{d x} & =\sqrt{25-2 x^{2}} \times \frac{8 x}{3}+\frac{4 x^{2}}{3} \times \frac{1}{2} \times\left(25-2 x^{2}\right)^{-\frac{1}{2}} \times(-4 x) \\ & =\frac{\left(25-2 x^{2}\right) 8 x-8 x^{3}}{3 \sqrt{25-2 x^{2}}} \\ & =\frac{\left(25-3 x^{2}\right) 8 x}{3 \sqrt{25-2 x^{2}}} \end{aligned}$ When V has a stationary value, $\frac{d V}{d x}=0$ $\begin{aligned} & \frac{\left(25-3 x^{2}\right) \beta x}{3 \sqrt{25-2 x^{2}}}=0 \\ & 25=3 x^{2} \\ & x= \pm \sqrt{\frac{25}{3}} \end{aligned}$ Since $x>0, x=\frac{5}{\sqrt{3}}$ or 2.89 (3s.f.) [2.88675] Therefore, $V=32.075=32.1 \mathrm{~cm}^{3}$ (3 s.f.)				M2 for product rule MI equating to zero AI B1
10(iii)	x $\frac{d V}{d x}$ Sketch of tangent	$\begin{gathered} \frac{5}{\sqrt{3}} \\ +\mathrm{ve} \\ \text { m value. } \end{gathered}$	$\frac{\frac{5}{\sqrt{3}}}{0}$	$\begin{array}{\|c\|} \frac{5^{+}}{\sqrt{3}} \\ \hline-\mathrm{ve} \\ \hline \end{array}$	B1 table and conclusion
11(i)	Let coordinate C be (x, y)				

No.	Description	Remarks
9(a)(i)	$\begin{aligned} & 4^{x}=7^{x-1} \\ & \lg 4^{x}=\lg 7^{x-1} \\ & x \lg 4=(x-1) \lg 7 \\ & x \lg 4-x \lg 7=-\lg 7 \\ & x(\lg 4-\lg 7)=-\lg 7 \\ & x=\frac{-\lg 7}{\lg 4-\lg 7} \\ & =3.477225=3.48(3 \text { s.f. }) \end{aligned}$	M1 applying natural / common logarithm Ml power law A1
9(a)(ii)	$\begin{aligned} & 2 \log _{4} 5 x^{2}-\log _{8}(4-x)^{3}=1+\log _{2}(1-x) \\ & 2\left(\frac{\log _{2} 5 x^{2}}{\log _{2} 4}\right)-\left(\frac{\log _{2}(4-x)^{3}}{\log _{2} 8}\right)=\log _{2} 2+\log _{2}(1-x) \\ & 2\left(\frac{\log _{2} 5 x^{2}}{2}\right)-\left(\frac{3 \log _{2}(4-x)}{3}\right)=\log _{2} 2+\log _{2}(1-x) \\ & \log _{2} 5 x^{2}-\log _{2}(4-x)=\log _{2} 2+\log _{2}(1-x) \\ & \log _{2}\left(\frac{5 x^{2}}{4-x}\right)=\log _{2} 2(1-x) \\ & \left(\frac{5 x^{2}}{4-x}\right)=2(1-x) \\ & 5 x^{2}=2(1-x)(4-x) \\ & 5 x^{2}=2\left(4-5 x+x^{2}\right) \\ & 5 x^{2}=8-10 x+2 x^{2} \\ & 3 x^{2}+10 x-8=0 \\ & (3 x-2)(x+4)=0 \\ & x=\frac{2}{3} \text { or } x=-4 \end{aligned}$	M1 Change of base M1 Power Law / Quotient Law / Product Law MI Change to same base for 1 (if don't show, give M1 for Quotient Law M1 form equation MI for solving for x Al if write NA no mark
9(b)		B1 for $y=2 \mathrm{e}^{-\mathrm{x}}$ correct shape and y-intercept. B1 for $y=3-\mathrm{e}^{\mathrm{x}}$ for correct shape, asymptote and y -intercept. MI for quadratic equation Al

No.	Description	Remarks
	$\begin{aligned} & \left(\frac{x+2}{2}, \frac{y+8}{2}\right)=(5,6) \\ & x=8, y=4 \rightarrow \text { Coordinate } \mathrm{C} \text { is }(8,4) \end{aligned}$	M1 Al Coordinate of C
11(ii)	Gradient of $\mathrm{AC}=\frac{11-4}{4-8}=-\frac{7}{4}$ Gradient of $D E=-\frac{7}{4}$ (parallel to AC) Gradient of $C E=\frac{4}{7}$ Equation of CE: $y-4=\frac{4}{7}(x-8)$ $y=\frac{4}{7} x-\frac{4}{7}$ Equation of DE: $y-6=-\frac{7}{4}(x-5)$ Sub (1) into (2): $\begin{aligned} & \frac{4}{7} x-\frac{4}{7}-6=-\frac{7}{4} x+\frac{35}{4} \\ & x=\frac{33}{5} \end{aligned}$ When $x=\frac{33}{5}$ or $6 \frac{3}{5}, y=\frac{16}{5}$ or $3 \frac{1}{5}$ Coordinate E is $\left(\frac{33}{5}, \frac{16}{5}\right)$	B1 gradient of DE B1 gradient of CE M1 (follow through) B1 M1 substituition A1
11 (iii)	Area of $A B D E C=\frac{1}{2}\left\|\begin{array}{cccccc}4 & 2 & 5 & \frac{33}{5} & 8 & 4 \\ 11 & 8 & 6 & \frac{16}{5} & 4 & 11\end{array}\right\|$ $\begin{equation*} \frac{1}{2}\|32+12+16+26.4+88-(22+40+39.6+25.6+16)\| \tag{1} \end{equation*}$ $=15.6 \text { units }^{2}$	

No.	Description	Remarks
	$\begin{aligned} & \text { gradient }=\frac{-0.6}{3.4} \\ & =-0.17647 \\ & \Rightarrow-\lg b=-0.17647 \\ & \lg b=0.17647 \\ & b=10^{0.17647} \\ & \approx 1.50130 \\ & =1.50(3 s f) \end{aligned}$ Accepts: 1.41-1.55	M1 (gradient) AI
2(ii)	$\begin{aligned} & \frac{t=15}{\lg N}=-0.17647(15)+3.48 \\ & \approx 0.83295 \\ & N \approx 10^{0.83295} \\ & \approx 6.807 \\ & =6 \text { trees } \end{aligned}$ Accepts: $\mathbf{4}$ to 17 trees	B1
3(i)	$\begin{aligned} & \left(1+\frac{x}{5}\right)^{n} \\ & 1+\frac{n}{5} x+\frac{n(n-1)}{2}\left(\frac{x}{5}\right)^{2}+\ldots \\ & \text { Coeff of } x^{2}=\frac{3}{5} \\ & \frac{n(n-1)}{2 \times 25}=\frac{3}{5} \\ & n^{2}-n=30 \\ & n^{2}-n-30=0 \\ & (n+5)(n-6)=0 \\ & n=-5(N A) \text { or } 6 \end{aligned}$	M1 (equation) M1 (factorisation) A1
3(ii)	$\begin{aligned} & \left(1+\frac{x}{5}\right)^{6}\left(2-\frac{3}{x}\right)^{2} \\ & =\left[1+\frac{6}{5} x+15\left(\frac{x^{2}}{25}\right)+\ldots\right)\left(4-\frac{12}{x}+\frac{9}{x^{2}}\right] \\ & =\left[4+\frac{6}{5} x\left(\frac{-12}{x}\right)+\frac{15}{25} x^{2}\left(\frac{9}{x^{2}}\right)+\ldots\right] \\ & =\left[4-\frac{72}{5}+\frac{135}{25}+\ldots\right] \\ & =-5 \end{aligned}$ The term independent of x is -5 .	M1 (expansion till x^{2} term) M1 (identify product of terms that will give independent terms) A1

Fairfield Methodist School (Secondary) 2017 Secondary 4 Express Preliminary Examination

${ }^{\omega}$

No.	Description	Remarks
4(a)	$\begin{align*} & \cos \left(x+\frac{\pi}{6}\right)=\frac{1}{3} \cos \left(x-\frac{\pi}{6}\right) . \\ & 3 \cos \left(x+\frac{\pi}{6}\right)=\cos \left(x-\frac{\pi}{6}\right) \\ & 3\left(\cos x \cos \frac{\pi}{6}-\sin x \sin \frac{\pi}{6}\right)=\cos x \cos \frac{\pi}{6}+\sin x \sin \frac{\pi}{6} \tag{2}\\ & \left.3\left(\cos x \cdot \frac{\sqrt{3}}{2}-\sin x \cdot \frac{1}{2}\right)=\cos x \cdot \frac{\sqrt{3}}{2}+\sin x \cdot \frac{1}{2}\right) \\ & \frac{3 \sqrt{3}}{2} \cos x-\frac{3}{2} \sin x-\frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \sin x=0 \\ & \sqrt{3} \cos x-2 \sin x=0 \\ & \sqrt{3}-2 \tan x=0 \\ & \tan x=\frac{\sqrt{3}}{2} \\ & \text { basic } \angle=0.71372 \\ & \therefore x=0.71372,3.8553 \\ & \quad=0.714,3.86(35 f) \end{align*}$	$\begin{aligned} & \text { M1 }[\cos (A+B)] \\ & \text { M1 (Special } \angle \mathrm{s}) \\ & \\ & \text { M1 }(\tan x) \\ & \text { A1 } \\ & \hline \end{aligned}$
4b(i)	Show: $2 \sin 3 x+2 \sin x=8 \sin x \cos ^{2} x$ LHS $\begin{aligned} & =2 \sin 3 x+2 \sin x \\ & =2(\sin 3 x+\sin x) \\ & =2[\sin (2 x+x)+\sin x] \\ & =2[\sin 2 x \cos x+\cos 2 x \sin x+\sin x] \\ & =2\left[2 \sin x \cos ^{2} x+\left(2 \cos ^{2} x-1\right) \sin x+\sin x\right] \\ & =2\left[2 \sin x \cos ^{2} x+2 \sin x \cos ^{2} x-\sin x+\sin x\right] \\ & =8 \sin x \cos ^{2} x \\ & =\text { RHS (Shown) } \end{aligned}$	$\begin{aligned} & \mathrm{M} 1[\sin (\mathrm{~A}+\mathrm{B})] \\ & \mathrm{M} 1\left(\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1\right) \\ & \} \\ & \} \mathrm{AG} 1 \\ & \} \end{aligned}$
4b(ii)	```\(\sin 3 x-4 \sin x=0 \cdots(1)\) From b(i) \(\sin 3 x=4 \sin x \cos ^{2} x-\sin x\) Sub (2) into (1): \[4 \sin x \cos ^{2} x-\sin x-4 \sin x=0 \] \[4 \sin x \cos ^{2} x-5 \sin x=0 \] \[\sin x\left(4 \cos ^{2} x-5\right)=0 \] \[\sin x=0 \quad \text { or } \quad \cos ^{2} x=\frac{5}{4}(N A) \] \[x=0^{\circ}, 180^{\circ}, 360^{\circ} \] \\ For \(0^{\circ}<x<360^{\circ}\), \[\therefore x=180^{\circ} \]None```	M1 M1(factorise out sinx) A1 (NA for $\cos ^{2} x$ or $\cos x$) Al (only 1 answer)

No.	Description	Remarks
	Method 2: $\angle C F E=90^{\circ}$ (rt. \angle in a semicircle) $\angle C F A=90^{\circ}$ (adj. $\angle \mathrm{s}$ on a straight line) $\therefore \angle C F E=\angle C F A$ $\angle F C E=\angle C B G$ (Alternate Segment Theorem) $\angle C B G=\angle C A F$ (corr. $\angle \mathrm{s}, B D / / A E$) $\therefore \angle F C E=\angle C A F$ By AA test, triangle $F C E$ is similar to triangle $F A C$ Using similar triangles, $\begin{aligned} & \frac{C F}{E F}=\frac{A F}{C F} \\ & C F^{2}=A F \times E F(\text { shown }) \end{aligned}$	B1 B1 AG1
7(ai)	$\begin{aligned} y & =(x+5)(x-1)^{2} \\ \frac{d y}{d t} & =(x+5) 2(x-1)+(x-1)^{2}(1) \\ & =(x-1)[2(x+5)+x-1] \\ & =(x-1)(3 x+9) \\ & =3(x-1)(x+3) \end{aligned}$	M2 (Product/Chain Rule) AI
7(aii)	y is an increasing function $\begin{aligned} & \frac{d y}{d t}>0 \\ \Rightarrow & 3(x-1)(x+3)>0 \\ & (x-1)(x+3)>0 \\ & x>1 \text { or } x<-3 \end{aligned}$	MI Al
7b	$\begin{aligned} \mathbf{f}^{\prime}(\mathrm{x}) & =\int 4 e^{-2 x} d x \\ & =\frac{4 e^{-2 x}}{-2}+c \\ & =-2 e^{-2 x}+c \end{aligned}$ When $x=0, f^{\prime}(x)=3$ $3=-2+c$ $\mathrm{c}=5$ $\begin{aligned} & \begin{array}{l} \mathrm{f}^{\prime}(\mathrm{x})=-2 \mathrm{e}^{-2 \mathrm{x}}+5 \\ \mathrm{f}(\mathrm{x})=\int-2 e^{-2 \mathrm{x}}+5 d x \\ \quad=\mathrm{e}^{-2 \mathrm{x}}+5 \mathrm{x}+\mathrm{d} \\ \text { At }\left(2, \frac{1}{\mathrm{e}^{4}}\right) \cdot \frac{1}{e^{4}}=e^{-4}+10+d \\ \mathrm{~d}=-10 \end{array} \text {. } \end{aligned}$ Equation of curve: $\mathrm{f}(x)=\mathrm{e}^{-2 \mathrm{x}}+5 x-10$	B1 MI AI BI M1 AI

No.	Description	Remarks
	\therefore The quadratic equation is $x^{2}-\frac{9}{16} x+\frac{1}{4}=0$ or $16 x^{2}-9 x+4=0$	B1
6(a)	$\begin{aligned} & \angle C G B=90^{\circ}(\mathrm{rt.} \angle \mathrm{in} \text { a semicircle }) \\ & \angle C G D=90^{\circ}(\text { adj. } \angle \mathrm{s} \text { on a straight line }) \\ & \angle C F E=90^{\circ}(\mathrm{rt} . \angle \text { in a semicircle }) \end{aligned}$ Since $\angle C G D=\angle C F E=90^{\circ}$, Using the converse property of corresponding angles are equal, $B D$ is parallel to $A E$ (shown)	
6(b)	$\angle C D B=\angle C E A$ (corresponding $\angle \mathrm{s}, B D / / A E$) $\angle C B O=\angle C A E$ (corresponding $\angle \mathrm{s}, B D / / A E$) By AA test, triangle $C D B$ is similar to triangle $C E A$. $\begin{aligned} & \therefore \frac{C D}{C E}=\frac{B C}{A C}=\frac{1}{2} \\ & \Rightarrow \mathrm{AC}=2 \mathrm{BC} \text { (shown) } \end{aligned}$	$\begin{aligned} & \} \\ & \text { B1 } \\ & \mathrm{B} 1 \\ & \{ \\ & \{\mathrm{AGI} \end{aligned}$
6(c)	$\begin{aligned} & \angle C E F=\angle A E C(\text { Common } \angle) \\ & \angle C F E=90^{\circ}(\mathrm{rt} . \angle \text { in a semicircle }) \\ & \angle A C E=90^{\circ}(\tan \perp \text { radius }) \\ & \therefore \angle C F E=\angle A E C \end{aligned}$ By AA test, triangle $C E F$ is similar to triangle $A E C$ (Shown).	$\begin{aligned} & \} \\ & \} \\ & \} \mathrm{B} 1 \\ & \} \mathrm{B} 1 \\ & \} \end{aligned}$
6(d)	Method 1: Using similar triangles in (c) $\begin{aligned} & \frac{C E}{E F}=\frac{A E}{E C} \\ & C E^{2}=A E \times E F \ldots-\cdots-(1) \end{aligned}$ In triangle $C E F$, by Pythagoras Theorem $C E^{2}=C F^{2}+E E^{2}------(2)$ Sub (1) into (2): $\begin{aligned} & A E \times E F=C F^{2}+E F^{2} \\ & C F^{2}=E F(A E-E F) \\ & C F^{2}=E F \times A F(\text { shown }) \end{aligned}$	MI M1 \} \}AG1 \}

No．	Description	Remarks
8（i）	$\begin{aligned} & f(x)=3 x^{3}-14 x^{2}+32 \\ & f(2)=3(2)^{3}-14(2)^{2}+32 \\ & \quad=0 \\ & \therefore(x-2) \text { is a factor of } \mathrm{f}(x) \end{aligned}$	$\begin{aligned} & \} \\ & \} \mathrm{B} 1 \\ & \} \end{aligned}$
8（ii）	$3 x^{3}-14 x^{2}+32=(x-2)\left(3 x^{2}+p x-16\right)$ Comparing coefficient： $\begin{aligned} & x: \quad 0=-16-2 p \\ & p=-8 \end{aligned}$ $\begin{aligned} 3 x^{3}-14 x^{2}+32 & =(x-2)\left(3 x^{2}-8 x-16\right) \\ & =(x-2)(3 x+4)(x-4) \end{aligned}$	\} \}M1 （long division，comparing coefficients or synthetic division \}A2
8（iii）	$y=3 x-14+\frac{32}{x^{2}}$ At P and $Q, y=0$ $3 x-14+\frac{32}{x^{2}}=0$ $3 x^{3}-14 x^{2}+32=0$ From（ii） $\begin{aligned} & (x-2)(3 x+4)(x-4)=0 \\ & x=2,4 \text { or }-4 / 3 \\ & \therefore x \text {-coordinate of } P \text { is } 2, \\ & x \text {-coordinate of } Q \text { is } 4 . \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
8（iv）	$\begin{aligned} & \text { Area of the shaded region } \\ & =\int_{1.5}^{2} 3 x-14+32 x^{-2} d x+\left\|\int_{2}^{4} 3 x-14+32 x^{-2} d x\right\| \\ & =\left[\frac{3 x^{2}}{2}-14 x-\frac{32}{x}\right]_{1.5}^{2}+\left\|\frac{3 x^{2}}{2}-14 x-\frac{32}{x}\right\|_{2}^{4} \\ & =\left[\left(\frac{3(2)^{2}}{2}-14(2)-\frac{32}{2}\right)-\left(\frac{3(1.5)^{2}}{2}-14(1.5)-\frac{32}{1.5}\right]\right. \\ & +\left\lvert\,\left(\frac{3(4)^{2}}{2}-14(4)-\frac{32}{4}\right)-\left(\left.\frac{3(2)^{2}}{2}-14(2)-\frac{32}{2} \right\rvert\,\right.\right. \\ & =\left[(-38)-\left(-38 \frac{23}{24}\right)\right]+\|(-40)-(038)\| \\ & =\frac{23}{24}+2 \\ & =2 \frac{23}{24} \text { OR } 2.96 \text { units }^{2}(3 \text { sf }) \end{aligned}$	

		（A！）6
		（！ب！）6
	（unочS）SIxP－x $\begin{array}{r} \varsigma=x \\ 0={ }_{\tau}(\varsigma-x) \\ 0=\varsigma \tau+x_{01}-{ }^{x} x \\ 0=\varsigma \tau+(0) \downarrow-x_{01}-{ }_{\tau}{ }^{0+}{ }^{x} \end{array}$ ＇つ јо uo！̣enbə oıu！qns＇ $0=K$＇s！xe－x if ：I рочэюN	（1）6 6
$\begin{aligned} & \text { IV } \\ & \text { IW } \end{aligned}$ Ig		（！）6
s．¢．temay	uoud！uss ${ }^{\text {a }}$	${ }^{\circ} \mathrm{N}$

No.	Description	Remarks
	$D=A P+A Q$ In $\triangle A Q B$: $\begin{aligned} & \sin \theta=\frac{A Q}{15} \\ & A Q=15 \sin \theta \end{aligned}$ In $\triangle A P C$: $\begin{align*} & \cos \theta=\frac{A P}{8} \\ & A P=8 s \cos \theta \\ & \therefore D=15 \sin \theta+8 \cos \theta \text { (shown) } \tag{1} \end{align*}$	Memarks M1 (AQ) $\}$ $\}$ \}AG1 $\}$ $\}$ $\}$
10(ii)	$\begin{aligned} & \text { Let } D=R \cos \theta \cos \alpha+R \sin \theta \sin \alpha \\ & 8 \cos \theta+15 \sin \theta=R \cos \theta \cos \alpha+R \sin \theta \sin \alpha \end{aligned}$ Compare coefficients: $\begin{aligned} & \cos \theta: 8=R \cos \alpha, \ldots, \ldots, \ldots,(1) \\ & \sin \theta: 15=R \sin \alpha \ldots \ldots(2) \end{aligned}$ $\text { (2) } \div \text { (1) } \tan \alpha=\frac{15}{8}$ $\alpha=\tan ^{-1}\left(\frac{15}{8}\right)$ $=1.08084$ $\therefore D=17 \cos (\theta-1.08)$ $\begin{aligned} (1)^{2}+(2)^{2}: & R=\sqrt{8^{2}+15^{2}} \\ & =17 \end{aligned}$	$\text { M1 (for } \alpha \text {) }$ $\text { M1 (for } R \text {) }$ A1
10(iii)	$\begin{aligned} & D=17 \cos (\theta-1.08084) \\ & \text { Greatest value of } D=17 \\ & \\ & \text { It occurs when } \cos (\theta-1.08084)=1 \\ & \text { That is } \theta=1.08084 \\ & \quad=1.08(3 \mathrm{sf}) \end{aligned}$	B1 B1
10(iv)	$\begin{aligned} & 17 \cos (\theta-1.0808)=16 \\ & \cos (\theta-1.08084)=\frac{16}{17} \\ & \text { Basic angle }=0.34470 \end{aligned}$	M1

No.	Description	Remarks
	$\begin{aligned} & \frac{x+1}{2}=5 \\ & x=9 \\ & \frac{y+6}{2}=2 \\ & y=-2 \\ & \therefore \mathrm{~B}=(9,-2) \end{aligned}$ Gradient of line joining A and $(5,2)$ $\begin{aligned} & =\frac{4}{-4} \\ & =-1 \end{aligned}$ Gradient of the tangent at $B=1$ Equation of the tangent at B is $\begin{aligned} & y-(-2)=1(x-9) \\ & y+2=x-9 \text { or } y=x-11 \end{aligned}$	ft 1 (use wrong centre from (i)) ft 1 Al
$9(v)$	Let P be $(x, 6)$ That is $\begin{aligned} & (x-5)^{2}+(6-2)^{2}=32 \\ & (x-5)^{2}=32-16 \\ & x-5=4 \text { or }-4 \\ & x=9 \text { or } 1 \text { (NA) } \end{aligned}$ Equation of $P B$ is $x=9$.	$\begin{array}{\|l} \hline \text { M1 } \\ \text { Al } \\ \hline \end{array}$
10(i)	Area $\triangle A B C=60$ $\begin{aligned} & \frac{1}{2} \times 15 \times A C=60 \\ & A C=8 \end{aligned}$	M1 (AC)

II

	$\overline{\hat{E}}$		氣	E	E	2
$\underline{\square}$			3	≥ 3	■	

		(A) 11
19		
		${ }^{0} \mathrm{~N}$

